
Synchronization with External Task Systems
in Octotask Application

Denis Laure, Yury Krupin, Alexander Abdulloev, Ilya Paramonov, Andrey Vasilev
Yaroslavl State University

Yaroslavl, Russia

{den.a.laure, krupiny, abdulloev.ivt, ivparamonov, vamonster}@gmail.com

Abstract

Octotask is a cross-platform task collector and manager, designed according to “Getting Things

Done” style of time management. Its most important feature is synchronization with different task

sources.

In this paper we discuss main ideas and algorithm of synchronization with multiple task sources

for Octotask application. We define the external system interface, which allows to support different

external systems in Octotask application.

Index Terms: GTD, synchronization, organizer, mobile device.

I. INTRODUCTION

“Getting Things Done” (GTD) is one of the most popular methodologies of personal time
management. Its main goal is to increase personal productivity by unloading all the tasks
from a person’s mind into an external system (GTD system) and using a special procedure to
cope with them. All the tasks and task-related information from different sources are initially
placed into the inbox folder. Afterwards contents of this folder is sorted according to the
special procedure [1].

There are many GTD-compliant applications available. At the moment of writing, the
website [2] provides information about 162 applications of such type. But this software does
not settle one problem. We have many task sources from the computer world, such as issue
tracking systems, e-mail, instant messaging services. When following the methodology, we
should manually take or extract tasks from each of these sources and place them to the GTD
system. It looks usual when we are using paper-based tools, but when our task sources already
accessible in a digital form, it is desirable to place a burden of task collection to software.

The latter point was an impact for development of the Octotask project — GTD-style
task collector and manager for mobile devices. Its main use case is the following. The user
has multiple task sources (calendar of the mobile device, external todo lists, bug trackers,
SMS and so on) and would like to have a unified overview of the tasks originated from all
these sources. The Octotask application gathers the tasks from external systems automatically,
organizes them in a local task storage accessible and alterable at any moment, and provide
a way of synchronization between the local storage and all the external systems where the
tasks originated from.

Such a multi-source task management requires to treat task synchronization in a different
way than in common GTD managers. Instead of regular synchronization between the on-line
service and the mobile client, designed for that service, which is usual nowadays, we need
a common algorithm of synchronization, allowing arbitrary external system to be supported
by means of some kind of common interface.

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 76 ----------------------------------------------------------------------------



In this paper we present both the synchronization algoritm for transfer of differences
between the local task storage and custom external system, and define the interface that
has to be used to make such a transfer possible for an arbitrary external system.

The rest of this paper is organized as following. In section II we make an overview
of the existing GTD organizers, show their strengths and weaknesses, and summarize that
synchronization facilities in the existing software do not cover the use case we consider.
Section III contains a description of main elements of our domain, namely Task, Context and
Project entities. In section IV we define what is an external system and elaborate the interface
of such a system. Section V describes the task synchronization algorithm we have developed
for Octotask application. In conclusion we report about implementation of synchronization
algorithm in Octotask and focus on future proposals for our application.

II. OVERVIEW OF EXISTING SOLUTIONS

For now there are many organizers that helps to follow the GTD method more efficiently.
All of them can be subdivided into two groups: services (Tracks, ToDoIst, Toodledo, etc.) and
applications (EasyTask Manager, LeaderTask, iGTD, etc.). The applications of the both groups
usually have almost the same functionality. It may include flexible task organization based
on different principles (e.g. tree-like task structures or folders); additional information/files
attachments; task filtering; notifications about tasks via email, SMS, Twitter, RSS or with the
use of alarms; teamwork with task lists, allowing delegation of the tasks to teammates or
co-workers.

here are two main approaches for such tools to take into account peculiarities of mobile
devices. Firstly, almost every service provides some kind of mobile version, which supports
the use of the service from mobile devices. Such versions are especially designed for small
screen resolutions. Secondly, for some of the services there is specially developed client
software. Both approaches have strengths and weaknesses. Strength of the mobile version
approach is that there is no need to install any application to use the organizer. Another
advantage is that such a version is usually quite suitable for each mobile device. The most
significant weakness of this approach is that it depends on the Internet connection, so the
absence of the latter means loss of possibility to work with the person’s tasks at any moment.

Mobile clients for services usually do not require permanent internet connection. It is
possible to manage the tasks offline and synchronize them with the service afterwards. But
often people have to pay for such mobile clients (for example, Toodledo client for iOS [3]).

Both mobile clients and mobile versions of the services have a significant drawback: they
are designed only for the one service, so if the user works with two or more task services, he
cannot use all of them without neccessity to switch between different clients, which prevents
the user from having the unified overview of all his/her tasks.

