
Smart-M3 and Geo2Tag Platforms Integration
Agent Uses-Cases

Kirill Yudenok
Saint-Petersburg Electrotechnical University

Saint-Petersburg, Russia
kirill.yudenok@gmail.com

Abstract—Geo-tagging and smart spaces are two
promising directions in modern mobile market. Geo-tagging
allows to markup any kind of data by geographical
coordinates and time. This is the basis for defining
geographical context which can be used in different types of
applications e.g. semantic information search, machine-to-
machine (M2M) interactions. Smart spaces as the basis for
seamless distributed communication field for software
services provides semantic level for data processing. Most
desired feature of coming software is pro-activeness and
context awareness, i.e. services will be able to adapt to the
user's needs and situations and be able to manage decisions
and behaviors on behalf of the user. The paper is about
integration agent (GCSS) architecture and main use-cases.

I. INTRODUCTION
Nowadays we have two most promising software

trends: location based services and pervasive smart
environments (smart spaces). Both of them will be a base
for user- and machine- oriented proactive services. Smart
spaces should provide continuous distributed semantic
data and communication field for software services,
which is being run on personal devices and autonomous
computers and robots. Most desired feature of coming
software is pro-activeness and context awareness, i.e.
services will be able to adapt to the user's needs and
situations and be able to manage decisions and behaviors
on behalf of the user [1]. One of the important part of
context is location based data. This data is being used for
two purposes: for clarifying semantic meaning of queries
(when service retrieves the data from smart environment)
and for limitation of space of search (usually there is no
point to make global search). Geo-coding (or geo-
tagging) is the technique of markup real or virtual object
by adding geographical coordinates and time. If we
consider software, we have only virtual (or digital)
objects like media, events, documents etc. So far, smart
spaces and geo-tagging systems are being developed
mostly separately, there are only few works [2, 3, 4]
where software design of smart spaces and geo-tagging
integration is discussed.

In this paper focuses on the requirements (use-cases)
for Integrated Geo-Coded Smart-Space (GCSS)
middleware and also provides some information about
the definition of the smart system and examples of its
use.

From practical point of view we use Smart-M31 [5]
and Geo2Tag2 [6] platform as most developed open
source middleware for smart spaces and geo-tagging.
Overview of the Smart-M3, Geo2Tag platforms, geo-
coding related works and agent integration platforms
architecture can be found in article [7].

This paper is organized as follows. Section 2
describes integration agent architecture and main
requirements (use cases) of platforms integration agent.

II. GCSS ARCHITECTURE AND USES-CASES
A. GCSS layered architecture

High-level layered design for GCSS is presented on
Fig. 1. Each level of the system is responsible for the
functions and includes its own interface.

Fig. 1. Layered design of GCSS

There are five base components (levels) [8] that
provide basic functioning contour of the system (system
life cycle):

data acquisition level – presented by sensors and
other receiving information interfaces from the
outside world, a person, other systems;

1 Smart-M3 - http://en.wikipedia.org/wiki/Smart-M3
2 Geo2Tag - http://www.geo2tag.org

data pre-processing level – data storage and
transformation of the primary form to a form
suitable for analysis and decision–making;
decision-making level – module responsible for
information processing and making decisions to
achieve the goals of the system, and support
tasks related to self-diagnosis and self-
organization;

command level – responsible for making the
transformation into control signals own
functional components and external systems for
the environmental impact implementation;

action level – implementation of information
and physical control of external systems,
including the task of encoding and transmitting
control signals to run-time systems and control
command execution.

The main object of the platforms integration is the
integration agent or mediator. Its primary task is to
provide interaction between Smart-M3 and Geo2Tag
platforms and the platforms data conversion into one
common format (triplets). Each platform has the
necessary programming interface (API).

High-level layered design and Location based engine
for GCSS discussed in article [7].

B. GCSS main use-cases
The main task of the agent - the Smart-M3 and

Geo2Tag platforms union, it is expanding the space with
new data – geo-data.

The main user interaction with agent is to run it and
specify the connecting settings for the Smart-M3 and
Geo2Tag platforms and also monitoring and control of its
operations. The agent then works independently checking
receipt of new geo-data, producing a conversion in
triplets and publishes them into space.

