
Porting Smart-M3 Platform to MeeGo
Operation System

Kirill Yudenok
St. Petersburg Electrotechnical University

St. Petersburg, Russia
kirill.yudenok@gmail.com

Abstract

Smart-M3 is a platform for development and deployment of smart spaces application. The
main goal of this project is to investigate the programming interfaces and architecture of the
Smart-M3 platform and adapting this platform to launch on the MeeGo operating system.

Index Terms: Smart-M3, MeeGo, Smart Space.

I. INTRODUCTION

In the past few years has substantially increased to the scientific community to the
technology provided by the so-called stack technology Web 2.0, which focused on user
involvement in the generation of content distributed service architecture building
applications, context-sensitive information processing and human-machine interface.
First of all, this is due to the proliferation of mobile devices and wireless communication
capabilities that allow users resides in the "online" and be integrated with the global
information resources and services. One of the key research directions in this area is the
concept of intelligent semantic spaces (smart spaces).

Platforms for development and deployment of smart spaces, there are not many, and
among them the most popular gathering open platform Smart-M3.

At the moment did not exist any means for automatic installation of the platform
Smart-M3 on the MeeGo operating system, except hand-built platform from source and
install additional components of the platform. The aim of this project is, just as in the
preparation of installation packages for the new operating system installation MeeGo and
the fact that the platform works correctly with the MeeGo.

Adaptation platform launch Smart-M3 on the MeeGo operating system will allow
developers to design their applications using the platform and transfer existing
applications to new operating system. Creating components of smart spaces Smart-M3
platform for the MeeGo operating system adds a new opportunity both to develop new
services for the system and study area for intelligent spaces in general.

Solution for investigation of the platform Smart-M3 was the need for a toolkit for
developing a new operating system MeeGo from developers who use the platform in the
industry, as well as new, looking to master a new platform for their problems. With a
new niche for the development of smart space applications, the platform is Smart-M3
broaden the scope of application and use of devices in different formats.

__PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

-- 157 --

II. WORK PROBLEMS

There are several challenges in creating software components of the platform for
other operating systems, namely the dependence on other system components that ensure
the correct operation of the platform. Typically, these components are systemic and are
included in other systems, but there are additional components that must rebuild and
adjust depending on the system. For architectures such as ARM, shows the same
problem.

In systems with open source, this problem can be solved quite simply, the creation or
transfer of these components on another system by assembling and setting its source. In
our case, the Smart-M3 platform distributed under an open source license and its code is
available for modification and analysis.

In my opinion, the absence of some system components depends on the version of the
system for which the product is developed, and some additional components that are
independent of the system, installed by hand. MeeGo operating system is precisely such a
case, as it is in the final stage of testing.

Smart-M3 platform is distributed under an open source license as source code, the
approaches to the use and dissemination platform, there are only two, namely:

1. Assembly and installation of the Smart-M3 on any operating system and under
any architecture from source code. But since it may depend on many other
components of the system, they in turn will also need to install manually, or
collect, if they are absent.

2. Creating a platform installation packages for different operating systems and
architectures. This approach automates the process of assembling and installing
the components, since packets are based platforms. But this approach does not
eliminate the problem of dependence on other system components.

III. RELATED WORK

To run the application on the MeeGo operating system, which are written using a
platform Smart-M3, needed platform itself Smart-M3 and additional libraries. Currently,
the MeeGo operating system no installation packages for the platform Smart-M3, and the
goal was to examine existing packages, Smart-M3 platform and adapted to run on
MeeGo. This section will be fully described in the course of events on the transfer of
existing components of the client platform Smart-M3 for the operating platform MeeGo.

A. Smart-M3 platform modules.
Platform Smart-M3 consists of modules, shown in Fig. 1. The figure shows all the

modules and their interactions, modules are marked in grey on a portable operating
system MeeGo.

1. Modules of client-side: libwhiteboard module provides helper functions for other
modules and, therefore, is required for all other modules, but Python KP. Module
whiteboard-daemon should be running in the background, so it requires all modules, if
you are running any KP. Currently, there are three modules of the transport level, namely
sib-access, sib-access-nota and sib-access-plain-nota. The system designer must select at
least one of the transport modules, depending on the choice of transport.

__PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

-- 158 --

Additionally the user can choose to install the Smart-M3 Qt API. Module Smart-
M3 Qt Core provides the Qt API-interfaces for the detection of SmartSpace and its
basic operation. Module Python KP has no requirements for other modules.

Fig. 1. Software components of the Smart-M3 platform

2. Modules of SIB-side: If the system designer wants to run the SIB, then he would
need sib-daemon module and one or more modules of transport SIB. Currently,
following transport modules are available sib-tcp, sib-nota and sib-plain-nota.

B. The process of creating components
As described above, the following client-side components Smart-M3 platform:

libwhiteboard, whiteboard, whiteboard-sib-access, whiteboard-sib-nota, whiteboard-
sib-plain-nota and Smart-M3 Qt Core.

These components exist in the form of source code and DEB packages for i386
and ARM. The software for the operating system MeeGo distributed as an RPM
package that can be collected using the source code. There are also programs that will
convert the existing packages in RPM DEM and back, for example, the program
alien. But we will consider the reassembly of the program source code.

To begin to understand what exactly is an RPM package and what it is that will
allow us to start the process of building the package.

1. RPM package: RPM (RPM Package Manager - RPM - a package manager,
previously disclosed as a Red Hat Package Manager - Package Manager Red Hat)
indicates two things: the format of the software packages and software designed to
manage those packages.

__PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

-- 159 --

Normally, each packet is an application and a number of associated files. One of
the advantages of the RPM - it's what every rpm-file (which is a file from the
perspective of the operating system) contains the entire set of application files.

