
Mobile Trusted Computing

 Fruct 2011
 7.11 2011

 Jan-Erik Ekberg

Partly joint work with N.Asokan , K Kostiainen , E Reshtova

4 © 2010 Nokia ETISS 2010 .ppt / J -EE

Platform Security

ÅTo achieve secure processing in heterogenous
 environments, trust roots are needed
ÅWithout enforcement , guarantees are hard

to give
ÅA good security infrastructure leaves room for

un-trusted components without sacrificing
overall security
ÅCompared to perimeter security, the trusted

computing base is minimized
ÅSoftware vulnerability analysis is still an

integral part of the system, but not at run -time,
security is achieved by ơupdates onlyƢ.
ÅPrivacy needs to be also guaranteed by policy, not

just by mechanism. This is common-place, e.g. in
communication networks.

Open
OS

OS with
MAC

Secure execution
environment for
credentials

HW support
- integrity
- secure storage
- secure processing
- isolated
memories?

applications

5 © 2010 Nokia ETISS 2010 .ppt / J -EE

Enforcement mechanisms have a history

ÅHardware-support for platform security
ǒCambridge CAP etc. (~1970s) / Multics

Ą Extended to Trusted Execution Environments

ÅHardware-assisted secure storage

ÅSecure and authenticated boot
ǒTCPA and TCG (late 1990s)

ǒAcademic research projects (mid 1990s)

Ą Extended (private secure storage for applications)

Ą Adapted (normal vs. developer mode in MSSF)

ÅPermission-based platform security architectures
ǒVAX /VMS privileges for user (~1970s)

Ą Adapted for applications

ǒCode signing (mid 1990s)

Ą Borrowed for application installation

HW

HW +OS

OS

HW Enablers / ASIC support

 (high -level view)

Trust root Base identity

TCB for platform software

Crypto Library

Public key
hash

Boot sequence
(ROM)

E.g., serial
number

Start of
boot code

7

Hardware support for platform security

Nokia Research Center 2011

Basic elements in
immutable storage

Trust root

Secure boot

Crypto Library

Boot sequence
(ROM)

Launch platform boot code

Code certificate

Boot code hash

TCB for platform software

Validate and
execute

8

Secure bootstrapping

Nokia Research Center 2011

Ensure only authorized boot
image can be loaded

Trust root Base identity

Secure boot

Crypto Library

Boot sequence
(ROM)

Base identity

Assigned identity

Identity certificate

Launch platform boot code

Code certificate

Boot code hash

TCB for platform software

E.g., IMEI, link-layer
addresses, Ƨ

Validate and accept
assigned ID

9

Identity binding

Nokia Research Center 2011

Securely assign different
identities to the device

Trust root Base identity

Secure boot

Crypto Library

Boot sequence
(ROM)

TrEE

TrEE API

Device key

TrEE code

Base identity

Assigned identity

Identity certificate

Launch platform boot code

Code certificate

Boot code hash

TrEE code hash

Code certificate

TCB for platform software

Isolated
execution

Validate and
execute

Basis for secure
external storage

10

Trusted execution

Nokia Research Center 2011 Authorized code execution, isolated from the OS

Trust root Base identity

Secure boot

Crypto Library

Boot sequence
(ROM)

TrEE

TrEE API

Configuration
register (s)

Device key

TrEE code

Base identity

Assigned identity

Identity certificate

Launch platform boot code

Code certificate

Boot code hash

TrEE code hash

Code certificate

TCB for platform software

Securing TrEE sessions,
authenticated boot

11

Secure state

Nokia Research Center 2011 Integrity -protected state within the TrEE

Non-vol.
memory

or
counter

Rollback protection for
persistent secure storage

External trust root

Trust root Base identity

Secure boot

Crypto Library

Boot sequence
(ROM)

TrEE

TrEE API

Configuration
register (s)

Device key

TrEE code

Base identity

Assigned identity

Identity certificate

Identity

Public device key

Device certificate

Launch platform boot code

Code certificate

Boot code hash

TrEE code hash

Code certificate

TCB for platform software

Device authentication ,
secure provisioning ,

attestation

12

Device authentication

Nokia Research Center 2011 Prove device identity or properties to external verifier

Non-vol.
memory

or
counter

Summary of hardware mechanisms

ÅSecure boot : Ensure only authorized boot image can be loaded

ÅAuthenticated boot: Measure and remember loaded image

ÅIdentity binding : Securely assign identities to the device

ÅSecure storage: Protect confidentiality and integrity of data

ÅIsolated execution : Run authorized code isolated from OS

ÅDevice authentication : Prove device identity to external verifier

ÅRemote attestation: Prove device configuration to verifier

Nokia Research Center 2011 13

Hardware security architectures (mobile)

