
Smart Space Logistic Service for

Real-Time Ridesharing

Alexey Kashevnik, Nikolay Teslya, Nikolay Shilov
SPIIRAS

Saint-Petersburg, Russia

{alexey, Teslya, nick}@iias.spb.su

Abstract

The paper describes a logistic service-based approach to real-time ridesharing based on smart-

space concept. Smart-M3 information platform is used as smart space infrastructure for presented

approach. The service is based on Smart-M3 RDF ontology which is formed by ontology slices of

participants’ mobile devices. The paper presents an algorithm for finding appropriate fellow-

travelers for drivers as well as definition of acceptable pick-up and drop-off points for them.

Index Terms: ridesharing, ontology, smart-m3, smart space.

I. INTRODUCTION

Nowadays, a dramatic increase of the number of vehicles can be seen in many major

cities and, as a result, the load on existing transport networks increases. This leads to

frequent traffic jams and accidents. One of possible solutions for this problem is

ridesharing. Ridesharing (also known as carpooling, lift-sharing and covoiturage), is a

shared use of a car by the driver and one or more passengers, usually for commuting.

Dynamic ridesharing (also known as instant ridesharing, ad-hoc ridesharing, real-time

ridesharing or dynamic carpooling) denotes a special implementation of a ridesharing

service which enables a dynamical formation of carpools depending on the current

situation. Typical for this type of carpooling is:

 arrangement of one-time trips instead of recurrent appointments for

commuters;

 the usage of mobile phones for placing carpooling requests and offers through

a data service;

 automatic and instant matching of rides through a network service.

The first historical incidence of successful ridesharing was the tremendously popular

yet short lived “Jitney Craze” beginning in 1914, when the US economy fell into

recession with the outbreak of WWI, and some entrepreneurial vehicle owners in Los

Angeles began to pickup streetcar passengers in exchange for a ‘jitney’ (the five cent

streetcar fare).

The second major period of rideshare participation, and the period most likely to be

identified as the first instance of traditional carpooling, was during the World War II

(WWII). Opposite to the jitney era, the government encouraged ridesharing heavily

during WWII as a method of conserving resources for the war effort. This period of

ridesharing promotion was exceptionally unique, since it entailed an extensive and

cooperative effort between the federal government and American oil companies.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 53 --

The third period of interest in ridesharing picked up substantially with the Arab Oil

Embargo in the fall of 1973 and 1979 oil crisis [8].

Nowadays, the next period of interest in ridesharing is expecting. It is associated with

the intensive development of data processing, transfer technologies, and computing

capacities, which can simplify the search for fellow travelers.

The following main schemes are used by people in different countries for searching

for fellow-travelers:

 Search via public forums and other communities. For example:

eRideShare.com [11], PickupPal [12], Zimride [15], RideshareOnline [14],

rideshare.511.org [13], CarJungle [10]. The advertisements about trips are

posted on a Web-site by users. This advertisement includes the start and end

points, some information about people who post this ad, trip cost, time of the

trip, etc;

 Search via private Web-services. People can get account in a private service

only if they have an invitation. For example, Zimride service has a private

interface for universities and companies;

 Search via special applications on mobile devices. With these applications

users can edit their profiles, routes and search for fellow-travelers. The

examples are PickupPal [12] and Avego [9];

 Search via agents (e.g. taxi companies);

 Pick-up points (not pre-arranged).

Software for the mobile devices uses the client-server architecture. This architecture

provides for the implementation of a centralized server and clients sending data

processing requests to the server. Presented in the paper approach is based on the

decentralized smart space infrastructure. This approach allows increasing the stability,

speed, and reduces the network’s load.

II. SMART-M3 PLATFORM

For the presented ridesharing system the open source Smart-M3 platform has been

used [7]. The key ideas of this platform are device, domain, and vendor independent.

Another key idea is that devices and software entities can publish their embedded

information for other devices and software entities through simple, shared information

brokers. Information exchange in smart space is implemented via HTTP using Uniform

Resource Identifier (URI) [1]. Semantic Web technologies have been applied for

decentralization purposes. In particular, ontologies are used to provide for semantic

interoperability.