There are also standalone applications for mobile platforms. They allow to organize user’s
tasks directly on his/her mobile device and do not depend on any services. Usually such appli-
cations provide synchronization with only one (much less with only two) services and maybe
with internal organizers and calendars of mobile devices. Good example of such an application
is OrgYou S60 for Symbian [4]. It has rather simple UI and includes synchronization with
the standard Symbian calendar and Outlook. Also OrgYou can save task list as an XML-file.
One more example of mobile application is Pocket Informant. It is GTD style task manager
designed for iOS, Android and Blackberry platforms [5]. It has very flexible interface, that
allows to configure application as you like. This application can synchronize tasks with Google
Calendar and Toodledo. Another good application for iOS platform is Action Lists [6]. It is

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 77 ----------------------------------------------------------------------------



Fig. 1. Domain model diagram

rather a simple application especially designed to follow GTD methodology. It also allows
to synchronize tasks with Toodledo service. So mobile applications are effective only when
user uses one or two task sources. But, if he have many task sources (calendar, organizer,
bugtracker etc.), there is no way for him/her to use mobile device as the general storage for
all his tasks.

From this overview we can see that synchronization functionality in existing application is
rather sparse, and there are no applications targeted at providing a common way for multi-
source task management.

III. DOMAIN MODEL

The Octotask domain model is based upon the GTD methodology. It includes three entities:
Task, Context, and Project. These entities relationships between them are depicted in fig. 1.

Task is the main entity of the domain model. It corresponds to the action which the person
should perform. The “name” and “context” attributes are required, all the other attributes
are optional. Notes (or description) attribute allows user to provide extra text information
about the task. In order to make the task visible in the task list only from specific date
we added “show from” attribute. The “due” attribute holds the due date for task. When the
task is marked as done, the “completed at” attribute is filled with the current date and time.
Task model also has some additional attributes required for synchronization process described
below in section V.

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 78 ----------------------------------------------------------------------------



Context is the second entity of the domain model. The meaning of Context in Octotask
is the same as the context term in GTD methodology. Context is a some place or special
conditions required to get the task done. “Home”, “office” and “free time” are most popular
context examples. Each task refers to a context, and this link is mandatory.

The third entity is Project. Project is considered as an objective that takes more than one
step to accomplish. The main properties of project are “name” and “description”. For each
task the user can specify a project that task belongs to, but it is not mandatory, so it is possible
to have a project-independent task.

Project has optional “default context” attribute. If default context is specified, it allows to
automatically set context of the task associated with the project. Though, it is still possible
to add tasks belonging to the different context.

IV. EXTERNAL SYSTEM INTERFACE

External system is some software task source, which can provide something that could be
transformed into a task notable for the user. Basically, such a system also has to provide a
way to retrieve the corresponding information from it via some kind of public API.

We subdivide all external systems into two classes: event-based and task-based systems.
Examples of the systems from the first one are SMS, calls, emails. Information acquired by
such a system, can be considered as an event, which has to be transformed into the task
in Octotask. Such systems do not require any feedback about the task details or status to
be transferred back to the external system. For example, email from the internet provider,
informing about monthly payment, is an example of the event which causes ‘Pay the internet
bill’ task.

Online GTD services, calendars and bug trackers are examples of task-based external
systems. As a matter of fact, content of these systems is already represented in a form
of tasks (for example, issues in a bug tracker can be easily considered in this way). So it is
quite appropriate to talk about some kind of synchronization between the tasks in the external
system and corresponding tasks in the Octotask application.

For example, the task from organizer about project deadline converts into task in mobile
application. And any changes (like changing due time) applied to the task in application
reflect on the task from external system. In a similar way, addition of a new task into the
project, originated from the external system via the application UI leads to appearance of this
task in the external system.

Octotask interacts with an external system via external system interface. Interface declares
the most common operations for receiving and remote management of external system’s tasks.
This interface includes the following operations:

1) Retrieval of active tasks from the external system
2) Modification of the task in the external system
3) Addition of the task to the external system
4) Removal of the task from the external system
5) Retrieval of one task by its id

The last three operations are mandatory for task-based systems. Event-based systems do not
have to implement these functions as there is no feedback needed for this class of systems.

To allow support for a particular external system in Octotask we have to do the following:

• Provide an interpretation of how the concepts in the domain of the external system maps
to the Octotask domain.

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 79 ----------------------------------------------------------------------------



• Implement the external system interface for our particular system according to the
mapping above.

V. SYNCHRONIZATION

In this section we describe task synchronization process between the local task storage and
a task-based external system. The idea behind synchronization is to set the most recent values
for attributes to the both local and remote representations of the task.

For each external system synchronization process starts from active tasks retrieval (operation
1 of external system interface, see sec. IV). Then the tasks, retrieved from the external system,
and the corresponding tasks in the local storage are put in sync according to the procedure
described in algorithm 1. The input of the procedure consists in two sets I and E defined
in the header of the algorithm. Below we refer to the tasks from these sets as internal and
external tasks respectively.

In order to determine the direction of task attribute transfer, each internal task has a status.
There are the following statuses defined:

• “Synchronized means that the internal task was successfully synchronized with the
corresponding external task and was not internally modified since that time.

• “Locally changed means that the internal task was either added to the local task storage
or modified since the last synchronization.

• “Locally removed means that the internal task was removed from local storage since last
synchronization.

There are also some service attributes which are necessary for the synchronization proce-
dure. The first attribute is “updated at timestamp. It relates to both internal and external tasks
and contains the time of the most recent modification of the task. The other attribute is “last
sync at attribute of internal task. We update this timestamp on retrieval of information about
the particular task from the external system or when we update external task.