ÅTI M-Shield and ARM TrustZone

ÅAugments central processing unit
ǒơSecure processor modeƢ

ÅIsolated execution with on -chip RAM
ǒVery limited (<10kB)

ÅSecure storage
ǒTypically with write -once E-fuses

ÅUsually no counters or non -volatile memory
ǒCost issue

Nokia Research Center 2011 14

Hardware security architectures (TCG)

ÅTrusted Platform Module (TPM)
ǒStandalone processor on PCs

ǒIsolated execution for pre -defined algorithms

ǒArbitrary isolated execution with DRTM

ǒPlatform Configuration Registers (PCRs)

ǒMonotonic counters

ÅMobile Trusted Module (MTM)
ǒMobile variant of TPM

ǒCan be implemented using e.g. TrustZone or M-Shield
ǒDiscussed furtherƧ

Nokia Research Center 2011 15

Uses of hardware security

ÅRecap from features
ǒSecure/authenticated boot

ǒIdentity binding/device authentication

ǒSecure storage

ǒRemote attestation

ÅUses of hardware security (device manufacturer)
ǒDevice initialization

ǒDRM

ǒSubsidy lock

ÅHow can developers make use of hardware security?

Nokia Research Center 2011 16

SW/OS support

18

Adoption of security mechanisms

Nokia Research Center 2011

~2005

~2002

~2001

Operators End users Regulators

Hardware-based mechanisms

Software -based mechanisms

~2008 ~2011 ~2010

Open mobile platforms

ÅJava ME ~2001
ǒFor ơfeature phonesƢ

ǒ3 billion devices!

ǒNot any more supported by
the latest smartphones

ÅSymbian ~2004
ǒFirst ơsmartphoneƢ OS

ǒApp development in C++ (Qt)

ÅAndroid ~2007
ǒLinux-based OS

ǒApp development in Java

ÅMeeGo ~2010
ǒLinux-based OS

ǒApp development in C (Qt)

ǒMSSF

ÅWindows Phone ~2010
ǒWindows (CE) based kernel

ǒ End-user app development
in Silverlight / .NET

 19 Nokia Research Center 2011

Mobile platform security model

Å3.5 phases
1. Distribution

2. Installation

3. Run-time enforcement

4. ++ off -line enforcement

ÅCommon techniques
ǒCode signing

ǒPermission-based access control architecture

ǒ (User involvement in assigning permissions)

ǒ App R&D by local ơinstallationƢ / ơopened deviceƢ

Nokia Research Center 2011 20

21

Distribution

Nokia Research Center 2011

ÅDeveloper produces a software
package

ǒCode

ǒManifest

ÅMay submit to a signer for a
trusted signature

ÅDistributed to device via on -line
stores (typically)

Software
package

Software
package

Signed
software
package

Developer

Installation

ÅInstaller consults local policy and
trusted signature

ǒ Identify application

ǒ Grant requested privileges

ÅInstaller may prompt user

22 Nokia Research Center 2011

Installer

Software
package

Signed software
package

Policy

23

Run-time enforcement

Nokia Research Center 2011

ÅMonitor checks if subject has
privileges for requested access

ÅResource may perform
additional checks

ÅUser may be prompted to
authorize access

Monitor

principal

resource

1. OS bootstrapping

Symbian Java ME Android MSSF Windows Phone

Secure
boot

Not
applicable

No? Authenticated boot: ơNormal
modeƢ vs ơDeveloper modeƢ

No?

Nokia Research Center 2011 24

Is hardware security used to secure OS bootstrapping?

2. Application identification

Symbian Java ME Android MSSF Windows Phone

Install and run-
time:
Å Protected

range SID and
VID
(managed)

Å UID
(unmanaged)

Install:
Å Signing key
Å Midlet

attributes

Install:
Å Signing key

Runtime:
Å Unix UID
Å Package

name (locally
unique)

Install:
Å Software

source
(signing key)

Å Package
name

Runtime:
Å Software

source
Å Package

name
Å Application ID

Install:
Å Software

source

No IPC between
installed
applications

Nokia Research Center 2011 25

How are applications identified at install and runtime?

