
Smart-M3 Security: Authentification and
Authorization Mechanisms

Kirill Yudenok
Saint-Petersburg

Electrotechnical University

Saint-Petersburg, Russia

kirill.yudenok@gmail.com

Ilya Nikolaevskiy
Helsinki Institute for

Information Technology

Helsinki, Finland

ilya.nikoalevskiy@hiit.fi

Abstract

Smart spaces are dynamic environments for sharing device information. Key challenges for smart

spaces include security and interoperability between heterogeneous devices. Thus, smart spaces and

its environments must provide feasible solutions for authentication, access control and privacy. Open

source Smart Space platform Smart-M3 is actively developed but does not have a sufficient security

mechanism yet. The main focus of this paper is analysis and development of security mechanisms

for Smart-M3 platform.

Index Terms: Smart Spaces, Smart-M3, Security, Access control, HIP.

I. INTRODUCTION

Smart spaces (SS) are physical spaces where devices cooperate and share information to
intelligently provide services for the users. Cook D. J. in [1] define a smart environment as
one that is able to acquire and apply knowledge about the environment and its inhabitants
in order to improve their experience in that environment. The terms smart space and smart
environment are widely used interchangeably — this article uses the term smart space.

Smart spaces are vulnerable for various security and privacy related threats. This tech-
nology expands borders of the different kinds of attacks and opens up new possibilities for
the penetration to the agents SS data. Therefore, we need solutions for identification and
authentication of all smart space agents, confidentiality and access control. Solutions should
be applicable for embedded devices with limited communication, processing, memory and
battery capabilities. Also, solutions should work in dynamic environments where new devices
may join, store and subscribe information and leave at any time [2].

There are few existing smart space software implementations: Smart-M3 [3], [4], ADK [5]
and RIBS [6]. Our solutions are based on smart space Smart-M3 platform.

Smart-M3 is an open source software platform that aims to provide Semantic Web in-
formation sharing infrastructure between software entities and various types of devices. The
platform combines ideas of distributed, networked systems and Semantic Web [7]. The major
application area for Smart-M3 is the development of smart spaces solutions, where a number
of devices can use a shared view of resources and services. Smart spaces can provide better
user experience by allowing users to easily bring-in and take-out various electronic devices
and seamlessly access all user information in the multi-device system from any of the devices.

Smart-M3 consist of two kinds of architectural elements: Knowledge Processors (KP) and
Semantic Information Brokers (SIB). KPs join to the smart space and publish and consume
information in it. Brokers provide smart space access, information storage, retrieval and
subscription services. For information exchange between KPs and SIB using Smart Space

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 153 ----------------------------------------------------------------------------



Access Protocol (SSAP). In order to enable interoperability, different KPs must know the
representation format of data. Applications may utilize different ontologies, which define the
concepts, properties, and their relations for different use cases. To enable use of ontologies, in-
formation is transmitted in eXtensible Markup Language (XML) format and stored according
to Resource Description Framework (RDF) [8] specification [4].

This article will address the implementation of the security mechanisms for the Smart-M3
platform. Section 2 describes related work on the research and development of SS security
mechanisms, provides guidance on the selection and development of security mechanisms and
provides architecture of security mechanisms for the Smart-M3 platform. Section 3 is devoted
to the research and development of basic security mechanisms, authentication mechanism
based on the HIP protocol and access control mechanism based on the mapping SS RDF-
graph to the virtual file system (VFS). Improvements of proposed security mechanisms are also
presented in that section. Section 4 describes details of security mechanisms implementation.

II. SMART SPACE SECURITY

A. Smart Space security recommendations
There are many works devoted to the research and implementation of the SS security

mechanisms. Following SS security mechanisms are defined in accordance with each Semantic
Web level as presented in Fig. 1 [7]. The Semantic Web Layers [9] (left side) illustrates the
hierarchy of languages, where each layer exploits and uses capabilities of the layers below.
It shows how technologies that are standardized for Semantic Web are organized to make the
Semantic Web possible. The essential security elements (right side) illustrates how some of
above described security technologies fit to the layer of Semantic Web.

Fig. 1. Smart space security cake — Layers of Semantic Web (left [7]) and essential security elements (right)

Security technologies use variety of solutions, such as cryptography and encryption keys
management for identification, authentication and connection privacy for secure information
transmission between all parties. Security mechanisms are located at all represented levels.

