
Storage Efficient Backup of Virtual Machine Images

Artur Huletski
St. Petersburg Academic University

St. Petersburg, Russia

hatless.fox@gmail.com

Abstract—In spite of constant decrease of storage price per
megabyte, growth of various services that provide virtual servers
and administrate them makes problem of efficient storage usage
still actual. Moreover such services have to backup content
of virtual servers to be fault tolerant. This paper describes
an implementation of block-based backup approach that uses
analysis of internal file system structures to minimize required
storage. The approach is based on saving only blocks with data
that is actually used by a file system. The main purpose of the
paper is to provide a description of how this can be done for
Ext3, Ext4 and NTFS file systems and list features that should
be taken into account. Proof of concept library that doesn’t
depend on virtual machine vendor has been developed to evaluate
described approaches. Besides this a sketch of incremental backup
algorithm that uses information about used file system blocks to
minimize IO operations and time of restore phase is presented.

I. INTRODUCTION

A service that holds customer data have to do some actions
to prevent data loss. Data backups can help with it by storing
copy of data in a safe place but they must be done as frequently
as possible to be effective. Unfortunately backups are not
storage-free, so the service have to sacrifice reliability and
perform backups not frequently enough. Services that provide
virtual workstations (cloud services) are among them so the
problem with entire virtual machine (VM) image backup have
arisen.

There are various proprietary systems that allow image
backup and deduplication, but closed sources and the lack of
white papers that describe their internal implementation make
us guess about how actually such software works. Examples
of such systems are: Veeam Backup & Replication, Acronis
Backup & Recovery, EMC Avamar, Symantec NetBackup,
Thinware vBackup. These systems provide full-fledged enter-
prise solutions to protect data from being lost and proprietary
details of implementation allows them to compete with each
other. There are two high-level approaches for backups, based
on choice of backup unit:

• File-based backup: Such approach analyzes which
files/directories require backup and saves them. This
is similar to what any version control system does, so
customer usually can access backed up files without
full disk restoring. To determine files that should be
backed up software can either add agents to guest op-
eration system (one of EMC Avamar mode according
to [1]) to track changes or analyze entire file system on
every backup which is less inefficient but non-invasive
approach.

• Block-based backup: The “atom” of backup is a binary
chunk (block). Every chunk is compared with its

previous version and stored if some changes have been
made. Implementation of this approach is much sim-
pler than the previous one since no file system topol-
ogy analysis is required. Acronis Backup & Recovery
uses this approach to provide efficient deduplication
as mentioned in [2].

This paper is focused on block-based backup since it
preserves underlaying file system layout and much simpler
to implement. Systems listed above are complex software
products, so it’s reasonable to choose some subsystem and
analyze how it can be implemented. This paper addresses the
part that determines and retrieves data that should be backed
up.

One of the approach is implemented by virtualization
software vendor VMware. VMware provides a feature called
Changed Block Tracking (CBT) that allows to obtain a stream
of changed blocks as described in [3]. This frees engineers
from manual reading entire disk (that may cause live system
freeze) and from determination of changed blocks. Developers
can focus only on backup process itself and on safe backups
storing. Another advantage of this technology is tiny backup
window size, since block is pushed to “changed block stream”
as soon as possible. So load on backup hardware can be dis-
tributed more uniformly. CBT feature is not free (costs minor
CPU resources for bookkeeping) so it is disabled by default.
Besides several usage limitations of the feature described in
[3], the main disadvantage is vendor lock. Customer must use
VMware virtualization solution to be able to take advantage of
CBT. This feature is used (at least can be used as an option)
by all enterprise backup systems listed above.

The second approach is unused block compression (UBC).
This approach doesn’t depend on vendor and uses parsing of
file system structures to determine which blocks are actually
used and handle only them. Figuratively speaking, virtual disk
can be imagined as accordion, unused blocks – as air inside
it and the goal is to squeeze the accordion to pack it in the
smallest possible box till next music class. This reduces size
of virtual disk snapshot to size of used disk space. Sections
below describe how this can be done for Ext file system family
and NTFS.

UBC approach is quite common and often used in software
that deals with backups. For example, RMAN from Oracle uses
this approach to minimize size of database files as described
in [4]. Another example is partimage. This open source soft-
ware performs backup for given physical disk using blocks
compression if possible according to [5]. Unfortunately, this
tool doesn’t support Ext4 and has only experimental support
for NTFS.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 177 --

The main disadvantage of UBC is zeroing out unused
blocks. If guest OS is compromised, malware and rootkit data
can be hidden in unused parts of file system, for example, in
blocks reserved for file system structures. Since every unused
block is wiped out, intrusion investigation can be limited. But
from the other side malware data is also deleted.