3. Application update

Symbian Java ME Android MSSF

Protected SID, VID:
Å trusted signature

Rest:
Å no controls

Signed midlets :
Å same-origin policy

Unsigned midlets :
Å user prompt

ơSame originƢ policy ơSame or higher
originƢ policy

Nokia Research Center 2011 26

How is a new version of an existing application verified?

4. Permission granularity

Symbian Java ME Android MSSF Windows Phone

 Fixed set of
ơcapabilitiesƢ
(21)

 Fine-grained
permissions
(many)

Fine-grained
permissions
(112)

Linux access
control

Fine-grained
resource-tokens

Linux access
control

Fixed set
of capabilities
(8++)
Four
ơchambersƢ

Nokia Research Center 2011 27

How finely is access control defined?

Android and MSSF: Each application is
installed under a separate Linux UID

5. Permission assignment (basis)

Symbian Java ME Android MSSF Windows Phone

4 categories

Trusted
signature (also
user prompts)

Trusted
signatures for
protection
domains

4 permission
modes

4
protection
levels

Trusted signatures

Local policy file

Chambers map
to stakeholders
(MS / OEM /
operator / user)

Capabilities defined
by developer (least-
privilege prot.)

Nokia Research Center 2011 28

Basis for granting permissions?

User

System,

Restricted ,

Manufacturer

Normal (automatic)

Dangerous (user-granted)

Signature (developer-controlled)

SystemOrSignature (Google-controlled)

Blanket,

Session,

One-shot ,

No

Least Privilege Chamber

Standard Rights

Elevated Rights

Trusted Computing Base

6. Permission assignment (user prompting)

Symbian Java ME Android Windows Phone

Capability
description
Å 21 capabilities

Function group
description
Å 15 groups

Permission group
description
Å 11 groups

Capability
description

Nokia Research Center 2011 29

What is
shown to
the user?

E.g., LOCATION,

NETWORK,

ACCOUNTS, Ƨ E.g., NetAccess

PhoneCall

Location, Ƨ

E.g.,Read user data,
Use network, Access
positioning, Ƨ

7. Permission assignment (timing)

Symbian Java ME Android MSSF Windows Phone

Install -time
assignment

 Run-time
prompts

Install-time
assignment

Install -time
assignment
Run-time
privilege
shedding
possible

Install -time
assignment

Nokia Research Center 2011 30

When are permissions assigned to a principal?

Symbian and MSSF: Permissions of app loading a DLL is a
subset of permissions of DLL

8. Application integrity

Symbian Java ME Android MSSF Windows Phone

Dedicated
directory

Java sandboxing Java sandboxing

Linux access
control

IMA, Smack

Offline
protection with
EVM and TrEE

Chamber-
dependent
sandboxing
(.NET, OS
permissions)

Nokia Research Center 2011 31

How is the integrity of installed applications protected?

Integrity Measurement Architecture (IMA)

Å Store hash of file (in extended attribute security.ima) and verify on launch

Extended Validation Module (EVM)

Å Store MAC of all extended attributes (in security.evm) and verify on access

9. Access control policy

Symbian Java ME Android MSSF Windows Phone

Declare in code

Enforced by IPC
framework or
code

[System
resources]
Enforced by VM

Declare in
manifest

Enforced by VM

Declare in
manifest

Enforced by
Smack or via
libcreds

Declare in
manifest

Enforced by VM

Nokia Research Center 2011 32

How does a resource declare the policy for accessing it?

How is it enforced?

10. Application data protection

Symbian Java ME Android MSSF Windows Phone

Runtime:
Å private

directory

Off -line:
Å private

secure
storage

Runtime:
Å private

record stores

Runtime:
Å dedicated

UID
Å file system

Runtime:
Å fine -grained

data caging

Off -line:
Å private

secure
storage

Runtime:
Å private file

store

Nokia Research Center 2011 33

How can applications protect the confidentiality and
integrity of their data?

GP TEE introduction

TEE System Architecture 0.4
TEE Internal API Specification 0.27

Architecture pictures (from spec.)

REE: Rich Execution Environment

TEE: Trusted Execution Environment

Architecture, software view

TEE internal API spec. domain

HW option pictures (from spec.)

Implementation can be

- A processor environment

- A separate core on a chip

- A co-processor (?)

Specification overview

The TEE API defines the driver interface for
 - send code to the secure environment
 - execute code that has been sent to the secure environment
 - includes concepts for control (sessions, instances ..)

