
© 2016 Nokia 1

Nokia Technologies

SW architecture impact on
development, testing and certification
of embedded wearable medical devices

 • 19th FRUCT Conference, Jyvaskyla, 10-11-2016

• Michel Gillet

• Senior architect, embedded device

• Nokia Technologies, Digital Health

© 2016 Nokia 2

Outline

• Introduction and context

• SW architectures: Bottom up vs. Top down

• Abstraction Layers or xALs

• Benefits & conclusions

© 2016 Nokia 3

Introduction and context

© 2016 Nokia 4

Introduction

• Nokia, from rubber boots, to wood pulp, to mobile and what’s next?

– 25 April, 2014: Nokia completes sale of substantially all of its Devices & Services
business to Microsoft (link)

– 2014, Nokia Technologies is created

– November 2014, first product Nokia N1

– July 2015, launch of Ozo

– April 26, 2016, Nokia acquires Withings

– May 2016, HMD global Oy is created: it’s a Finnish company developing mobile devices
under the "Nokia" brand name

– 31 May 2016, the Digital Health division in created in Nokia Tech

• My current role is to define the SW, HW & HW security architecture for a family of future
digital health medical devices

http://company.nokia.com/en/news/press-releases/2014/04/25/nokia-completes-sale-of-substantially-all-of-its-devices-services-business-to-microsoft

© 2016 Nokia 5

Medical devices

• Medical means that those devices fall under medical regulations, i.e. FDA in US

• To simply, there are roughly 3 main classes of medical devices

– Class 1: have the least regulatory control, because malfunction are not harmful to
user, i.e. digital thermometer

– Class 2: have mandatory performance standards, including proofs that a malfunction
can’t harm its user, i.e. infusion pumps

– Class 3: have very strong regulatory control, usually devices supporting or sustaining
human life, i.e. pacemakers

• For class 2 and 3, the manufacturer needs to provide guarantees that the device will
perform according to its specification, it means that lots of extra work is required beside
building a device : documents for risk analysis, mitigation strategies, well defined and
documented product life cycle, etc.

• But there is also a potential emerging new market between current medical devices and
consumer devices, mainly created because of IoT and ever increasing heath care costs

© 2016 Nokia 6

Wearable medical devices

• Small in size  small battery

• Reusable  rechargeable battery

• Low power  moves towards MCU

• Guarantee operation  moves towards RTOS

• Appealing design  usually contradicting mechanical requirements

• Connected  wireless connectivity is required

• Very high SW quality

• Measure vital signs

• Carried or on the body of the user

• Lower cost than equivalent fixed medical device  miniaturization, new business models,
higher volume

© 2016 Nokia 7

Summary so far

• Potentially a new huge market and lots of opportunities

– Same medical functions, but miniaturized, with significantly lower cost and lower power
consumption

– But still in a regulated space where many medical and safety standards need to be followed

– Finite number of vital signs to measure

– Health care costs are unsustainable

• Of course lots of companies will try to capture a sizeable part of that new market

• So how to differentiate from other players to have a bigger share of the market?

– Could there be something which could be done already at the device SW architecture
level? To reduce costs? Reach higher SW quality faster?

– Yes, by allowing to push reuse further and the idea that “every line of code written
counts”

© 2016 Nokia 8

Vision and requirements

• Products may cover a wide area from consumer to medical device, the architecture must
then be able to support any (RT)OS, from very expensive medically pre-certified to cheap
general purpose RTOS or OS

• The SW must support any HW partitioning, i.e. 1 or 2 MCU or more

• Writing and testing device driver for HW component and/or sensor is very costly and time
consuming, we want to be able to write it once and reused it everywhere, meaning for all
RTOS and all MCUs

• The device drivers must be independent of bus topology

• All or at least most unit tests can be reused without modifications across RTOS, MCUs,
bus topologies, etc.

• The SW architecture must allow true continuous integration, i.e. Git/Gerrit/Jenkins,
knowing that MCUs use flash which can be reprogrammed only a limited amount of times.
By “true”, I mean that every single commit must be runtime tested

• Because of regulatory requirements, it must support static only memory allocation

© 2016 Nokia 9

SW architectures

Bottom up vs. Top down

© 2016 Nokia 10

Bottom up architecture

• In this context, a bottom up architecture means:

• The SW is build on top of the SW platform provided by the HW manufacturer and/or RTOS
provider

• If the HW manufacturer and/or RTOS provider changes, the most if not the whole SW
work is redone from scratch, including testing

• Likely, there is very little synergies between SW development and SW maintenance across
device families and/or over the whole product range

• Minimal up front cost, since architecture is grown organically over time

© 2016 Nokia 11

Top down architecture

• In this context, a top down architecture means:

• We define the complete architecture directly from our requirements and needs

• This SW architecture is identical with every device

• The testing strategy is aligned with the SW architecture and is reused across all devices

• The SW architecture is strongly layered or using abstraction layers, and thus only about
the bottom 10% are specific to the HW manufacturer and/or RTOS provider

• If the HW manufacturer and/or RTOS supplier changes, the overall SW impact is bounded
and minimal

• There are very strong synergies between SW development and SW maintenance across
devices

• There is an up front cost, since architecture must be designed first, but this anyway a
requirement when going to regulated space and finally it must be implemented

© 2016 Nokia 12

Abstraction Layers or xALs

© 2016 Nokia 13

Basic functionalities of wearable medical device and its design

• Some kind of OS to provide the basic runtime features needed by applications, i.e. RTOS

• A SW library supporting all required wired communication interfaces, i.e. SPI, I2C

• A SW library for all wireless communication interfaces, i.e 3G, WLAN, BT, BLE

• A SW library to write unit tests

• A library defining all SW drivers and configuration for supported HW board

• Upon those, higher level functionality is build, i.e. to process sensor data

• We will name them as

– RAL for the OS/RTOS, RTOS Abstraction Layer

– PAL for the wired communication interfaces, Peripheral Abstraction Layer

– CAL for the wireless communication interfaces, Connectivity Abstraction Layer

– UTAL for the unit test framework/library, Unit Test Abstraction Layer

– SAL Board for the board files defining the SW for one board

© 2016 Nokia 14

RAL

• Provides the basic functionality of an embedded OS or RTOS:

– Thread, called Task thereafter

– Synchronization functions: Semaphore, Mutex

– Timing functions: Timer, getting/setting time, delays

– Queues, etc.