Smart-M3 platform consists of two main parts: information agents and kernel (fig. 1)

[6]. The kernel consists of two elements: Semantic Information Broker (SIB) and data

storage. Information agents are software entities installed on the mobile device of the

smart space user. These agents interact with SIB through the Smart Space Access

Protocol (SSAP) [2]. The SIB is the access point for receiving the information to be

stored, or retrieving the stored information. All this information is stored in the data

storage as a graph that conforms to the rules of the Resource Description Framework

(RDF) [5]. By these rules all information is described by triples "Subject - Predicate -

Object".

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 54 --

Information agent

Information agent

Information agent

Information agent
Semantic

Information
Broker

RDF Graph

Kernel

Device

Device

Device

Fig. 1. Smart-M3 Platform

III. THE LOGISTIC SERVICE ONTOLOGY

The logistic service ontology describes the domain area of ridesharing at the macro

level (fig. 2). The macro level ontology is based on integration of parts of the mobile

devices’ ontologies.

Thing

ActorVehicle Path

Driver
Cargo

item
PassengerCar Family car Bus Point

is_ais_a is_a

roleroleroleis_a is_a is_a consists_of

hashas

Fig. 2. Logistics service ontology on the macro level

The logistics service ontology consists of three main parts: vehicles, actors and paths.

A. Vehicles

The vehicles are:

 cars with no more than four vacant seats;

 family cars with 5 to 8 vacant seats;

 buses with 9 and more vacant seats.

B. Actors

The actors are: drivers, passengers and cargo items. All of them have vehicles and

paths. For example, driver has his own car and several points defining his/her home,

work and other locations. Passenger may prefer some vehicle type and has points of

home, work, and other locations. Cargo items have size and vehicle type needed for its

transportation.

The class actor consists of (fig. 3):

 ID. Unique ID for each user;

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 55 --

id Name Point delay

has has has has

Actor

Fig. 3. Class "Actor"

 Name. First and last name of the user;

 Point. Path point belong to the user (2 minimum: the start and the end);

 Delay. Maximal possible time of waiting in the meeting point.

The class "Driver" is a subclass of the class Actor and inherits all its properties with

two own properties:

 Vehicle. Vehicle type;

 Detour. Maximal detour from the shortest path.

The class "Passenger" is a subclass of the class Actor and inherits all its properties

with own property "Detour" the same as in the class "Driver".

The class "Cargo item" is a subclass of the class Actor and inherits all its properties

with own property "size" defining the physical size of the cargo item.

For the path definition the set of points is used. This set is an ordered list of key points

obtained as result of the shortest path searching algorithm (e.g., Dijkstra or A*). The

class "Point" has the following structure (fig. 4):

Latitude

Longitude

Date

Time

vacantseats
drivebyVehicle vacantItemPlace

has

has

has

has
has

has
has

has

Point

wait_time

has

previousPoint

Fig. 4. Class "Point"

 previousPoint. Contains the previous path point. For the start point its value is

"FALSE";

 Latitude;

 Longitude;

 driveByVehicle. If the point belongs to the passenger, it contains the driver

who gives a ride to this passenger. If the passenger walks then its value is

"FALSE";

 vacantseats. The number of vacant seats in vehicle in point;

 vacantItemPlace. Tne number of vacant places for cargo items;

 Date. Date, when the user will be at this point;

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 56 --

 Time. Time, when user will be at this point;

 Wait_time. How long the user will be waiting in this point.

Since the ontology in the smart space is represented in RDF standard, it looks like

follows:

(‘user1’, ’name’, ‘Name Surname’) - name of user1

(‘user1’, ‘is_a’, ‘Driver’) - user1 is a driver

(‘user1’, ‘vehicle’, ‘vehicle_type’) - user1 has this type of vehicle

etc.

In [4] the logistics service ontology is described in detail.

IV. ALGORITHM FOR FINDING MATCHING DRIVER AND PASSENGER PATHS

The problem of finding a matching path between the driver and the passenger in the

ridesharing service can be formulated as follows: it is needed to determine the possibility

of ridesharing between participants, based on the information about their routes and

restrictions set by users’ services. The following algorithm describes the procedure of

finding matching path acceptable for the driver and the passenger in the presented

ridesharing service.

