
Recommending Machine Learning Pipelines Based 
on Cumulative Metadata 

Maxim Aliev, Sergey Muravyov 
NRU ITMO 

St.Petersburg, Russian Federation 
imaxaliev@gmail.com, mursmail@gmail.com 

 
Abstract—The problem of automated machine learning 

pipeline design for a given supervised learning task is usually 
solved by various optimization methods. However, this entails high 
time complexity. There is a solution called meta-learning, which 
consists in training a certain model with metadata of the results of 
solving similar problems [1]. Nevertheless, this approach also has 
a limitation: the need for a large amount of knowledge to achieve 
high efficiency of the model. Based on the literature analyzed by 
the authors, this problem still remains relevant. In particular, 
auto-sklearn, one of the most popular solutions, uses a set of 
metadata that is predetermined and does not change based on new 
run results [2]. The ontological data model proposed by the 
authors, together with the mechanism of automated knowledge 
enrichment, are designed to reduce the impact of the above 
restriction. Currently, the pipeline recommendation process 
includes two scenarios: the scenario of having a hash 
representation of the original data set in  storage; the reverse 
scenario, in which the pipeline is recommended based on Bayesian 
optimization over the global space of machine learning algorithms 
and their associate hyper-parameters. As part of the experiment, 
the pipeline inference time was measured for both scenarios. The 
results confirmed the superiority of the metadata-driven 
recommendation and the increase in this advantage as the 
dimension of the input data increased. 

I INTRODUCTION 

There are many various approaches to solving the problem 
of automated machine learning (ML) pipeline design, including, 
but not limited to: evolutionary optimization, reinforcement 
learning, Bayesian optimization, hierarchical planning and 
others [3]. For analysis, we divide them into two categories: 
those based solely on optimization and those that reuse existing 
knowledge (in most cases in the form of metadata for warm start  
optimization). For approaches from the first category, the 
search is carried out in the global space based on the 
improvement in the pipeline quality metric, meanwhile for 
approaches from the second category, metadata allows to 
indicate the optimization starting point and thereby narrowing 
the search space or even composing it from scratch. The 
advantage of approaches from the second category is the low 
time complexity of the pipeline search process, which in most 
cases is achieved through the meta-learning mechanism, i.e. 
training some model on the results of solving similar problems. 
Combined with some optimization strategy it can be a powerful 
tool, because it can reduce the search space dozens or even 
hundreds of times. The existing limitations for successful 
adaptation of meta-learning are: the level of generalization of 
the model and the amount of the training instances. In this 

paper, an attempt is made to eliminate the latter limitation by 
designing a knowledge base and a mechanism for its automated 
population. 

II.   COMBINED ALGORITHM SELECTION AND HYPER-
PARAMETER OPTIMIZATION 

First of all, we define a method for algorithm selection and 
hyper-parameter tuning based on optimization  for the scenario 
of no result in the knowledge base. To do this, we analyze the 
following candidates: grid and random search; Bayesian, 
evolutionary, early stopping-based and gradient-based 
optimization; and reinforcement learning. 

1) Grid search. Represents a brute-force search in the 
given parameter space. For effective use, manual 
setting of bounds and discretization of parameters may 
be required. The drawback is that it suffers from the 
curse of dimensionality. 

2) Random search. Randomly selects a combination of 
parameters from a given search space. By default, it is 
applicable for both discrete and continuous (including 
mixed) parameter spaces. It can be more efficient than 
the previous method when only a small number of 
parameters affect the quality of the ML algorithm. 

3) Bayesian optimization. It is a method for the global 
optimization of an unknown function with noise. The 
algorithm of work is to build a probabilistic model and 
iteratively update it in search of the optimum. 

4) Evolutionary optimization. It is yet another method for 
the global optimization of a black-box function with 
noise. In the first stage the population of individuals 
(candidate pipelines) is selected randomly. Next, all 
candidates are evaluated using the fitness function. 
Then, the top best candidates are chosen for 
reproduction, which takes place by means of cross-
over and mutation operators. Finally, the least-fit 
candidates from the previous population are 
substituted by new ones and the process is repeated 
(from the second stage) until termination. 

5) Early stopping-based optimization. Specifically 
designed for  large search spaces. One of the 
implementations is the successive halving algorithm, 
which in general is a random search with the capability 
of pruning low performing models. 
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6) Gradient-based optimization. The idea behind the 
basic version is to compute the gradient for specific 
ML algorithms with respect to their hyper-parameters 
by means of gradient descent, which is an iterative 
optimization strategy for searching the local optimum 
of a differentiable function. 

7) Reinforcement learning. The key idea is to build so-
called surrogate model to predict validation loss for a 
candidate solution. The next value is selected based on 
heuristic function of the expected value and  model 
uncertainty. 