I haven’t found explicit evidence of UBC usage by en-
terprise backup systems listed earlier. Probably this is related
to zeroing out unused data, since this limits bare metal sys-
tem restoring. The following conservative heuristics are used
instead:

• Zero blocks elimination. This approach allows to ig-
nore empty blocks during backup. If content of disk
has been wiped during file system creation this given
the same storage saving as UBC until some data is
deleted. By default deletion doesn’t imply wiping, so
a block becomes unused but has non-zero content.
The more such blocks FS has the less efficient this
approach becomes.

• Archiving. Such utils as gzip or 7zip are used to elim-
inate duplicated content by archiving entire image.
UBC is orthogonal to this operation and can be used
before it to minimize amount of data that should be
archiving.

It’s also worth to mention that VirtualBox managers pro-
vides ability to make snapshots. As option it provides an ability
to compress virtual disk, but according to [6] the approach it
uses is similar to zero blocks elimination.

II. SNAPSHOT CREATION VIA ANALYSIS OF UNUSED FILE

SYSTEM BLOCKS

Raw content of used blocks is not enough for disk image
restoring, so the following meta data should also be saved:
size of block and layout of used blocks. File systems often use
bitmap for the last, the same approach can be used for backups.
Storing full content of used blocks may be space inefficient
if data is not changed frequently. Incremental backup can be
stored instead of the snapshot one to deal with it. Such backup
is described in the section below.

Since UBC can be used for both physical and virtual disks,
it was decided to move implementation to a separate library
that determines storage areas that are actually used. The library
focuses only on file system parsing and doesn’t know about
disk image internals (e.g. access to it). This approach is shown
in Fig. 1.

An adaptor provides access to storage medium and gets
information about used file system blocks that can be translated
to used storage areas for further processing. Next version
of library is going to handle disk partitioning (master boot
record and GUID partition table schemas) to minimize adaptor
development efforts. After information about used block is
retrieved other subsystems of backup system is supposed to
read content from used areas and create backup file with
content described above.

Before particular file system description it worth to mention
general analysis strategy and assumptions:

�������

�	
����

�������

�	
����

���
��
��
��
 ��
�
��
������

�������
����
���
��

��
�
��
��
��
����

Fig. 1. Library usage scheme

• sectors that particular file system occupy on virtual
disk are already known, this can be done with prelim-
inary partition table parsing;

• file system is in consistent state, i.e. necessary state
restoring has been done before analyzing;

• unsupported file system option/feature detection is
logged (for further investigation and fix) and all blocks
are assumed to be used, since correctness of backup is
more valuable than space efficiency. This also relevant
for errors of any kind (e.g. IO errors) and assertion
violations (e.g. unexpected content of internal data
structures’ fields).

It worth to note that terms “block” and “cluster” are used
for description consecutive sectors as synonyms.

A. Ext file system family

1) Common description: Ext file system has the following
features that simplify UBC implementation: open sources and
simple layout. The Ext file systems split all available space on
block groups of equal size. This fact allows to minimize file
fragmentation by allocation extra blocks for file content from
the same group if its possible. Block usage is tracked by each
group separately by treating one dedicated block inside group
as a bitmap. Because of this, number blocks per block group
is determined by file system block size and can be computed
by multiplying block size by 8).

Block size can be retrieved from file system superblock that
holds common information related to file system and is located
in the begin of partition. Block group’s metadata is stored in
special file system structure called group descriptor. Number
of block with block usage bitmap is stored in respective group
descriptor. Every group contains copy of superblock in the first
block by default as well as copies of descriptors for all groups.
Fig. 2 represents common block group layout. More explicit
description can be found in [7].

The main task for Ext parsing is to read all group descrip-
tors correctly and then locate bitmap for each group. Then
used blocks can be marked based on bitmap information. The

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 178 --

�����
��	
������

����

�����
�������

�����
�
��	
������

�����
�
��	
������

�����
�
��	
������
��	�����
���
�����	���

��������
�

Fig. 2. Layout of Ext block group

correspondence between bits in bitmap and file system blocks
is shown in Fig. 3.

Entire group descriptor table (GDT) is stored in every block
group by default, right after superblock copy. So reading and
parsing Ext file system is trivial by default. But there are
some options/features that make life harder and require special
treatment.

2) Meta group block feature: Storing entire GDT in each
group is not space efficient and limits file system size. To
address this issue meta block feature has been introduced.