The TEE Internal API defines an API for

 - interfacing secure code (TA:s) to the framework

 - application session control, instance, lifecycle

 - STDLIB ð like functionality

 - Cryptographic subroutines

 - RSA

 - AES in many modes, e.g.
 authenticated encryption

 - Hash functions

 - randomness

- Secure storage

MTM introduction

40 © 20011 Nokia J-EE

ÅPlatform Security is an enabler

ÅRequired by

ÅRegulatory approval (for òopenó platforms)

ÅIMEI lock / Subsidy lock (i.e., SIM-lock)

ÅMedia consumption and protection (DRM)

ÅConfidential data management (user , corporation)

ÅRemote Attestation (RA) / Corporate access (VPN)

ÅApplication authentication, authorization, accounting

ÅReliable PKI (key management, usage, etc)

ÅBut also for

ÅDevice stability

ÅMalware protection

ÅGeneral trustworthiness of the platform

ÅTheft and copy òmanagementó

MTM1 use cases (2005)

ÅPlatform and/or Application Integrity

ÅDevice Authentication

ÅRobust DRM Implementation

ÅSIMLock / Device Personalization

ÅSecure Channel between Device and UICC

ÅSecure Software Download

ÅDevice Owner Data Protection and Privacy

ÅMobile Ticketing / Mobile Payment

In TCG / TPM, by tradition, user control
and user privacy is in focus. In the
òmobileó domain these considerations

are important, but not in dominance !

Requirements (v.1):

1) Allow MTM to be implemented using
a legacy trust environment (TEE)

2) Add secure boot. Authenticated boot is not enough
for the majority of the MTM v1 use cases

3) Make the MTM footprint small . [Consequence of (1)]

An evident requirement is to maintain as much of TPM
compatibility as possible. PC/Mobile convergence in
essence motivated the whole MTM work.

The 3(4) main targets of MTM

42 © 20011 Nokia J-EE

ÅMandates only core functionalities of TPMv 1.2:
[target: small size]

ÅBinding and sealing

ÅSigning and key certification

ÅAttestation (AIK may be fixed)

-> but delegation, migration, DAA, memory services are at large optional

ÅMTM v1 adds:
[targets: integrator/manufacturer control, deployability]

ÅSecure boot (wrong measurement -> boot is aborted)

Å(SW) Functionality rather than HW. Device binding through roots of trust

ÅThe concept of MTM instances. For stakeholders: Integrator, Operator, User

MTM v1 overview

43 © 20011 Nokia J-EE

 TPM_Init , TPM_Startup, TPM_SaveState, TPM_SelfTestFull TPM_ContinueSelfTest TPM_GetTestResult.
TPM_SetOwnerInstall, TPM_OwnerSetDisableTPM_PhysicalEnable TPM_PhysicalDisable,
TPM_PhysicalSetDeactivated TPM_SetTempDeactivated TPM_SetOperatorAuthTPM_TakeOwnership
TPM_OwnerClear, TPM_ForceClearTPM_DisableOwnerClear. TPM_DisableForceClear TSC_PhysicalPresence
TSC_ResetEstablishmentBit, TPM_GetCapability , TPM_SetCapability, TPM_GetCapabilityOwner
TPM_GetAuditDigest TPM_GetAuditDigestSigned TPM_SetOrdinalAuditStatus, TPM_FieldUpgrade,
TPM_SetRedirection, TPM_ResetLockValue, TPM_Seal, TPM_Unseal, TPM_UnBind,
TPM_CreateWrapKey , TPM_LoadKey2, TPM_GetPubKey, TPM_Sealx, TPM_CreateMigrationBlob,
TPM_ConvertMigrationBlob, TPM_AuthorizeMigrationKey, TPM_MigrateKey, TPM_CMK_SetRestrictions,
TPM_CMK_ApproveMA, TPM_CMK_CreateKey, TPM_CMK_CreateTicket, TPM_CMK_CreateBlob,
TPM_CMK_ConvertMigration, TPM_CreateMaintenanceArchive, TPM_LoadMaintenanceArchive,
TPM_KillMaintenanceFeature, TPM_LoadManuMaintPub, TPM_ReadManuMaintPub, TPM_SHA1Start,
TPM_SHA1Update, TPM_SHA1Complete, TPM_SHA1CompleteExtendTPM, TPM_Sign, TPM_GetRandom,

TPM_StirRandom, TPM_CertifyKey, TPM_CertifyKey2, TPM_CreateEndorsementKeyPair,
TPM_CreateRevocableEK, TPM_RevokeTrust, TPM_ReadPubek, TPM_OwnerReadInternalPub,
TPM_MakeIdentity, TPM_ActivateIdentity, TPM_Extend, TPM_PCRRead, TPM_Quote,