Fig. 5. The main idea of matching driver and passenger path search

Let A be the start point and B be the end point of the pedestrian's path. C is the start

point and D is the end point of the driver's path. The shortest driver's path, which is found

with the help of GIS, is indicated by the solid line (in generally, CD is not a straight line,

it depends on the map of the region). Fig. 5 shows that the driver and pedestrian move

almost in the same direction and in some parts of the routes the driver can give the

pedestrian a ride. This situation is indicated in the figure by the dotted line (the CABD

path) and it is the simplest situation, because the meeting points match with the start and

end points of the pedestrian’s path. A more difficult situation is searching for a meeting

point when it belongs neither to the driver’s shortest path nor to the pedestrian’s one, but

satisfies both the driver and the passenger. One of the possible situations is indicated in

the figure by the dash-dot line with the meeting points E and F (the CEFD path). These

points have to meet the following restrictions:

1) The distance between the start point of the passenger and his/her meeting point

should be less than the maximum allowed detour of the passenger. This area is

indicated in the figure by the dotted circle.

A
B

C

D

E

F

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 57 --

2) The driver's detour should be less than the maximum allowed detour.

The general scheme of the matching routes searching algorithm will be follows:

FOR EACH driver DO

 FOR EACH passenger Do

 Find_mathing_path(driver.path,passenger.path); // according to the above scheme

 constraint_checking();

 IF ALL constraints IS performed THEN

 set_passenger_for_driver();

 ENDFOR;

ENDFOR;

The goal functions for finding the meeting points are:

- Shortest total path (interesting for the driver);

- Minimal waiting time (interesting for the driver and passenger);

- Shortest distance between the passenger’s start and end points and meeting

points (interesting for the passenger).

As a result, the general task of matching paths has the exponential complexity,

therefore, it is necessary to apply heuristics to reduce the task dimension.

A. Heuristic 1

There is no need to calculate merging paths for all pairs of drivers and passengers. It

can be possible, for every driver to build a set of candidate passengers:

(

) (

)

 () (1)

(
)

 (

)

 () (2)

where pp1, pp2 — the start and the end points of the passenger's path, dpi — driver path

point i, PDetour, DDetour — detours of the driver and the passenger.

B. Heuristic 2

There is no need to search through all possible combinations of meeting points. The

following heuristics help to reduce the number of the possible combinations.

The first heuristic selects points of the sector from which the driver starts. Fig. 6

shows the situation when there is only one point ("C" point) meeting constraints (1)

and (2). To determine the potential meeting points it is needed to calculate the angle (3)

 (

) (3)

A

C

PDetour

π/4

K

π/4

N

L

M

θ

Fig. 6. The first heuristic

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 58 --

and select points in the area [-

] (points L and M in fig. 6). Point A will always

be within the list of the possible points as the passenger’s start or end point. If there are

more than one point meeting constraints (1) and (2) then the search area expands. This

situation is shown in fig. 7 with two points C and F meeting the constraints (1) and (2),

and point N is also included in the expanded area.

A

C

PDetour

K

N

L

M

F

Fig. 7. The first heuristic with two driver's points

The negative sides of this heuristic are:

- selected points can be further than the driver’s maximal detour;

- some of potential meeting points can be lost if the an incorrect angle is chosen.

The second heuristic (fig. 8) searches for meeting points at the intersection of the

circle with radius PDetour and the circle with radius DDetour. In this way all of the

selected points are potentially reachable for both the driver and the passenger, with no

need to determine the angle that restricts the selection area. The selection area can be

expanded by increasing the number of the driver's path points meeting constraints (1) and

(2).

DDetour

PDetour

A

C

B
D

Fig. 8. The second heuristic

Both heuristics require the following constraints to work effectively:

- A lot of drivers. Heuristics have strong limitations and filter out a lot of points.

If there are no many drivers, then the use of the heuristics will rarely get

positive result.

- A small value of DDetour. Heuristics will not be helpful with a large value of

DDetour.

- Uniform distribution of roads on the map. The uneven distribution of roads

(rivers, lakes, etc) leads to a lack of roads in some sectors, which could lead to

the loss of possible meeting points due to the need to detour around the

obstacles and to pick up the pedestrian on the other side.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 59 --

Both heuristics are used in the logistics service prototype and help to reduce the time of

search in more than 1.5 times.

V. SYSTEM WORKING SCENARIO

Common system working scenario is shown in Fig. 9.