The main functional use-cases of the integration
agent presented at list below.

List the main functional use-cases of the integration
platforms agent:

smart space Smart-M3 platform management:

leave / join platform operations;
query/insert/delete/update information
platforms operations;
subscribe/unsubscribe platform operations;

Geo2Tag platform management:

connection/disconnection;
obtain platform data;

search and filtration platform data;

geo-tags conversion mechanism to space data
(triples);

algorithms for searching and filtering of space
data, for example, by means of SparQL queries;

ranking mechanism of space data (the algorithm
of selection the latest objects by location,
optional);

The first three use-cases are fulfilled the main
features of an agent to increase the space with new
information, geo-data, that will be used to determine the
location and search for objects in space, of which the first
two are available by Smart-M3 and Geo2Tag platforms.

Let us consider the two main agent use-cases in more
detail - the geo-tag conversion mechanism and algorithms
for searching and filtering of space data and one optional
use-case - ranking mechanism.

III. PLATFORMS INTEGRATION AGENT

Now the integration agent responsible for the
platforms integration and fills the Smart-M3 space with
geo-data by conversion mechanism. Next, the agent will
combine the functionality of both platforms (Smart-M3
and Geo2Tag) and will become a sort of common
platform within the device to control and manage data
between all smart space devices [9].

Agent ontology we may create by using special
Smart-M3 ontology generator – SmartSlog [10, 11].

BuildingCar

Thing

CoordinatesLocation (Tag)

Channel

User

Fig. 2. Overlay ontology used by GCSS

GCSS ontology consists of four classes – User class,
Channels class, the Tag itself and its Coordinates. Class
User is responsible for a user's of the Geo2Tag platform
in space, the tags channel describes a set of tags for a
given criterion, the Tag class describes itself data. It
should be noted that users can subscribe to an unlimited
number of channels, as well as a channel can contain
unlimited number of tags. Class User can directly
communicate with the tag through the property hasA.

Coordinates are allocated in a separate class for more
convenient their representations in an agent ontology.

Each Geo2Tag platform user, if it exists, will be
associated with own user in the Smart-M3 space, if not,
then will be created a new space user, and it will be
automatically attached to the tag location and the
channels to which it subscribes. Location may be
attracted to any space object after adding new propertie
(e.g., Location-ID) in the object class of the space
ontology. Class Tag property Data is mainly used for
searching and filtering space objects, but it can be also
used for its association with the object.

It should be noted that the user location or other space
object (not static) can change location with time and in
order to remain relevant data necessary to provide
handling this situation. Smart-M3 platform provides
publish-subscriptions mechanism by subscribing to
specific triplets, the object will automatically receive new
data after it changing. In our case, these data are the
properties of the Coordinates class.

The agent will use the object model of the ontology
representation, i.e., have clearly documented ontology
classes names and their properties, as well as certain
triplets (subscription). Thus, the space agent ontology
will look like a list of properties that linked by a
predicate. In the first version of the integration agent the
space will be filled only with geo-data, which will be
linked with their space objects (a person, object, etc.). In
the future we plan to expand the space by the addition of
the users and channels tags information.

Some details of the work with the agent ontology will
be considered in the discussion of the tags conversion
mechanism.

Geo2Tag agent

SSAP / XML

Smart
Space

JSON
HTTP Geo2Tag

platform

Geo2Tag
server

S
Q

L

Fig. 3. GCSS architecture

All Geo2Tag platform data are stored in a database on
a dedicated server. Geo2Tag platform allow you to record
and retrieve data using REST-specific queries in JSON
format. There are also a variety number of clients to work
with a Geo2Tag platform, mainly for mobile platforms.

Integration with the Smart-M3 platform will be
implemented through a special mediator (agent). Its main

task is to convert data from one platform format
(Geo2Tag, JSON) to another format (Smart-M3, XML).
As mentioned above, the Geo2Tag platform transmits
data in JSON format, this is a text format, but in a more
readable form for humans.

The agent consists of three main components:

Geo2Tag service handler;
Geotags – Triples conversion handler;
Smart-M3 handler.

Geo2Tag service handler is responsible for obtaining
geo-data, it connects to the server database and requests
data using a special class LoadTagsQuery.