TPM_PCR_Reset, TPM_Quote2, TPM_ChangeAuth, TPM_ChangeAuthOwner, TPM_OIAP, TPM_OSAP,
TPM_DSAP, TPM_SetOwnerPointer, TPM_Delegate_Manage, TPM_Delegate_CreateKeyDelegation,
TPM_Delegate_CreateOwnerDelegation, TPM_Delegate_LoadOwnerDelegation, TPM_Delegate_ReadTable,
TPM_Delegate_UpdateVerification, TPM_NV_DefineSpace, TPM_NV_WriteValue, TPM_NV_WriteValueAuth,
TPM_NV_ReadValue, TPM_NV_ReadValueAuth, TPM_KeyControlOwner, TPM_SaveContext, TPM_LoadContext,
 TPM_FlushSpecific, TPM_GetTicks, TPM_TickStampBlob, TPM_EstablishTransport, TPM_ExecuteTransport,

TPM_ReleaseTransportSigned, TPM_CreateCounter, TPM_IncrementCounter , TPM_ReadCounter,
TPM_ReleaseCounter, TPM_ReleaseCounterOwner, TPM_DAA_Join, TPM_DAA_Sign, TPM_EvictKey,
TPM_Terminate_Handle, TPM_SaveKeyContext, TPM_LoadKeyContext, TPM_SaveAuthContext, TPM_LoadAuthContext,
TPM_DirWriteAuth, TPM_DirRead, TPM_ChangeAuthAsymStart, TPM_ChangeAuthAsymFinish, TPM_Reset
TPM_OwnerReadPubek, TPM_DisablePubekRead, TPM_LoadKey

Add: MTM_InstallRIM , MTM_LoadVerificationKey , MTM_VerifyRIMCert,

MTM_VerifyRIMCertAndExtend , MTM_IncrementBootstrapCounter

MTM vs. TPM commands

44 © 20011 Nokia J-EE

- The sizes are w.o. crypto primitives (e.g. RSA)

- The size excludes platform -dependent, but sizable code parts, including
 upload code verification, state decryption / encryption, ..

- As a òmonoblock ó, the code amounts to around 20kB compiled

MTM implementation size

45 © 20011 Nokia J-EE

+ Logic runs at full processor speed (332 MHz, ARM 9)

- Invocation time of the secure environment, validation of òcollectionó (1ms)

- Penalty caused by state protection (~ 10ms)
 (further optimization possible)

MTM performance with a TEE

46 © 20011 Nokia J-EE

MRTM
Mobile remote owner trusted module
[management from outside the
 device (manufacturer / operator)]

Device boot

Root-of-Trust
for Verification
[code integrity]

Root-of-Trust
for Storage
[state int egrity,
rollback protection]

Root-of-Trust
for Enforcement

[depending on the MTM
 instance, the òentityó that
 guarantees e.g. isolation,
 secure boot abort, and the
 existence of the other RoT:s]

MLTM

Mobile local owner trusted module
[management at the device using TPM
 commands (user, owner)]

MLTM
MLTM

MRTM

transitive trust

(Root-of-Trust
for measurement)

MTM device binding and
configurations

Root-of-Trust
for Reporting
[remote
 attestation]

TEE
domain?

47 © 20011 Nokia J-EE

Å counterStorageProtectId Ɯ storage protect counter

Å counterRIMProtectId Ɯ protect RIM certs

Å counterBootstrap - initial boot version

Å verifiedPCRs - PCRs only modifiable by RIM certs

ÅloadVerificationKeyMethods Ɯ (root load, integrity check
 root data, auth(s))

ÅInternalVerification key - key for InstallRIM - certs

Å verificationAuth (auth. For InstallRIM)

ÅloadVerificationRootKeyEnabled (in STANY_FLAGS)

ÅintegrityCheckRootData - hash of root verification key

ÅAIK - (attestation key, if
preconfigured)

ÅSRK - storage root key

Rollback
protection

Secure boot support

Constrained
PCRs (RIM
update only)

Keys

Trust root

MTM static data

MTM verification keys
checkRootData
 (RVAI) Public-key certificates, used for

the òstakeholder modeló, i.e.
external authorization for PCR
updates (secure boot) and

counter increments

Validated inside the MTM, on
load.

In persistent state

òrootó verification

key

Binding, e.g. public
key hash

verification key verification key

RIM certificate
(attribute cert)

Binding = RSA sign.