Fig. 9. System working scenario

a) Driver's path without ridesharing

b) Passenger's path without ridesharing

c) Notification message

d) Driver's path with ridesharing

e) Passenger's path with ridesharing

Fig. 10. Prototype screenshots (routes)

Smart

Space

Drivers Passengers

The interaction via

the GUI

mobile device

List of

possible passengers

The interaction via

the GUI

Transferring

information about the

routes of the users

List of

possible drivers

mobile device

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 60 --

a) user's profile configuration

b) user's path configuration

Fig. 11. Prototype screenshots (user's routes and preferences)

The mobile application is installed by all users of the service. This application collects

the information about the user's agenda, preferences (fig. 11, a), most frequent routes

(fig. 11, b), etc. with the agreement of the user. Also the user can set additional

constraints, for example, max. delay, max. detour, social interests, etc. (fig. 11, b). This

information is transferred into the smart space after the internal processing and

depersonalization (only signs of information are transferred, not the raw information).

During the execution of the logistics algorithm the groups of fellow travelers are formed.

Then, users interactively get the possible fellow travelers with their profiles, meeting

points, meeting time, full recommendations about the route (fig. 10, a-e) and if they have

permission they can get the link to the external resources, e.g., social network page,

which helps the user to make a decision. Sometimes, suggested driver can be a friend of

the user friend (this information can be useful for the user in decision making stage).

Also, the real-time search is supported. Users can login into and logout from the smart

space, change restrictions and then receive the list of fellow travelers in real-time. So, all

of work is done by the smart space and users do not need to perform any actions to find

fellow travelers.

VI. CONCLUSION

The logistic service-based approach to real-time ridesharing. With an extensive use,

ridesharing can reverse the current world trend of increasing number of cars on the

streets of the cities. This will reduce the load on the transport system of the cities, reduce

traffic jams and will increase parking places. Ridesharing helps to save fuel, to reduce the

overall cost of parking. By the MIT research from 50% to 77% of drivers could rideshare

on a daily basis without significant changes in behavior. Max effort VMT (Vehicle Miles

Traveled Tax) reductions were 9% - 27% [3]. The developed algorithm can effectively

find appropriate fellow-travelers for drivers. The presented heuristics help to reduce the

time of search in more than 1.5 times.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 61 --

ACKNOWLEDGMENT

Some parts of this work have been supported by Open Innovations Framework

Program FRUCT – www.fruct.org. Some elements have been carried out under grants of

the Russian Foundation of the Basic Research (#10-07-00368, #12-07-00298).

REFERENCES

[1] T. Berners-Lee, R. Fielding, L. Masinter, RFC 3986 – Uniform Resource Identifier (URI): Generic Syntax,

URL: http://tools.ietf.org/html/rfc3986

[2] J. Honkola, H. Laine, R. Brown, O. Tyrkkö, «Smart-M3 Information Sharing Platform». 7th Conference of

Finnish-Russian University Cooperation in Telecommunications (FRUCT). URL:

http://fruct.org/conf7/Honkola_Smart_M3.pdf

[3] M. Oliphant, A. Amey, Dynamic Ridesharing: Carpooling Meets the Information Age. Webinar for the

American Planning Association, co-hosted by the MIT team,(2010), p. 63.

[4] A. Smirnov, A. Kashevnik, N. Shilov, H. Paloheimo, H. Waris, S. Balandin. Smart Space-Driven Sustainable

Logistics: Ontology and Major Components, Sergey Balandin, Andrei Ovchinnikov (eds.) Proceedings of the

8th Conference of Open Innovations Framework Program FRUCT, Lappeenranta, Finland, 9-12 Nov., 2010,

pp. 184-194.

[5] Resource Description Framework (RDF). W3C standard. URL: http://www.w3.org/RDF/

[6] Smart-M3 at Wikipedia. URL: http://en.wikipedia.org/wiki/Smart-M3

[7] Smart-M3 at Sourceforge, 2012. URL: http://sourceforge.net/projects/smart-m3.

[8] Rideshare History & Statistics. MIT "Real-Time" Rideshare Research. URL:

http://ridesharechoices.scripts.mit.edu/home/histstats/

[9] Avego. URL: http://www.avego.com/

[10] CarJungle. URL: http://www.carjungle.ru/

[11] eRideShare.com. URL: http://erideshare.com/

[12] PickupPal. URL: http://www.pickuppal.com/

[13] Rideshare 511. URL: http://rideshare.511.org/

[14] RideshareOnline. URL: http://www.rideshareonline.com/

[15] Zimride. URL: http://www.zimride.com/

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 62 --

http://ridesharechoices.scripts.mit.edu/home/histstats/