Geotags – Triples conversion handler is required to
bring data to a convenient form for the triplets creation.
Since the data are returned in JSON format, they need to
be parsed and pulling the necessary data, namely, time,
location and description of the geo-tag by saving them for
later processing.

At the last stage is a connection to the space, then
creates triplets according to the ontology which then
placed to the Smart-M3 space. What the triplets are
created and their number are discussed in "Geo-tags
conversion mechanism".

After the smart system platform development within
the device, each of its mechanism (algorithm) will be
subject to thorough analysis by the following criteria:
universality, performance, resources, the ability to
integrate into embedded devices, memory size, the
amount of transmitted traffic, response speed.

The main evaluation criteria's of the Smart System
platform will serve – its performance, the ability to
integrate into embedded devices, the amount of
transmitted traffic and response speed. The analysis
should show how the platform behaves in the real
conditions and only then take steps to improve its
operability.

IV. GCSS USE-CASES

A. Geo-tags conversation mechanism
The conversion mechanism of the LBS Geo2Tag

platform data to the Smart-M3 platform data is a main
problem for the expansion of the space data.

All Geo2Tag platform geo-data stored in a special
database for their retrieval is responsible class
LoadTagsQuery, which with the help of the request
DataChannels getData() retrieves all tags data that are
stored on the server.

According to the extracted tag structure of the
Geo2Tag platform - time, altitude, latitude, longitude,

label, data, user_id, url, channel_id, we can form next
triples:

< User, hasA, Location-ID >
< Location, hasID, ID >
< Location, hasTime, Time >
< Location, hasData, Data >
< Location, hasLatitude, Latitude >
< Location, hasLongitude, Longitude >
< Location, hasAltitude, Altitude >

For a triple creation a Smart-M3 platform interface
provides a base class - Triple to form a triplet <subject,
predicate, object> type. Each triplet component is a class
TripleElement, where the object has two types - URL and
Literal. All extracted tags are stored in a list of triplets in
the Smart-M3 platform database.

The geo-tags conversion mechanism to the space
triplets consists of the following steps:

1) Connect to the Geo2Tag platform by using a
Login() query;

2) Point service (database) by setDB() query,
where data will be obtained;

3) Sampling nearest tags with a LoadTags() query
or Filter(), that queering tags inside the defined
geometry figure;

4) Obtaining the necessary tags parameters from
received data (JSON format);

5) Formation of the initial triplets for space objects
representation by class Triple(S, P, O). A triplet
for linking space object with its location, a
triplet for location time, coordinates (Latitude,
Longitude, Altitude) and data. In general, six
triples describe space object location, which
presented earlier.

6) Connection and insertion triplets to the space
with the help of Smart-M3 API (join() and
insert() methods).

After the execution of the algorithm, the space will be
filled with latest’s tags from the Geo2Tag server
database.

Another task is to assign geo-data to space entities
(people, things, objects, etc.). For the binding position in
the space (coordinates), the tag has a parameter data,
which describing the location (city, street), thus adding to
the ontology person (device, object) an additional
property - location and associating it with the triplet
property data, an entity gets a new property - a position
in space and time. During the formation of the tag triplet,
to the data property is recorded the location-based
information. Thus we have the opportunity to make
queries by the "location" property and find out where is

the person, object, device at this time. The agent
ontology will be presented in the object-oriented model,
where all objects and properties of the ontology are
presented in the software objects form (structures, data).
The correct connection with any ontology will allow
obtaining information about the location of all objects in
space and time.

It is worth mentioning that the performance
optimization was carried out when developing the
Geo2Tag platform, where it was found that the
bottleneck of the platform is the interaction with the
database (WriteTag() and LoadTag() operations) [12] and
requires further optimization.

B. Space data filtration mechanism
The filtering mechanism of space data required to

obtain relevant information at the moment of the system
work, thereby filtering objects by location, we will have a
list of the most relevant data to this time. Consider a
filtering data mechanism based on their metadata
obtained by SparQL3 queries [13].

Each ontology object has a set of metadata, for
example, Id, Description, Type, Time, Position, Status
(e.g. Offline, Online, Connecting). Object metadata used
in the filtering process to retrieve only those objects that
satisfy the consumer (client) requirements.

