
Recommending Machine Learning Pipelines Based
on Cumulative Metadata

Maxim Aliev, Sergey Muravyov
NRU ITMO

St.Petersburg, Russian Federation
imaxaliev@gmail.com, mursmail@gmail.com

Abstract—The problem of automated machine learning

pipeline design for a given supervised learning task is usually
solved by various optimization methods. However, this entails high
time complexity. There is a solution called meta-learning, which
consists in training a certain model with metadata of the results of
solving similar problems [1]. Nevertheless, this approach also has
a limitation: the need for a large amount of knowledge to achieve
high efficiency of the model. Based on the literature analyzed by
the authors, this problem still remains relevant. In particular,
auto-sklearn, one of the most popular solutions, uses a set of
metadata that is predetermined and does not change based on new
run results [2]. The ontological data model proposed by the
authors, together with the mechanism of automated knowledge
enrichment, are designed to reduce the impact of the above
restriction. Currently, the pipeline recommendation process
includes two scenarios: the scenario of having a hash
representation of the original data set in storage; the reverse
scenario, in which the pipeline is recommended based on Bayesian
optimization over the global space of machine learning algorithms
and their associate hyper-parameters. As part of the experiment,
the pipeline inference time was measured for both scenarios. The
results confirmed the superiority of the metadata-driven
recommendation and the increase in this advantage as the
dimension of the input data increased.

I INTRODUCTION

There are many various approaches to solving the problem
of automated machine learning (ML) pipeline design, including,
but not limited to: evolutionary optimization, reinforcement
learning, Bayesian optimization, hierarchical planning and
others [3]. For analysis, we divide them into two categories:
those based solely on optimization and those that reuse existing
knowledge (in most cases in the form of metadata for warm start
optimization). For approaches from the first category, the
search is carried out in the global space based on the
improvement in the pipeline quality metric, meanwhile for
approaches from the second category, metadata allows to
indicate the optimization starting point and thereby narrowing
the search space or even composing it from scratch. The
advantage of approaches from the second category is the low
time complexity of the pipeline search process, which in most
cases is achieved through the meta-learning mechanism, i.e.
training some model on the results of solving similar problems.
Combined with some optimization strategy it can be a powerful
tool, because it can reduce the search space dozens or even
hundreds of times. The existing limitations for successful
adaptation of meta-learning are: the level of generalization of
the model and the amount of the training instances. In this

paper, an attempt is made to eliminate the latter limitation by
designing a knowledge base and a mechanism for its automated
population.

II. COMBINED ALGORITHM SELECTION AND HYPER-
PARAMETER OPTIMIZATION

First of all, we define a method for algorithm selection and
hyper-parameter tuning based on optimization for the scenario
of no result in the knowledge base. To do this, we analyze the
following candidates: grid and random search; Bayesian,
evolutionary, early stopping-based and gradient-based
optimization; and reinforcement learning.

1) Grid search. Represents a brute-force search in the
given parameter space. For effective use, manual
setting of bounds and discretization of parameters may
be required. The drawback is that it suffers from the
curse of dimensionality.

2) Random search. Randomly selects a combination of
parameters from a given search space. By default, it is
applicable for both discrete and continuous (including
mixed) parameter spaces. It can be more efficient than
the previous method when only a small number of
parameters affect the quality of the ML algorithm.

3) Bayesian optimization. It is a method for the global
optimization of an unknown function with noise. The
algorithm of work is to build a probabilistic model and
iteratively update it in search of the optimum.

4) Evolutionary optimization. It is yet another method for
the global optimization of a black-box function with
noise. In the first stage the population of individuals
(candidate pipelines) is selected randomly. Next, all
candidates are evaluated using the fitness function.
Then, the top best candidates are chosen for
reproduction, which takes place by means of cross-
over and mutation operators. Finally, the least-fit
candidates from the previous population are
substituted by new ones and the process is repeated
(from the second stage) until termination.

5) Early stopping-based optimization. Specifically
designed for large search spaces. One of the
implementations is the successive halving algorithm,
which in general is a random search with the capability
of pruning low performing models.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 331 --

6) Gradient-based optimization. The idea behind the
basic version is to compute the gradient for specific
ML algorithms with respect to their hyper-parameters
by means of gradient descent, which is an iterative
optimization strategy for searching the local optimum
of a differentiable function.

7) Reinforcement learning. The key idea is to build so-
called surrogate model to predict validation loss for a
candidate solution. The next value is selected based on
heuristic function of the expected value and model
uncertainty.

For now, as a pipeline design method for the scenario of no
result in the knowledge base, our choice fell on Bayesian
optimization, due to the fact that, compared to others, it allows
you to achieve the highest quality result for the lowest amount
of calculations [4]. But in the future, we will consider
combining different optimization strategies.

III. ONTOLOGY-BASED DATA MODEL

An ontology was chosen as a knowledge base for storing
metadata for solving the problem of ML pipeline automated
design at the current stage [5]. In the ontology, all data are
presented as triplets: subject→predicate→object. This choice is
justified by the flexibility of knowledge representation of the
subject area and its logical inference feature, which will
potentially be useful for the pipeline recommendation. The
hierarchy of key classes of designed ontology and the structure
of relations between them are shown in Fig. 1.