• But also some additional functionality typically not found in RTOS:

– To solve the “static initialization order fiasco”

– Overall deterministic initialization of the whole system

– Clear split between applications and middleware/drivers/board files:

• Applications are defined by Tasks and one TaskMnger

• The rest is defined by a System defined for a particular board in SAL Board

– Fully written in C++ for maintainability and modularity, but also benefit of C++ templates

• Support virtual HW with implementation with Boost and SystemC

© 2016 Nokia 15

PAL (1/2)

• Provides access and support for all relevant wired interfaces:

– SPI

– I2C, including I2C multiplexers, IO expanders, E2PROM, etc.

– UART

– SSC

– USB

• PAL is using a SW model based on the concept of Transaction and structured in 3 layers:

– Periph Layer

– Transaction Layer

– HW Layer

• Fully supported also for virtual HW, allowing running unit test on a PC for testing a HW
component or sensor

© 2016 Nokia 16

PAL (2/2)

• One device driver can be used
unchanged regardless of :

– the bus topology, requires a special
SW layering

– How HW peripheral are shared by
drivers

• PAL is then divided in 3 “layers”

– HW Layer

– Transaction Layer

– Peripheral Layer

HW Layer 0

Periph LayerPeriph Layer

Sensor
Driver 0

HW Periph
Driver 0

HW
Periph 0

Sensor
Driver 1

Transaction Layer

HW Periph API

HW Registers

First HW

HW Periph API

HW Registers

Second HW

HW Layer API

Common API
HW Layer 1

Periph LayerPeriph Layer

Sensor
Driver 0

HW Periph
Driver 1

HW
Periph 1

Sensor
Driver 1

Transaction Layer

Trans Layer API

Periph Layer
API

© 2016 Nokia 17

CAL

• Provides access and support for all relevant wireless interfaces, including:

– BT

– BLE

– 3G

– LTE

– WLAN

• Note that one fundamental architecture design of CAL is to abstract and support
different architecture partitioning for the communication stacks

– The TCP/IP stack can be offloaded to an external module or run on our own MCU, without impact
on the application software

– Same for the “TLS” stack, which could be offloaded or run on our own MCU

– And pretty much any intermediate steps in between those extremes

© 2016 Nokia 18

UTAL

• Provides a platform independent library to write unit test

• The same unit test can then be run in ay virtual HW or real HW

• This simplifies and reduces significantly the effort needed to design and maintain a set of
unit tests, which can then be used for continuous integration

• Furthermore, it increases overall the SW quality, since there can’t be porting mistakes or
bugs between the same unit test running in a VHW or a real HW

• It’s implemented as a port of Boost unit test framework. Note this is based on an open
source project

© 2016 Nokia 19

SAL Board

• Provides a library to define what is often called “board file” or BSP (Board Support
Package), which bundles together

– The OS/RTOS

– Drivers for the MCU used and its peripherals

– Drivers for all components found on the board

– Etc.

• In this context, it basically bundles and instantiates RAL, PAL, CAL, etc. for a specific HW
board, simplifying the process of writing application and/or unit test for this HW board

© 2016 Nokia 20

Benefits & conclusions

© 2016 Nokia 21

SW development

• For one project, we currently support 7 hardware boards, the same SW up to application
is identical and running on all boards

• For every commit in Gerrit, a full list of unit tests are run in 2 different virtual
environments (Boost, SystemC), allowing to catch bugs as early as possible

• All the application SW can be totally developed and tested on a PC using the virtual
environment, which increase significantly productivity

• The testing strategy from virtual HW to HW is inherent part of the mitigation of risks and
thus an essential for achieving medical certification

• Since most unit tests can be reused unchanged in the virtual HW and HW, there is a
significant decrease of workload to maintain them, which essentially means their quality
will be higher

© 2016 Nokia 22

Costs

• Under the assumptions

– High reliability SW, for medical device or medical grade consumer device 

• Ratio of 1 SW developer to 3 to 5 SW testers (dependent of testing strategy)

• Ratio of one QA engineer per 3 to 10 SW developer, for certification documentation

– New MCUs every 6 to 12 months  likely that every product has different MCU/platform

• The needed SW workforce can be reduced by at least 50%, but up to 70%

• Assuming

– 10k EUR per person/month

– about 100 persons less over 2 years  20 millions EUR

– 1 millions device

– Very aggressive sell price set at 3 times overall costs

– The “small” up front cost of getting the xALs SW architecture is not taken into account

• The saving is about 60 EUR per device

© 2016 Nokia 23

Conclusions

• To be successful in this field, a company must get just right many aspects including
engineering, marketing, business strategy, etc.

• But one essential aspect is very often overlooked, the overall architecture and specifically
the SW architecture

• The SW architecture chosen drives, defines and impacts

– The level of SW reuse cross HW, (RT)OS

– The testing strategy

– The process to achieve medical certification

• Choosing a given architecture can have a direct impact on the medical device costs, i.e.
up to few tenth of EUR