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 154 ----------------------------------------------------------------------------



Each level provides solution for certain security problem. For example, handling protection
and input validation of XML documents is done at the XML level, access right description
languages, RDF security policies and specialized ontologies are used at RDF Access Control
level [5], [6].

Different SS platforms use different communication protocols between its modules (SIB
and KP): Smart-M3 uses SSAP/XML protocol for exchanging data, RIBS uses SSAP/WAX
protocol. These protocols cannot boast high productivity, which reduces the whole system
performance. A new communication protocol — “Knowledge Sharing Protocol” (KSP) [10]
solves that problem and can be used in the future to ensure security (access control) based
on the context, RDF and ontologies.

The security mechanisms discussed in this article located at ”Communication protocols”
and ”RDF” levels respectively. These mechanisms provide the identification and authentication
of agents at the network level and data access control at the application, but access control
solution is outside of this chart.

For now Smart-M3 platform has a unique security mechanism — Access Control at Triple
Level [11]. Smart Spaces security problems described in the articles [2], [12].

B. Security architecture for Smart-M3
Our proposed security solution protects information sharing between KP and SIB. It pro-

vides privacy and information authentication. The Fig. 2 shows proposed architecture. KPs
establish secure data channel with SIB. During key exchange all entities are cryptographically
authenticated and all communication privacy is further secured with cryptography. System
administrator is a Smart-M3 administrator, that configure all objects to trust certain objects
and also get all information about the state of the security mechanisms.

System administrators are responsible only for objects they own. Therefore, each device
owner will be system administrator for her mobile KP. She can choose to trust some Smart
Spaces SIBs depending on her personal preferences or corporate guidelines. The SIBs are
configured by responsible authorities. They decide which KPs may access corresponding
Smart Spaces and that access rights they have.

III. SECURITY MECHANISM FOR SMART-M3 PLATFORM

A. Network security
To provide robust authentication we propose to use HIP protocol for key exchange [13].

Unlike other protocols (IKEv2, DTLS) HIP provides additional DoS protection with puzzle
mechanism. Normally HIP relies on HIP Base Exchange (BEX) to establish shared key which
later is used for encryption with IPSEC. Adopting HIP provides privacy protection and secure
identification of the hosts as cryptographic identities are used during key exchange.

To accommodate variety of constrained devices used as smart objects we propose using
HIP Diet Exchange (DEX) [18]. DEX is a lightweight modification of BEX. HIP DEX
requires rather limited computation capabilities from the devices [14]. It uses Elliptic Curve
Cryptography to distribute shared secret between Initiator and Responder, see Fig. 3. In Smart-
M3 context the KP will be initiator of a HIP DEX exchange and SIB will be responder.
Although HIP DEX is designed to work in the restricted environments it still provides
possibility to control performance level by adjusting cryptographic puzzle difficulty.

Since Smart-M3 has modular architecture it may be preferable to add HIP DEX as a new
module into SIB and KP. Instead we propose to embed HIP DEX as a library only in modules
responsible for network interaction. Such approach produces less overhead and allows tight

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 155 ----------------------------------------------------------------------------



Fig. 2. Smart-M3 security architecture

integration of HIP and Smart-M3. Fig. 4 shows Smart-m3 system general architecture and
HIP extension place there.

The HIP exchange also authenticates both devices, providing robust identities for smart ob-
jects. The tight integration of HIP and the SIB access module allows using HIP cryptographic
identities for access control within the Smart-M3 space. In particular, SIB may restrict access
to information that the KPs publish in the shared space.

To prove feasibility of our proposal we have made a prototype implementation. It is based on
low-level ANSI C KP interface provided within SmartSlog SDK [15] and Redland SIB [17].
We use HDX++ library for HIP DEX protocol. We implemented a secure sib-tcp module of
SIB and ansi-c-kpi module for KPI side. Before each join operation HIP DEX is performed and
shared key produced during handshake is used later to secure all transferred data with AES-
CTR encryption. Our experimental evaluation showed that proposed mechanism is feasible
on constrained devices.

B. Access control mechanism
All Smart-M3 platform information is stored in a database (DB) (SQLite, Berkeley DB

[19]), which is a representation of the RDF-graph, because all information is stored in the
triple form. The access control mechanism will provide SS triples as a file system tree structure
by mapping Smart-M3 RDF-graph to the virtual file system.