According to synchronization algorithm, for each internal task we try to find the corre-
sponding external task. On success we determine, which of the tasks from the pair has been
changed since the last synchronization. The local task is considered to be modified when
its status is not “synchronized. We treat the external task modified when its “updated at
timestamp is latter than “last sync at timestamp. Thus, we have four possible combinations,
and each of them implies an appropriate action to be made upon the tasks to make them
synchronized.

If only the internal task was modified, its status is checked in order to determine the
character of the change. If the task was removed from the local task storage, then it will
be removed in external system (operation 4). If the internal task was modified (for example,
renamed or due time was changed), the corresponding changes will be applied to the external
task (operation 2). If only the external task was modified, then corresponding internal task
is updated accordingly. If both the internal and external tasks were modified we need to ask
user to resolve the conflict.

After the search is done, there could be tasks without a pair in both sets of tasks. if the
pair was not found for the internal task, it could mean one of the three thing:

• the task was closed in the external system;
• it was removed from there;
• the task was added in the local storage.

In the first case the closed external task is retrieved (operation 5) and the pair of internal and
external task is compared according to previously described algorithm.

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 80 ----------------------------------------------------------------------------



Algorithm 1 Task synchronization procedure

Input: I — set of internal tasks, which belong to all projects, related to the external system S,
except for completed in-sync tasks; E — set of all active tasks retrieved from the external
system S.
for int ∈ I do

if exists ext ∈ E, corresponding to int then
if in (int, ext) only ext was modified since the last synchronization then

modify int in the local storage according to ext
else if in (int, ext) only int was modified since the last synchronization then

update ext on the server according to int
int.status← synchronized

else if both int and ext were modified since the last synchronization then
resolve the conflict

end if
remove ext from E

else
if int has external id set then

retrieve the task with id = int.external id from S as ext
if ext was deleted from S then

if int locally changed then
resolve the conflict

else
remove int from the local storage

end if
else

apply the rules above
end if

else
add new task to S
fill in external id in int

end if
end if

end for
for ext ∈ E do

if The local storage contains the task int, corresponding to ext then
apply the changes to int
int.status← synchronized

else
add new task, corresponding to ext, to the local storage

end if
end for

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 81 ----------------------------------------------------------------------------



In the second case local task status is checked. If the task was also marked as removed in
the local storage, it will be deleted from the storage. But if the local task was modified, the
user must resolve the conflict. In the third case the new task will be created in the external
system (operation 3) and associated with the local task. To distinguish these situations the
“external id” task attribute is used. If it is set, this means that local task was associated before
and corresponding external task was removed or closed. And if attribute is not set, the local
task was added in the local storage.

There could be external tasks for which there was no internal task found in set I . For each
of them we look for any internal task in the local storage which is associated with the external
task. If the corresponding task was found, the local task is synchronized with the external
task. Elsewhere the new local task is created for the external task and associated with it.

At last, we should consider the periodicity of the synchronization process. On the one hand
user should always work with the most actual tasks. On the other hand synchronization with
remote task systems requires connection to the internet, which consumes power and network
traffic.

We decided to start the synchronization process in the following cases. Firstly, when user
changes the task, which is associated with the external project, because we need to apply
corresponding change to the task in the external system as soon as possible. Secondly, when
the device is connected to the internet, we periodically retrieve all changes made in the
external systems since the last synchronization. Thirdly, user can optionally start the process
manually.

VI. CONCLUSION

In this paper we proposed the mechanism of task synchronization for the task manager and
multiple external task systems. Our approach allows to implement use case of multi-source
task managent when the tasks in the local storage of the mobile application are synchronized
with arbitrary external systems via specially defined external system interface. The developed
algoritm of synchronization does not depend on concrete external systems.

This approach was successfully implemented in Octotask application, which for now sup-
ports synchronization with Redmine project management system and Google Tasks service.

Octotask is an Open source application available for Symbian and Harmattan platforms.
Octotask homepage is available at https://yar.fruct.org/projects/octotask.

One of the most important direction of the future development of the project is elaboration
of some kind of plug-in system to simplify support for arbitrary external systems in the
application.

Improvement of synchronization algorithm would include solution of concurrency issues
emerging when contents of the local or remote task storage is modified during synchronization.

We also plan to add support for synchronization with the built-in Symbian and Harmattan
calendars, different online organizers having open API (Toodledo, Nozbe). Also several event-
based systems would be covered. For example, SMS and missed calls would be easily
transformed into tasks in Octotask.

REFERENCES

[1] D. Allen. “Getting Things Done: The Art of Stress-Free Productivity,” Penguin Books, 2001.
[2] GTD Software Comparison — 162 Researched Apps. http://www.priacta.com/Articles/Comparison of GTD Software.php
[3] Toodledo client for iOS. http://www.toodledo.com/info/iphone.php
[4] OrgYou S60. http://www.orgyou.eu/
[5] Pocket Informant. http://www.pocketinformant.com/index.php
[6] Action Lists. http://software.dazeend.org/action lists/index.html

__________________________________________PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 82 ----------------------------------------------------------------------------