The filtering process may be performed in accordance
with certain requirements which may be associated with
the following factors:

the scope of object use, that is, for what purpose
can be used this object;

various QoS parameters, such as response time,
execution time, availability, security, reputation,
cost and others;

geographic location of the object.

The space object filtering process is carried out by
integrating one or more constraints in a SPARQL query.
A constraint, expressed by the keyword FILTER, is a
restriction on solutions over the whole group of graph
patterns in which the filter appears. SPARQL FILTERs
can set up restrictions by implementing arithmetic
expressions (i.e. =, !=, >, <, <=, >=, etc).

The examples in Table 1 clarify the use of SPARQL
FILTER in the objects filtering process.

TABLE I. SPARQL FILTRATION QUERIES EXAMPLES FOR SPACE
OBJECTS

Condition SparQL query

3 SPARQL 1.1 Query Language –
http://www.w3.org/TR/sparql11-query

Filtering
space objects
by time and

position

SELECT ?human ?time ?position
WHERE {

?human belongsTo ?object .
?human time ?time .
?human position ?position .
FILTER regex (?time = “18.00”)
FILTER regex (?position, “Spb”)

}
ORDER BY ?human

Filtering only
"online" space

objects

SELECT ?human ?position ?status
WHERE {

?human belongsTo ?object .
?human position ?position .
?human status ?status .
FILTER regex (?position, “FRUCT 14”)
FILTER regex (?status, “Online”)

}
ORDER BY ?human

In the first example, the filter in SparQL query used to
retrieve all objects where object property human-time has
a time value of "18.00" and human-position property is a
text value «Saint-Petersburg». This query displays all
objects which are in the «Saint-Petersburg» at "18.00"
hour’s local time. The second example displays only
online objects at «FRUCT14» conference.

As a filtration mechanism can also be used Rt++-tree
algorithm based on search tree R-tree, discussed in [14].

C. Space data ranking mechanism
As an extension of the platform integration agent

functionality, it would be nice to have a ranking the
filtered queries mechanism which are displayed only the
relevant data that satisfies the user requirements. For
example, issuing a list of space users, which had been at
a specified location within a certain period of time. The
main ranking criterion for this systems type is the most
relevant data of the space object location at a given time.

Location ranking shall produce a ranked list of space
objects that are compatible to the user requirements or
system queries. Several research works have addressed
ranking mechanism in various fields [13], [15]. However,
the issue of location ranking, where the term “Location”
matches space objects, devices, equipments, etc., is
poorly discussed. Indeed, ranking decisions is based on
two key elements, the QoS/performance parameters and
the nature of the location needed by the user-task [13].

Location metadata are stored in the integration agent
ontology and systematically updated using location-based
LBS Geo2Tag platform. For instance, if the location is of
type space real objects, i.e. Device or Equipment, these
metadata could be the spatial characteristics of the object
location, e.g. time, coordinates and description. Thus,
once the ranking metadata item is specified, an algorithm
should be defined and used to rank and allocate the
available objects locations.

The main factors that determine this ranking of space
objects location are Object Location and Availability
[15]:

Current Location: Ranking mechanism
matching objects profile to find the subset of
objects which have recently been at a target
location.
Availability: Ranking mechanism prioritizes
candidate answerers in such a way so as to
optimize the possibility that the necessary object
will be found. This task involves factors such as
prioritizing objects which are the most likely
currently online; who located or have located in
the same area of the asked query; etc.

Ranking mechanism is built based on the space data
filtering mechanism, i.e. for output timely data, by
comparing the objects location, uses filtered space data
and a ranking parameter or location rating which may be
provided by smart space users.

V. CONCLUSION

This article is a speech about architecture and main
use cases of an agent integration platform: The geo-data
conversion mechanism to the space data, a space data
filtering mechanism based on its context using SparQL
queries and ranking mechanism.

The results of the project:

integration platforms agent prototype;
geo-tags conversion mechanism;
filtering mechanism based on the Geo2Tag
platform.

The next step in the development of smart systems
device platform is the complete platform components
integration, common protocols and interfaces for
communicating between all devices.

There are still open questions for future development:
overall system performance, effective objects monitoring,
integration with media objects.

ACKNOWLEDGMENT

The authors would like to thank Finnish Russian
University Cooperation in Telecommunication Program
for provided feedback and guaranties.