If file system has been created with this feature enabled,
extra level of data grouping called meta groups is introduced as
described in [8]. As its name stands, a meta group consists of
plain block groups. Descriptors of all groups in a meta group
are stored in dedicated file system block. In other words GDT
is split into chunks that are stored over meta groups. If no
other options enabled, GDT chunk is stored after reserve copy
of superblock, in the first group in meta group. So GDT is no
more consecutive if the feature is enabled. High-level layout
is shown in Fig. 4. Size of meta group can be determined
by division file system block size on size of group descriptor.
Group descriptor size can be retrieved from the superblock.
Backup copies of GDT chunk is stored in the second and the
last groups of a meta group.

�������	
��
������������������ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

���
����

��	�
��
����

��������	�
�
�
��
����

������

Fig. 3. Mapping between bitmap bits and blocks

�������	
��

�
��

��
������

�������	
��

�
��

��
�������

��	�

��

�
�

��	�

��

�
�

��

�
�

��

�
�

�
�����
��

�
�	��	

�
��

�
�

�
�	��	

�
��

�
���

�
�����
��

�
�	��	

�
��

�
�

Fig. 4. Layout of Ext with meta block group feature enabled

3) 64-bit feature: The feature enables absolute block ad-
dressing using 64-bit integers instead of 32-bit ones. Unimple-
mented in current version of library.

4) Sparse super feature: By default every block group
contains a copy of superblock in the first block. This seems a
bit redundant, so sparse super feature deals with it.

The feature forces superblock copy to be stored only in
groups whose index is 0 or power of 3, 5 or 7. If the feature is
enabled, it affects on mapping between block number relative
to group and block number relative to entire file system. For
example, meta group GDT chunk is stored after reserve copy
of superblock. If sparse super feature is enabled it may be
stored either in the first or the second block depending on
group number.

During development I found useful to define a function that
translates local block number in group (local number assumes
that no reserve superblock copy is stored) to absolute block
number, taking into account sparse super feature by returning
number of blocks occupied by superblock backup.

5) Uninit block group feature of Ext4: This feature allows
to mark some block groups as uninitialized. This allows to
speedup disk formatting and further consistency checks.

At first glance, looks like uninitialized groups can be safely
skipped. But backup-restore tests have revealed the following:
even if block group is uninitialized, it turns out that superblock
reserve copy is stored in it anyway, as well as backups of meta
group GDT chunks (in the second and the last groups of meta
block group). So we should mark these blocks as used instead
of skipping uninitialized block group.

6) Flex block group feature of Ext4: If this feature is
enabled, various meta data (e.g. block group bitmap) of several
consecutive groups is stored successively to speed up access
to it (by better spatial locality). This feature doesn’t require
extra handling, since block group descriptor contains absolute

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 179 --

reference (block number) to a bitmap block related to particular
group.

7) Summary: To retrieve used blocks from Ext to following
steps should be done:

1) Read and parse superblock. This gives file system
block size, size of block group, size of file system
and list of enabled features.

2) Read GDT. As it was described, GDT may not be
stored consecutively (meta group option enabled) on
disk. In this case, GDT should be assembled manu-
ally. To minimize memory footprint and abstraction
from the layout of GDT, iterator pattern can be
applied. Otherwise, entire GDT can be read from the
first block group.

3) For each GDT entry (descriptor) perform check
whether the group has been initialized. If it wasn’t
mark blocks with file system related backups (super
and meta group blocks) as used and process next
entry. Otherwise, read address of block that contains
group bitmap from descriptor and add it to used
blocks information.

B. NTFS

1) Common description: The main problem of NTFS
parser development I’ve faced is absence of source code and
open specification. Some sort of official description can be
found in [9]. Carrier [7] provides detailed description of NTFS
internal structures and high-level algorithm for their analysis.
Concise information with several good examples made by
Russon and Fledel [10] (part of Linux-NTFS Project). NTFS
has been designed to be robust and flexible but sometimes such
design leads to circularities in file system read logic that are
discussed below. Unfortunately listed sources don’t help much
to solve them.

Every kind of data is stored in files by design. Every file has
a descriptor that is stored in special Master File Table (MFT).
Needless to say that MFT content itself stored in a special file
called $MFT. Even superblock is stored in file ($Boot). This
is the only file that stores its content by fixed offset (content
is stored in the begin of partition). To determine blocks that
store content of other files, appropriate entries of MFT should
be parsed.

Core system NTFS files have “well-known” indexes in
MFT table. For example, $MTF file that stores MFT content
occupies an entry with zero index (the first entry in MFT).
Global number of the first $MTF block is stored in file system
superblock. Superblock is stored in the first partition block (file
$Boot).