For now, as a pipeline design method for the scenario of no 
result in the knowledge base, our choice fell on Bayesian 
optimization, due to the fact that, compared to others, it allows 
you to achieve the highest quality result for the lowest amount 
of calculations [4]. But in the future, we will consider 
combining different optimization strategies. 

III.    ONTOLOGY-BASED DATA MODEL 

An ontology was chosen as a knowledge base for storing 
metadata for solving the problem of ML pipeline automated 
design at the current stage [5]. In the ontology, all data are 
presented as triplets: subject→predicate→object. This choice is 
justified by the flexibility of knowledge representation of the 
subject area and  its logical inference feature, which will 
potentially be useful for the pipeline recommendation. The 
hierarchy of key classes of designed ontology and the structure 
of relations between them are shown in Fig. 1. 

Fig. 1. Ontology class hierarchy 

To begin with, we have an entity of the Task class. It is 
related to the entity set of the Model class through the 
hasPotentialSolution relationship. Also, each of the models can 
be associated with the entity set of the HyperParameter through 
the hasHyperParameter relationship. The considered relations 
are intended to provide a model search space for the 
optimization method based on a task type. Each potential 
solution is retrieved as code through the 
hasPythonImplementation property. 

In addition, another sequence of relationships arises from 
the entity of the Task class. Specifically, the task is linked to the 
Dataset class through the hasStoredData relationship. The idea 
is to store the results of solving a particular task, such as a 
regression. Each data set is associated with one Pipeline class 
entity, resulting from the optimization method. The pipeline has 
a hasEvaluatedAccuracy property containing the accuracy 
estimate on the data. The pipeline instance is also associated 
with one or more instances of the Transformer class. Each 
transformer is either a learning model or a preprocessing 
algorithm and, as in the case of the search space, is extracted as 
a piece of software. Fig. 2 illustrates a fragment of such a 
relationship. 

 

 

 

 

 

 

 

 

Fig. 2. Ontology entity relationship 

The developed ontology contains the implementation of 
algorithms from the scikit-learn Python package [6]. In 
addition, we are currently implementing the cumulative  
data submodel, which will take into account data set meta-
features  [7]. 

IV.   METHOD OF AUTOMATED POPULATION OF THE 

KNOWLEDGE BASE 

So, for the successful application of the developed ontology 
to the problem of automated ML pipeline design, a mechanism 
is needed that would improve the efficiency of meta-learning by 
accumulating knowledge [8]. The algorithm of the proposed 
method is shown in Fig. 3. 
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Fig. 3 Current application workflow 

V. EXPERIMENTAL ESTIMATION OF PIPELINE  
INFERENCE TIME 

 Next, we will experimentally evaluate whether the 
proposed solution can improve the optimization based 
approach. To do this, we will run the developed program twice 
to cover scenarios characterized by the presence and absence of 
a result for the input data in the knowledge base. As test data, 
we will generate a data set through the 
sklearn.datasets.make_regression utility function. 

 Let us describe in detail the course of one of the 

experiments. At the first start, the pipeline for input was absent 
in the ontology. The search space extracted from the storage 
covers the common algorithms for solving the regression 
problem and their associated hyper-parameter ranges. Based on 
the results of Bayesian optimization, the following pipeline was 
obtained: make_pipeline(StandardScaler(with_mean=False), 
LinearRegression()), whose quality based on accuracy metric 
was 1.0. Subsequently, it was recorded to the knowledge base 
and, during second program run, was inferred from there 
immediately. Experimental results for datasets with different 
numbers of samples are presented in Table I. 

TABLE I. COMPARING THE EXECUTION TIME OF  
DIFFERENT SCENARIOS 

Number of samples 

Execution time, s 

Bayesian 
optimization 

Metadata-
based 

inference 

1000 5 

1 10000 88 

100000 16888 (4.7h.) 

 As a result, metadata-based inference is always 
performed in constant time, and for optimization, there is a 
dependence of the pipeline search time on the size of the data 
set, which leads to a long waiting time on a high-dimensional 
input data. 

VI. CONCLUSION 

 In the course of the work, the following significant 
results were achieved: a method was chosen for combined 
algorithm selection and hyper-parameter tuning; a data model 
was developed to improve the quality of the ML pipeline 
recommendation based on meta-learning; the method of 
automated population of the knowledge base was implemented; 
an experimental comparison was made between different ML 
pipeline inference scenarios, which confirmed the need of 
metadata warm-starting procedure for any optimization strategy 
to work effectively in terms of computational time. 

 In the future, it is planned to develop a meta-learning 
mechanism to recommend a pipeline for arbitrary data, as well 
as to gather enough metadata, so it will be possible to compete 
with the state-of-the-art solutions, for instance auto-sklearn 2.0, 
in a concrete task [9]. 
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