REFERENCES
[1] C. Perera, A. Zaslavsky, P. Christen, D.

Georgakopoulos, “Context Aware Computing for The Internet of
Things: A Survey”, Communications Surveys Tutorials, IEEE, 1–
44, 2013.

[2] N. Nabian, C. Ratti, A. Biderman, G. Grise, “MIT GEOblog: A
platform for digital annotation of space for collective community
based digital story telling”, 3rd IEEE International Conference on

Digital Ecosystems and Technologies, Piscataway, N.J.: IEEE:
353-358 (2009)

[3] J. Rishede, T. Man, L. Yiu, “Effective Caching of Shortest Paths
for Location-Based Services”, SIGMOD ’12, Scottsdale, Arizona,
USA (2012)

[4] K. Kolomvatsos, V. Papataxiarhis, V. Tsetsos, “Semantic
Location Based Services for Smart Spaces", 2nd International
Conference on Metadata and Semantics Research (MTSR), Corfu,
Greece (2007)

[5] J. Honkola, H. Laine, R. Brown, I. Oliver, “Cross-Domain
Interoperability: a Case Study”, Nokia Research Center, Helsinki,
Finland (2009)

[6] I. Bezyazychnyy, K. Krinkin, M. Zaslavskiy, S. Balandin, Y.
Koucheravy, “Geo2Tag Implementation for MAEMO”, 7th
Conference of Open Innovations Framework Program FRUCT,
Saint-Petersburg, Russia (2010)

[7] K. Krinkin, K. Yudenok, “Geo-coding in Smart Environments:
Integration Principles of Smart-M3 and Geo2Tag”, In
Proceedings of the 13th International Conference, NEW2AN 2013
and 6th Conference, ruSMART 2013, St. Petersburg, Russia,
August 28-30, 2013. Proceedings. Springer 2013 Lecture Notes in
Computer Science, p. 107-116. ISBN 978-3-642-40315-6

[8] G. Akhras, “Smart Materials and Smart Systems for the future”,
Canadian Military. Journal 2000. pp. 25-31, 2000.

[9] D. Korzun, I. Galov, A. Kashevnik, N. Shilov, K. Krinkin, Y.
Korolev, “Integration of Smart-M3 Applications: Blogging in
Smart Conference”, Proc. 4th Conf. Smart Spaces (ruSMART
2011), Saint-Petersburg, Russia, 22-23 August 2011, pp. 51-62.

[10] D. Korzun, A. Lomov, P. Vanag, J. Honkola, S. Balandin,
“Generating Modest High-Level Ontology Libraries for Smart-
M3”, Proc. 4th Int’l Conf. Mobile Ubiquitous Computing,

Systems, Services and Technologies (UBICOMM 2010). N. 103–
109.

[11] D. Korzun, A. Lomov, P. Vanag, S. Balandin, J. Honkola,
“Multilingual ontology library generator for Smart-M3
information sharing platform”, International journal on Advances
of Intelegent System 4 (3&4), 68-81.

[12] M. Zaslavsky, K. Krinkin, “Geo2tag Performance Evaluation”,
Proceedings of the 12th Conference of Open Innovations
Association FRUCT and Seminar on e-Travel, Oulu, Finland
(2012)

[13] E. Nageba, P. Rubel, J. Fayn, “Semantic agent system for
automatic mobilization of distributed and heterogeneous
resources, In Proceedings of the 3rd International Conference on
Web Intelligence, Mining and Semantics (WIMS '13). ACM, New
York, NY, USA, , Article 28 , 9 pages.

[14] P. Th. Eugster, B. Garbinato, A. Holzer, “Location-based
Publish/Subscribe”, In Proceedings of the Fourth IEEE
International Symposium on Network Computing and
Applications (NCA '05). IEEE Computer Society, Washington,
DC, USA, 279-282. DOI=10.1109/NCA.2005.29
http://dx.doi.org/10.1109/NCA.2

[15] Y. Liu, T. Alexandrova, T. Nakajima, “Using stranger as
sensors: temporal and geo-sensitive question answering
via social media”, In Proceedings of the 22nd
international conference on World Wide Web (WWW '13).
International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland,
803-814.