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 156 ----------------------------------------------------------------------------



Fig. 3. HIP DEX scheme. Only four packets of total size about 530 bytes are used

Fig. 4. Smart-M3 architecture with new HIP functionality

This representation data model will apply the standard file system access control methods
to the Smart-M3 information. For this we assume that the file system operations are analogous
to RDF operations. For example, the ”read” right will be similar to ”extract” (query) operation
in RDF [12]. SS data mapping model to the VFS also allows us to use different methods for
the file system management and control.

Finally, after the full Smart-M3 mapping to the certain file system structure, it will replace
the standard RDF-graph from database to the VFS. Fig. 5 shows the location of the Smart-

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 157 ----------------------------------------------------------------------------



M3 RDF-graph mapping mechanism in Smart-M3 platform architecture. VFS SibFS stores
RDF-graph information in a specific directory structure, where S – RDF-graph subjects
directory/file, P – predicates, O – objects directory/files. Details of the VFS structure described
in [12].

Fig. 5. Smart-M3 RDF-graph mapping overview

Smart-M3 platform is divided into client and server parts. Server module ”redsibd” is
responsible for interacting agents with Smart-M3 RDF-graph, namely, for all DB operations.
Since the VFS assumes the duties of a main Smart-M3 storage, it is necessary, firstly, to
link the virtual file system with Smart-M3 DB. As a result, the VFS will be filled with DB
data; Secondly, develop KP’s authorization function to check access to the Smart-M3 content.
Thirdly, it is necessary to provide additional functionality to work with the VFS, for example,
creating catalog-file chains when client inserting data to the RDF-graph, request selected data
from the file system, extract the file system user rights, logging access history to the FS data
and other functions.

1) Virtual File System interface: VFS is the main component of the access control mech-
anism. A VFS development based on DB consists of the following steps:

1) File System representation scheme creation in the Smart-M3 or separate DB. Create
data structures for inodes, directories, links and other supporting data for storage FS
representation.

2) FS entity creation interface development. Basic operations for FS presentation on the
basis of the Berkeley DB.

3) File system interface definition and implementation, its core operations, which users
can access in the file system.

Smart-M3 RDF-graph mapping model consists of formation and representation of the
overall FS structures in the DB, so that the database is used not only for the representation
file system entities (inodes), but also as an actual file system data.

2) SS subjects authorization function: The main purpose of the Authorization() function is
to check the subjects rights to the file system object where the subject is a Smart-M3 agent
(KP), rights is a subject access rights or rules in the file system and the object is a mapped
DB entity (file or directory).

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 158 ----------------------------------------------------------------------------



redsibd module is responsible for working with a DB and it is logical that the authorization
function will be implemented in this module. This module has access to each KP connected
to the Smart-M3 and all operated SIB data.

As a Smart-M3 user means KP connected to the platform. This is the fair, as well as for
authentication mechanism and access control model. For each connected KP to the platform
allocated a unique number (ID). And also assign access rights or rules to work with the
platfrom regarding VFS. FS has assigned to it users with specific access rights. In fact, FS
users will be the Smart-M3 KP’s, so the access rights of FS users will apply to KP operations.
This mechanism can be simplified by adding access rules (rules groups) to the VFS access
mechanism.

Redsibd module stores all connected KP’s ID in the ssap kp header→kp id structure
field. Structure ssap message header keeps inserted data graph in the inserted graph field
and requested data graph in the query graph. User rights are set and retrieved from the access
control list (ACL) or from the file system inodes.

C. Smart-M3 security improvement solutions
We consider various solutions to improve the security mechanisms of the Smart-M3:

1) Security monitor. Each full security system should have its own security monitor to
control all system security processes. Security monitor performs the basic management
and control functions of the system security mechanisms state. Its main functions are:

• security systems monitoring;
• security attributes installation;
• mechanisms faults notification;
• reliability and fault tolerance;

2) Trust (access) levels. This mechanism is based on assigning to SS agents some kind of
data (permissions, roles), for example, based on HIP certificates that will indicate certain
trust levels for each agent. Certificates may be issued during the client authentication
when connecting to the SS or after changing the security level.

3) Monitoring functions. This is a logging function mechanism built in the Linux FS. To
monitor state of the security mechanisms it is necessary to provide security mechanisms
for logging a history of messages, received by the security monitor or some Linux mon-
itoring daemon (syslogd). Because access control is based on the VFS, that mechanism
may use system functions or special programs for file system monitoring, for example,
stat, fsstat, inotify and other, but different attributes must be saved in a log file.

4) Security levels. System security levels required in the case of a suspicious client activity.
Each security level restrict access to the data. For example, if the SS administrator did
not reveal any suspicious activity – established green or yellow level (checking all data
rights), in case of the suspicious is established strictest level – red, which checks all
SS agents security attributes.