Fig. 1. Ontology class hierarchy

To begin with, we have an entity of the Task class. It is
related to the entity set of the Model class through the
hasPotentialSolution relationship. Also, each of the models can
be associated with the entity set of the HyperParameter through
the hasHyperParameter relationship. The considered relations
are intended to provide a model search space for the
optimization method based on a task type. Each potential
solution is retrieved as code through the
hasPythonImplementation property.

In addition, another sequence of relationships arises from
the entity of the Task class. Specifically, the task is linked to the
Dataset class through the hasStoredData relationship. The idea
is to store the results of solving a particular task, such as a
regression. Each data set is associated with one Pipeline class
entity, resulting from the optimization method. The pipeline has
a hasEvaluatedAccuracy property containing the accuracy
estimate on the data. The pipeline instance is also associated
with one or more instances of the Transformer class. Each
transformer is either a learning model or a preprocessing
algorithm and, as in the case of the search space, is extracted as
a piece of software. Fig. 2 illustrates a fragment of such a
relationship.

Fig. 2. Ontology entity relationship

The developed ontology contains the implementation of
algorithms from the scikit-learn Python package [6]. In
addition, we are currently implementing the cumulative
data submodel, which will take into account data set meta-
features [7].

IV. METHOD OF AUTOMATED POPULATION OF THE

KNOWLEDGE BASE

So, for the successful application of the developed ontology
to the problem of automated ML pipeline design, a mechanism
is needed that would improve the efficiency of meta-learning by
accumulating knowledge [8]. The algorithm of the proposed
method is shown in Fig. 3.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 332 --

Fig. 3 Current application workflow

V. EXPERIMENTAL ESTIMATION OF PIPELINE
INFERENCE TIME

 Next, we will experimentally evaluate whether the
proposed solution can improve the optimization based
approach. To do this, we will run the developed program twice
to cover scenarios characterized by the presence and absence of
a result for the input data in the knowledge base. As test data,
we will generate a data set through the
sklearn.datasets.make_regression utility function.

 Let us describe in detail the course of one of the

experiments. At the first start, the pipeline for input was absent
in the ontology. The search space extracted from the storage
covers the common algorithms for solving the regression
problem and their associated hyper-parameter ranges. Based on
the results of Bayesian optimization, the following pipeline was
obtained: make_pipeline(StandardScaler(with_mean=False),
LinearRegression()), whose quality based on accuracy metric
was 1.0. Subsequently, it was recorded to the knowledge base
and, during second program run, was inferred from there
immediately. Experimental results for datasets with different
numbers of samples are presented in Table I.

TABLE I. COMPARING THE EXECUTION TIME OF
DIFFERENT SCENARIOS

Number of samples

Execution time, s

Bayesian
optimization

Metadata-
based

inference

1000 5

1 10000 88

100000 16888 (4.7h.)

 As a result, metadata-based inference is always
performed in constant time, and for optimization, there is a
dependence of the pipeline search time on the size of the data
set, which leads to a long waiting time on a high-dimensional
input data.

VI. CONCLUSION

 In the course of the work, the following significant
results were achieved: a method was chosen for combined
algorithm selection and hyper-parameter tuning; a data model
was developed to improve the quality of the ML pipeline
recommendation based on meta-learning; the method of
automated population of the knowledge base was implemented;
an experimental comparison was made between different ML
pipeline inference scenarios, which confirmed the need of
metadata warm-starting procedure for any optimization strategy
to work effectively in terms of computational time.

 In the future, it is planned to develop a meta-learning
mechanism to recommend a pipeline for arbitrary data, as well
as to gather enough metadata, so it will be possible to compete
with the state-of-the-art solutions, for instance auto-sklearn 2.0,
in a concrete task [9].

REFERENCES
[1] J. Vanschoren, “Meta-learning”, Automated machine learning:

methods, systems, challenges, 2019, pp. 35-61.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 333 --

[2] M. Feurer et al., “Auto-sklearn: Efficient and Robust Automated
Machine Learning”, Automated machine learning: methods,
systems, challenges, 2019, pp. 113–134.

[3] Xin H. et al., “AutoML: A survey of the state-of-the-art”,
Knowledge-Based Systems, vol. 212, 2021.

[4] R. Turner et al., “Bayesian optimization is superior to random search
for machine learning hyperparameter tuning: Analysis of the black-
box optimization challenge 2020”, PMLR, vol. 133, 2021.

[5] X. Wang et al., “Ontology based context modeling and reasoning
using OWL”, in Proc. IEEE Annual Conference on Pervasive
Computing and Communications Workshops, 2004, pp. 18-22.

[6] F. Pedregosa et al., "Scikit-learn: Machine learning in Python.", The
Journal of Machine Learning Research, vol. 12, 2011, pp. 2825-
2830.

[7] A. Rivolli et al., "Meta-features for meta-learning.", Knowledge-
Based Systems, vol. 240, 2022.

[8] Petasis et al., “Ontology population and enrichment: State of the
art”, Knowledge-Driven Multimedia Information Extraction and
Ontology Evolution: Bridging the Semantic Gap, 2011, pp. 134-166.

[9] M. Feurer et al., "Auto-sklearn 2.0: Hands-free automl via meta-
learning.", The Journal of Machine Learning Research, vol. 23,
2022, pp. 11936-11996.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 334 --