Verification key òpermissionsó =
usable when key is loaded:

- Increment bootstrap counter

- Validate other verification keys

- Validate RIM certificates

- (vendor extensions)

Verification key constraints =
validated at load:

- Signed by parent key

- Counter binding

- (vendor extensions)

- Note: No PCR binding

MTM RIM certificates
RIM = reference integrity metric

Attribute certificates, used for
the explicit activity of
constrained PCR
updates (secure boot).

Validated inside the MTM, on
use. The successful verification
of a RIM certificate typically
implies a PCR update

RIM certificate
(attribute cert)

RIM certificate òactionó =
implied on successful load:

- Increment given PCR

- RIM certificate includes
PCR extension value

- (vendor extensions)

RIM certificate constraints =
validated at load:

- Signed by parent key

- Counter binding

- PCR (composite) binding

- (vendor extensions)

MTM secure boot overview with TEE (1)

Processor with TEE
RTE

secret

Trust root

legacy

Execution environment

boot 0) Signature
 validation

MTM code

1) Install (signed) code,

provide òself-measurementsó

MTM NV state
secret

Encrypted for the TEE

2)Install data for MTM code,
decrypt inside TEE

òFirstó, the root of trust for enforcement sets up the MTM with the legacy TEE

Environment provided hardware -assisted

isolation from the OS. Dedicated RAM

MTM secure boot overview with TEE (2)

Processor with TEE
RTE

secret

Trust root

Execution environment

boot

0) measure

2) Set up trust chain for validation

òSecondó, secure boot with MTM commences

MTM code

MTM state

RTS RTR

Initial boot -loader

Verification Key

Verification Key

RIM cert

Next component to boot

RTV

Verification Key

Verification Key

RIM cert
PCRs

RVAI

1) Find the verification keys and RIM cert
 matching the measurement

3) Update PCR using RIM cert.

4) On successful PCR update, launch
 the measured code, on error òabortó

Verification keys and
RIM certificates
can be stored / received
on-demand, integrity
guaranteed by
external authorization

52 © 20011 Nokia J-EE

Å TEE API standardization is ongoing in Global Platform Device Committee (internal
 and external TEE APIs). This was not available in 2005 .

Å TPM specification is transitioning to TPM 2

Å MTM (and TPM) are not really being used Ɯ MTM is not even widely deployed like
 TPMv1.2.

MTM going forward

Environment

Additional use cases and requirements have been publicised

Å Most new MTM use cases have a strong legacy aspect:
 Banking, Vending machines, Id:s, Health careƧ

Å Implication: There is a need to support legacy security algorithms for applications.
 MPWG has distilled this to support for (open) remote provisioning of algorithms .
 Execution of algorithms is also needed, as is algorithm use of MTM/TPM secrets
 and state , especially platform binding (PCRs)

ObC & TEEs & eSE:s & NFC

© 2011 Nokia Research Center 54

On-board Credentials

On-board Credentials architecture

55 Nokia Research Center 2011

TrEE
Credential
program

Credential
program

OS

Credentials
Manager

Interpreter

Application

Credential
issuer

Credential
issuer

Kostiainen, Asokan, Ekberg and Rantala. ơOn-board Credentials
with Open ProvisioningƢ. ASIACCS 2009 .

Available for
experimentation!

Smart Cards /
 Secure Elements (SE)

Processor Secure Environments (TEE) Hardware

OS
Proprietary, e.g. MultOS None, proprietary , hypervisor

Application
provisioning
& use

Proprietary, or GP Card Spec.

Application
 API

Proprietary GP Device Committee (future spec.)

GP TEE Client API

VM JavaCard Proprietary (ObC) Ą JavaCard?

GP Card specification GP Card spec < ->MTM2
Provisioning
& use, key mgmt

TPM / MTM

ISO 7816 TCG òTLVó

TSS

Service API

Function
implementation
varies - Smart card

technology often
used?

Security enablers / service API

OS APIs like PKCS#11, PC/SC

Secure environments overview - mobile
Overview of the current òdevelopment stateó of
HW-originated platform security services ð

And NFC may be wave that breaks the status quo

ETSI

OMA

Operator and SIM

services

Nokia Research Center 2011 57

TEE NFC HW

LLCP

UI Applications

Embedded SE SIM SE

R/W

NFC stack

SWP/HCI

JSR-177 / PKCS#11 / MTM / PC/SC / Credential manager

NFC and mobile secure environments

Nokia Research Center 2011 58

NFC
ObC

Nokia Device
Certification User account

Payment GW

Transport
Authority

300 ms

Rating
engine

é so can we make this work?