IV. SMART SPACE RDF-MAPPING TO THE VFS

A. Berkeley DB mapping to the VFS
A list of Smart-M3 DB mapping steps to the VFS is presented in the ”Virtual File System

interface” section. Here we will describe it in more details.

1) Each file system object (file or directory) is represented by the inode in a Linux.
inode keeps all the metadata for the management file system objects (including the

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 159 ----------------------------------------------------------------------------



possible operations). To store inode in the database it is necessary to determine them,
for example, using a data structure. All representations, FS nodes will be eventually
stored in the database and used for files, directories or links creation.
VFS mounted only one time with the redsibd launch and each file–catalog chain created
during the KP Insert operation. KP Update operation will search the file and change its
value and so on. Subscription operation will described after realization basic Smart-M3
SIB operations.

2) The database interface is performing several tasks: an execution of a basic database
operations such as open/close database, write data; another major task is the inode
management to represent file system files and directories. The operations of this task
include: inode’s {create, delete, update, free}, inode’s {list, search, definition}, inode
type definition, as well as operations on the inode basis: {read, write, delete, search,
list} files, directories, links and other.
It is worth to note one aspect of saving data in the Smart-M3 DB. At first, all SS
data located in the random access memory and only after a certain amount of data
(approximately about 64 Kbytes), it is written to disk in three hash database. Function
DB→sync() is responsible for this operation. This synchronization is necessary to
increase system performance but permanent synchronization overloads PC resources
and will not be effective.

3) FUSE technology [20] provides an interface to define low-level operations to work
with the file system. The main task in creation your own file system, override these
operations. For example, the file system initialization — open the database, FS cleaning
— closed, reading is performed inode read operation and its data from the database.
VFS entities and their data are represented using two separate databases. File system
implementation based on Berkeley DB can be found in dbfs realization [21].

B. Mapping implementation in the Redland SIB
Authorization function interface is — bool authorization(gchar* kp id, guint32 mode,

gchar* object). It returns a boolean value indicating whether the subject right exist or not.
Depending on this value, further execution of the SIB operation may be changed.

As mentioned earlier, all FS rights are stored in an inodes, also they can be extracted from
the FS POSIX ACL [22]. Thus, it is possible to find agent rights for any file, because inode
stores the user ID. For easy access to each user rights it may be stored in a database or
extracted from inode each time. Details on how to retrieve information from all file system
inodes and use them are described in the logging FS — bbfs [23].

In order for a complete Smart-M3 DB replacement to the mapped file system to occur it
is necessary to rewrite functions responsible for handling Smart-M3 DB operations, such as
rdf retractor (remove), rdf writer (insert), rdf reader (query). When KP inserts data to the
SIB, interface functions that handle a file system database will be called. In that case, will be
called functions for inserting triplets in the common database and creation triple inode in the
metadata database. SS subjects authorization function is called from each of these functions.

RDF-graph mapping mechanism implementation scheme to the Smart-M3 platform redsibd
module is presented at Fig. 6.

The main goal while changing redsibd module operations is to achieve previous function-
ality and stability with the FS.

V. CONCLUSION

The following components are implemented as a basic Smart-M3 security mechanisms:

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 160 ----------------------------------------------------------------------------



Fig. 6. RDF-graph mapping mechanism scheme

1) HIP DEX based authentication:

• HIP DEX based modules for secure network communication (sib-tcp and ckpi);
• HIP DEX cryptography based authentication;
• AES-128-CTR encryption of all communications between KP and SIB.
• proposed mechanism has low hardware demands and is applicable even for con-

strained devices used as KP;

2) Access control mechanism:

• VFS RDF-graph mapping mechanism prototype;
• basic interface for handling VFS permissions;
• KP’s authorization function implemented in the redsibd module;
• started process for reworking Smart-M3 DB operations to VFS.

Future research directions:

• VFS rights rules and their groups mechanism;
• VFS rights management tool;
• security mechanisms testing, performance evaluation.

VI. ACKNOWLEDGEMENT

Authors would like to thank FRUCT Smart Space Working Group (SS WG) for providing
feedback and guidance.

REFERENCES

[1] D. J. Cook, S. K. Das, How smart are our environments? An updated look at the state of the art, Pervasive Mob,
Comput, 2007, 3, 53–73.

