Self-organized Synchronization in Wireless Network

Jiang Yu and Olav Tirkkonen

Department of Communications and Networking
Helsinki University of Technology (TKK)
Contents

• Problems
• System model
• Firefly inspired algorithm
• Circular averaging with random selection method
• Simulation results
• Conclusions
Problem

- The Local Area wireless network has the self-organized feature
 - No centralized controller which is able to decide everything
- Problem of no agreement for the timing of frame in TDD system
 - Each cell has different frame timing -> uplink and downlink signals are transmitted at the same time between adjacent cells -> high interference -> poor system performance
 - Resource information exchange, handover and resource allocation are difficult
- To solve this problem
 - All the frames of adjacent cells start almost at the same time
 - Need to find a self-organized synchronization method without centralized control

Event Synchronization V.S. Time synchronization

- Time synchronization: all BSs/nodes share a common notion time that can be mapped back onto a real work clock
- Event synchronization: all BSs/nodes agree on a time period start, which means that all frames start at the same time

Previous Synchronization methods for distributed network

- Network Time Protocol: not suitable for wireless network
- GPS aided: need additional hardware and line of sight
- Firefly-inspired algorithms

BS: Base Station
System model

- Network model
 - Topology: regular square lattice
 - The set of BSs/nodes: S
 - Interaction with nearest neighbors, two way connection
 - Frame timing is modeled by phase variable, which is quantized into N time slots $\phi = 2\pi n/N$, $n = 0,\ldots,N-1$
 - All BSs have the same period of frame T
 - The phase variable fulfills a full circle from 0 to 2π, then jumps to 0
 - Reason to use time slot:
 - finite accuracy to measure the time difference among BSs
 - accurate property of synchronization algorithms

- Example
System model

- Timing exchange protocol
 - Information is exchanged by 'firing'
 - May contain BS ID or not
 - Firefly-inspired
 - Circular averaging with random selection
 - Time for information collecting
 - Processing time (much smaller than T)
- Smallest window covering a set of points
Firefly-inspired algorithms

• Pulse coupled oscillator (PCO)
 – Mirollo and Strogatz proposed the model of connected PCO [1]
 – coupled differential equations

\[
\dot{\phi}_i = \frac{1}{T} + \sum_{j \in \mathcal{N}_j} \left(\min \left[f^{-1}(f(\phi) + \epsilon), 2\pi \right] - \phi_i \right) \delta(\phi_j - 2\pi)
\]

• \(\phi_i \in [0,2\pi] \) is periodic
• \(T \) is period of \(\phi_i \)
• \(f(\phi) \) is firing function, \(f > 0, \dot{f} > 0, \) and \(\ddot{f} < 0 \)
• \(\epsilon > 0 \) is a jump constant

– To simplify, \(f(\phi) = \ln(\phi) \),
 \[
 \Delta \phi = f^{-1}(f(\phi_0) + \epsilon) - \phi_0 = (e^\epsilon - 1)\phi_0
 \]

with Taylor expansion, \(\Delta \phi = \epsilon \phi_0 \)
Firefly-inspired algorithms

- ReachBack Firefly Algorithm (RFA) [2]
 - problems of previous model:
 - fully coupled network
 - no delay of firing information
 - RFA:
 - BS will not jump immediately after firing of its neighbor
 - collect all firings from previous time period
 - react all at once
 - can be implemented for fully coupled or only nearest connected network
 - Select ϵ
 - too large: ’overshoot’, preventing convergence
 - too small: speed of convergence is very slow
 - need to test to find the best choice

![Diagram of absolute real time and firings](image)
Circular averaging with random selection method

- Figures of merit
 - Metrics on the circle
 - Geodesic distance
 - Chordal distance
 - Considered norms of distance vector
 - one-norm (mean) \(\|d\|_1 = \frac{1}{M} \sum_{j=1}^{M} d_j \)
 - two-norm (RMS) \(\|d\|_2 = \sqrt{d^T d / M} \)
 - infinite-norm (max) \(\|d\|_\infty = \max_j (d_j) \)

Combine these 2 distances and 3 norms, we have a class of algorithms to average a set of circular numbers
Circular averaging with random selection method

• Randomized method
 – Group timings of neighbors
 • presence of group: at least 2 neighbors have same timing
 • Example: [1 30 46 85] no group
 [1 30 30 85] 3 groups with size 1, 1 and 2
 – Allocate probabilities in terms of the size of group
 – Choose one group as new timing

• Circular averaging with random selection
 – if all neighbors have different timings (no group appears), use circular averaging;
 else use random group selection
 – choose randomly between circular averaging and pure randomized algorithm

• based on previous results, 6 algorithms are considered
 – Geodesic 2-norm with weighted group selection (Geo2R)
 – Geodesic inf-norm with weighted group selection (GeoInfR)
 – Chordal 2-norm with weighted group selection (Cho2R)
 – Random selection between Geodesic 2-norm and weighted group selection
 (RGeo2R): 90% for circular and 10% for group
 – Random selection between Geodesic inf-norm and weighted group selection
 (RGeoInfR)
 – Random selection between Chordal 2-norm and weighted group selection (RCho2R)
Simulation results

- Performance of combined algorithms and RFA
 - 100 nodes, 4 neighbors or 8 neighbors scenario
 - time slots N=1000 and 1000 periods to update
 - use 4 windows to investigate the accuracy: 1, 10, 50 and 100
 - for comparison reason, RFA is also tested

<table>
<thead>
<tr>
<th>Neighbors</th>
<th>$\varepsilon = 0.04$</th>
<th>$\varepsilon = 0.03$</th>
<th>$\varepsilon = 0.02$</th>
<th>$\varepsilon = 0.01$</th>
<th>$\varepsilon = 0.008$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>93%</td>
<td>94%</td>
<td>95%</td>
<td>96%</td>
<td>92%</td>
</tr>
<tr>
<td>8</td>
<td>99%</td>
<td>99%</td>
<td>100%</td>
<td>99%</td>
<td>98%</td>
</tr>
</tbody>
</table>

To get reasonable ε value, the percentages of synchrony for RFA are tested.

For 4 neighbors scenario, $\varepsilon = 0.01$

For 8 neighbors scenario, $\varepsilon = 0.02$
4 neighbors scenario

Proposed algorithms have better performance for gross accuracy: speed and percentage of synchrony
8 neighbors scenario
The more connected the network, the better of the performance
• Robustness against node addition
 – 8 neighbors, 100 BSs, N=1000
 – the number of joining BSs K is randomly selected from [1,10].
 Before addition, the other (100-K) BSs are already synchronized
 – RCho2R, RGeoInfR, RGeo2R and RFA 0.02 are tested
 – 200 periods are used for updating the system

Within 200 periods updating, RFA can not converge 100%.
RGeoInfR has the best performance
Conclusions

• For all algorithms, the more connected of the network, the better performance
• RFA needs to test jumping constant for different scenario or different topology
• The proposed circular averaging with random selection algorithms have better performance with gross accuracy (converge quickly)
• When new BSs join the system, the proposed algorithms are more robust
• The RFA may disturb all BSs in the system, while our algorithms just disturb neighbors
• RFA could be more sensitive to delay and missing of ’firing’ information, while the proposed algorithms can just use the old information.
• Multiple avenues to improve the circular averaging with random selection algorithms can be seen: the probability to use random selection and the probability to choose each group can be optimized.
Reference