Fortunately, NTFS uses special file to track block usage.
This file is called $Bitmap and described by the 6th MFT entry.
Each bit of its content corresponds to some file system block
and is set to one is block is used. Mapping between bits and
blocks matches the scheme used by Ext file system (Fig. 3).

2) File content extraction: MTF entry has quite simple
format: it has entry header (describes common information,
such as signature, used status, etc.) and an array of attributes
that describe various data related to file. Examples of such
attributes and entry header format is described in [7].

Every attribute has header that contains an attribute type
(defines what information is stored) and a flag that indicates
how information is stored.

There are two approaches to store attribute data:

• resident - stores data inside of MFT entry in attribute
body. Offset and size are defined in header;

• non-resident - stores data somewhere in partition.
Attribute body holds meta data called dataruns that
describes actual location. Used since MFT entry has
fixed size.

Attributes that contain data which size is close or more that
MTT entry size are typically non-resident. Information about
such external (with respect to MFT entry) storage is defined
in dataruns. Datarun array defines mapping between Virtual
Cluster Number (cluster offset in specific file) to Logical
Cluster Number (cluster cluster offset in entire file system).
Each datarun entry defines chunk of consequent clusters by
storing start LCN and chunk’s length, Fig. 5 shows datarun
layout. Since chunks should appear to be sequential in file,
VCN numbering is implicitly defined. Start and end VCN are
defined in attribute header. Examples of datarun usage can be
found in [10].

File content is stored in $Data attribute that has 0x80 type
by default. NTFS has alternate data streams feature that allows
to define several (named) file contents for a single file. The
“main” data stream has $Data attribute with empty name, so
additional check of name length is required.

I found useful to implement access to NTFS file content
in a way similar to standard C library instead of direct
dataruns manipulation. This separates parser logic and internal
organization of NTFS file content.

3) Sparse and compressed files: NTFS uses two common
approaches to save storage space: sparse and compressed files.

Sparse files allow to store files with empty blocks without
actual cluster allocation until it is necessary. This is achieved
by setting LCN field size to zero in data run. Such sparse
content should be treated as zeros.

Compressed files are described in [7] and [10]. They are
not supported by library for now since I’m not sure whether
compression is used for $MFT and $Backup system files. Since
both this files are read very often, making them compressed
would likely cause performance degradation of read/write
operations.

�������
�	�

� �

�
�	�

�
�	�

Fig. 5. Layout of NTFS datarun

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 180 --

4) Fixup values: NTFS slightly modifies sectors that hold
MTF entry to add additional level of sector failure detection.
The last two bytes of every such sector are replaced with
update sequence number (USN). USN is an index of last
entry in NTFS change journal related to file described by
entry. This should be taken into account during MFT entry
reading, original content of sectors is stored in MFT entry
header according to [10].

5) Bad clusters: Information about bad clusters detected
by file system is stored in special file called $BadClus (the
8th MFT entry). Filtering bad clusters from used ones can be
done as additional optimization. This is not implemented in
the library.

6) Attributes types definition: NTFS provides ability to
define custom attributes and to change types of existent ones.
Description of attributes is stored in $AttrDef file (the 4th
entry). So type of $Data attribute in theory may differ from
default one. Look like this is not relevant to $Data attribute of
$MFT file since to know data type of $Data attribute we have
to read $MFT content first. Handling of changed $Data type
hasn’t been added to library by now but its implementation is
straightforward and is going to be added in future.

7) Multientry records: Since there is no limit to number of
attributes for each file, situation when there is no enough space
in MTF entry for all attribute headers is possible. Additional
MFT entries are allocated to store attributes to handle this.
Such entries and attributes they stored are described with
attribute of type $ATTRIBUTE LIST. This attribute is stored
in base MFT entry and contains a list of all attributes with
index of MTF entry where they are stored.

So, in theory $MTF file may occupy several MFT entries
and file system usage pattern that makes $MFT extremely
fragmented can be created in theory by storing huge file, than
small file to fill up the disk (small file will be stored in MFT
zone), than remove the huge file and repeat process.

Since dataruns can be located in several $Data attributes,
there can be either too many $Data attributes to store in a single
MFT entry. So $ATTRIBUTE LIST should be used to add
extra MFT entry. But this leads us to loop in reading logic: to
read $MFT content we have to read some MFT entries stored
in $MFT content.

For our task this may not be relevant, since $Bitmap is
likely stored near the base MTF entry and can be found by
analyzing near blocks. But $Bitmap itself can be possibly
fragmented (in theory) by continuous file system partition
increasing and filling it up.