[2] J. Suomalainen, P. Hyttinen, Security Solutions for Smart Spaces, In Proceedings of the 11th International Symposium
on Applications and the Internet, Munich, Germany, 18-21 July 2011, IEEE, 2011; pp. 297–302.

[3] Smart-M3 Open Source Project, Web: http://sourceforge.net/projects/smart-m3.
[4] J. Honkola, L. Hannu, R. Brown, and O. Tyrkkö, Smart-M3 information sharing platform, IEEE Symposium on

Computers and Communications (ISCC), pp. 1041–1046, 2010.

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 161 ----------------------------------------------------------------------------



[5] J. F. Gomez-Pimpollo, R. Otaolea, Smart Objects for Intelligent Applications — ADK,
IEEE Symposium on Visual Languages and Human-Centric Computing, 2010, 267–268,
DOI=http://doi.ieeecomputersociety.org/10.1109/VLHCC.2010.52.

[6] J. Suomalainen, P. Hyttinen, P. Tarvainen, Secure information sharing between heterogeneous embedded devices, in
Proceedings of the 4th European Conference on Software Architecture: Doctoral Symposium, Industrial Track and
Workshops (ECSA 10), pp. 205–212, August 2010.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web, Scientific American, vol. 284, pp. 34–43, 2001.
[8] RDF Semantics, Web: http://www.w3.org/TR/rdf-mt/.
[9] Semantic Web Layers, Web: http://en.wikipedia.org/wiki/Semantic Web Stack.

[10] J. Kiljander, F. Morandi, J. P. Soininen, Knowledge Sharing Protocol for Smart Spaces, International Journal of
Advanced Computer Science and Applications, Vol. 3, No. 9, 2012

[11] A. D’Elia, J. Honkola, D. Manzaroli, T. Salmon Cinotti, Access Control at Triple Level: Specification and Enforcement
of a Simple RDF Model to Support Concurrent Applications in Smart Environments, In Proceedings of the 11th
International Conference, NEW2AN 2011, and 4th Conference on Smart Spaces, ruSMART 2011, St. Petersburg,
Russia, 2225 August 2011, Springer: Berlin-Heidelberg, Germany, 2011; pp. 63–74.

[12] K. Yudenok, K. Krinkin, Distributed Service Environment (Smart Spaces) Security Model Development, 12th FRUCT
Conference of Open Innovations Framework Program FRUCT, Oulu, Finland, 5-9 November 2012

[13] A. Gurtov, M. Komu, R. Moskowitz, Host Identity Protocol (HIP): Identifier/locator split for host mobility and
multihoming, Internet Protocol Journal, vol. 12, no. 1, pp. 27–32, Mar. 2009.

[14] R. Moskowitz, HIP Diet EXchange (DEX): draft-moskowitz-hip-rgdex-06, May 2012, work in progress. Expires in
November 2012

[15] P. Nie, J. Vähä-Herttua, T. Aura, A. Gurtov, Performance analysis of HIP diet exchange for WSN security establishment,
In Proceedings of the 7th ACM symposium on QoS and security for wireless and mobile networks, ser. Q2SWinet’11.
New York, NY, SA: ACM, 2011, pp. 51–56. [Online]. Available: http://doi.acm.org/10.1145/2069105.2069114

[16] D. G. Korzun, A. A. Lomov, P. I. Vanag, J. Honkola, S. I. Balandin, Multilingual ontology library generator for
Smart-M3 information sharing platform, International Journal on Advances in Intelligent Systems, vol. 4, no. 3&4, pp.
68–81, 2011

[17] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, T.Salmon Cinotti, RedSib: a Smart-M3 Semantic Information Broker
implementation, 12th FRUCT Conference of Open Innovations Framework Program FRUCT, Oulu, Finland, 5-9
November 2012

[18] HDX++ library, Web: http://sourceforge.net/projects/hdx/.
[19] Berkeley DB, Web: http://en.wikipedia.org/wiki/Berkeley DB.
[20] FUSE documentation, Web: http://www.ibm.com/developerworks/ru/library/l-fuse/, http://fuse.sourceforge.net/.
[21] Berkeley DB4 File System (dbfs), Web: http://git.kernel.org/?p=fs/fuse/dbfs.git.
[22] POSIX ACL, Web: http://users.suse.com/∼agruen/acl/linux-acls/online.
[23] Writing a FUSE File System: a Tutorial (bbfs), Web: http://www.cs.nmsu.edu/∼pfeiffer/fuse-tutorial/.

__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 162 ----------------------------------------------------------------------------