2. Preparing the environment for building RPM: In any system there is a standard
infrastructure for building RPM. By default it is located in / usr / src / redhat /. If
there is no such directory, install the rpm-build. Not on Red Hat systems to install
this package will automatically create the directory ~ / rpmbuild in the user directory.
Its presence enables us to collect packets, with administrative privileges, that is not
always safe.

To build you need to copy the source tarball in the directory ~ / rpmbuild /
SOURCES.

3. Create a SPEC-file: Spec-file, which stands for "specification file", defines all
of the rpmbuild tools, which should be taken when building an application, as well as
all the steps required to install / uninstall. Each package src.rpm-incorporates the
spec-file for rebuilding the package.

Spec-file - a text file. Naming convention offers the spec-file name as follows:
package_name.spec.

The text inside the spec-file has a special syntax. Syntax definitions are as
determining the order of assembly, version number, information about dependencies,
and in general all the information about the package, which can subsequently be
requested from the RPM database.

For more information on the preparation of spec-file and the section you can refer
to the relevant documentation. [5]

3.1. Introduction section: General information section contains information about
the package, which after installation can be requested by the command rpm -qi
package_name.

3.2. PREP section: Preparing section is responsible for the commands needed to
start building. For example, if you put SOURCES tarball of the project, it is
necessary to unpack.

Section starts with the %prep. This example uses the macro% setup, which can
unpack compressed archives. Typically, this is the only line in this section.

3.3. BUILD section: Section contains the commands to build a software. Usually
in this section involves two parameters of the script configure (compiler optimization
flags, and name of the temporary build directory) and the command make (without a
parameter, that is, for the purpose of all). Section begins with the line %build.

3.4. INSTALL section: This section contains commands to install the package files
into the system. At this stage, clear the build directory and copy the package files into
the directory specified by the option - prefix. If you do not clean the build directory
and files from previous builds may violate the purity of the installation. Section
begins with the line% install.

3.5. CLEAN section: The commands in this section purged files created on other
stages. Session begins with the line %clean

3.6. FILES section: Finally, the commands in the %files section lists files and
directories with the appropriate attributes to be copied from the build tree to the rpm-
package and then be copied to the target system when you install this package.

Section begins with the line %files. %Doc macro notes documentation files. This
allows you to create documentation from the appropriate project files. After you

__PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

-- 160 --

finish editing the spec-file is left to put it in the directory ~/rpmbuild/SPECS, and the
source tarball in ~/rpmbuild/SOURCES.

3.8. CHANGELOG section: This section is intended to describe the chronology of
changes that have occurred since the first version of the package assembly. Each new
record is written in the following sequence: day, month, day, year, name of the
developer, his email address.

C. Compiling a package
Compiling a package by a single command: $ rpmbuild-ba [path to the SPEC-file]
Then you can explore the directory ~/rpmbuild/RPMS and ~/rpmbuild/SRPMS,

find it pre-built packages and examine their commands rpm-q [package.rpm], install
and remove, respectively.

D. Install created packages to MeeGo
After assembling the packages, make sure they are correctly installed and running

on the system.
We describe a step by step how to install and run the components on the platform

Smart-M3:
1. Download the RPM packages for each component. [9]
2. Install them using the rpm command as follows:

- rpm -Uhv libwhiteboard-2.0-beta1.i386.rpm
- rpm -Uhv libwhiteboard-dev-2.0-beta1.i386.rpm
- rpm -Uhv whiteboardd-2.0-beta1.i386.rpm
- rpm-Uhv whiteboard-sib-access-2.0-beta1.i386.rpm
- rpm-Uhv libwhiteboard_qt4-0.9.2-1.i386.rpm

3. Whiteboardd run in the console.
4. After starting whiteboardd create all connections and will hang in the

background.
An example of whiteboard daemon on MeeGo, shown in Fig.2.

Fig. 2. Whiteboard daemon launch on MeeGo

__PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

-- 161 --

IV. CONCLUSION

The result of this work were:
1. investigated APIs and Smart-M3 platform architecture;
2. the mechanisms for MeeGo package management;

Create an installation package of client platform components Smart-M3 for the
operating system MeeGo. Installation packages are available for free download, written
documentation of the installation of the operating system MeeGo. [7, 8]

It was also developed demonstration application using the Smart-M3 platform and it
has been tested by the components for the MeeGo operating system. This application was
demonstrated at the 9th International Conference FRUCT, which was held in
Petrozavodsk, from 25 to 29 April and at the exhibition in honor of the 125th anniversary
of the ETU.

Development and deployment platform of smart spaces, Smart-M3 is ready to use on
the MeeGo operating system.

ACKNOWLEDGMENT

Author would like to thank Finnish-Russian University Cooperation in
Telecommunications (FRUCT) program for the provided support and R&D
infrastructure. I would also like to thank Kirill Krinkin for providing feedback and
guidance.

REFERENCES

[1] Smart-M3 release. http://sourceforge.net/projects/smart-m3/. Referenced May 20th 2011.
[2] Smart-M3, Wikipedia: http://en.wikipedia.org/wiki/Smart-M3. Referenced June 10th 2011.
[3] Compiling RPM packages - http://www.lexpr.ru/node/39. Referenced May 20th 2011.
[4] MADDE - http://wiki.maemo.org/MADDE. Referenced June 11th 2011.
[5] Project bugtracker: http://osll.spb.ru/projects/msc-yudenok. Referenced September 28th 2011.
[6] Project wiki: http://osll.spb.ru/projects/msc-yudenok/wiki. Referenced September 28th 2011.
[7] Project files: http://osll.spb.ru/projects/msc-yudenok/files. Referenced September 28th 2011.

__PROCEEDING OF THE 10TH CONFERENCE OF FRUCT ASSOCIATION

-- 162 --