Source code of Ntfs.sys would probably demystify this
assumptions and looks like disassembling is ultima ratio. Since
described cases are quite unusual, theoretical and probably can
be “fixed” with defragmentation, multientry file records are not
handled by the library.

8) Summary: High-level strategy for used blocks extraction
is described in Algorithm 1.

Variables have the following meaning:

• super data – super block structure;

Algorithm 1 NTFS used blocks retrieval

super data = read and parse superblock();
mft entry = get base mft entry(super data);
mft content = get file content(mft entry);
bitmap entry = get mft entry(mft content, BITMAP IND);
block usage data = get file content(bitmap entry);

• mft entry, bitmap entry – entries from MFT that cor-
responds to $MFT and $BITMAP files respectively;

• mft content – content of $MFT file (MFT table);

• block usage data – bitmap of used blocks of entire
filesystem;

• get base mft entry, get mft entry – both functions
return required MFT entry. The first one returns entry
with zero index ($MFT file) using information from
file system super block, the second one returns entry
with requirud index. Note, that fix-up values must be
replaced with original content of MFT entry as it have
been described;

• constant BITMAP IND – index of $BITAMP file in
MFT, has value 6;

• get file content – returns entire file content. To reduce
memory footprint, abstraction that allows to read the
content can be returned. Content reading requires
searching for $DATA attribute and proper data runs
handling which was described above;

III. IMPLEMENTATION OF INCREMENTAL BACKUPS BASED

ON USED BLOCKS INFORMATION

Snapshot backup is a backup that contains enough informa-
tion to restore disk content from scratch. Incremental backups
contain only data that has been changed during time passed
from previous backup. Such backups are used to save storage
space in cost of restore time. Strategy that mimics approach
used by version control systems (VCS) (e.g. Mercurial as
described in [11]) can be used to choose type of backup
that should be made. Backups are stored as incremental while
storage cost of all incremental backups made before a snapshot
backup is less than new snapshot backup. The file system is
isomorphic to plain text file in terms of backup by mapping
blocks to file lines.

Given approach assumes that file system has constant size
which is the most common case. This allows to stop restore
process as soon as possible. The algorithm can be modified
with tracking auxiliary info about previous file system sizes to
support partition changes.

A. Formats of snapshot and incremental backups

To represent a snapshot we need to store the following:

• Common file system data such as block size and total
number of blocks.

• Bitmap of used blocks to save file system layout.

• Content of used blocks.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 181 --

To represent incremental backups we will use the following
data:

• Common file system data like in snapshot backup.

• Bitmap for blocks that have changed their content or
become unused.

• Bitmap of blocks that have become unused. Can be
represented via array if this is more space efficient.

• Content of changed blocks.

Snapshot backup consists of file system info, bitmap of
used blocks and content of used blocks. When backup should
be made snapshot backup is created first. If its reasonable to
convert it to incremental one, the conversion is performed.
Backup software can store last taken snapshot backup to
perform such conversion.

An incremental backup can be created using Algorithm
2, assuming common bitwise operations are implemented for
bitmaps.

Algorithm 2 Incremental backup creation

changed blocks bm = diff blocks(base, new, new.bm);
inc.unused = base.bm and (not new.bm);
inc.ch bm = changed blocks bm or inc.unused;
inc.data = extract blocks(new, changed blocks bm);
base = new

Operations and variables description:

• changed blocks bm – bitmap with marked changed
blocks;

• diff blocks – goes through bitmap given in 3rd param,
and compares blocks from base snapshot and new
snapshot. Returns bitmap where different blocks are
marked with ones;

• extract blocks – returns blocks that are marked with
given bitmap;

• base – last created snapshot backup;

• new – recently created snapshot backup;

• new.bm – bitmap of recently created snapshot backup;

• inc – created incremental backup;

• inc.unused – bitmap with unused blocks of created
incremental backup;

• inc.ch bm – bitmap of changed and used blocks of
incremental backup;

• inc.data – content of changed blocks of incremental
backup;

B. Restore snapshot by incremental updates

The naive approach is to apply incremental updates one by
one to latest snapshot in order of creation. But more efficient
strategy can be developed based on fixed file system size
knowledge. Instead of going through all states that file system
had in past, lets try to assemble the state we want to restore by

going through incremental backups in opposite direction. Note
that entire file system partition is assembled, not a snapshot.

Lets start from assumption that all blocks were changed and
create a bitmap filled with ones. It defines blocks we want to
restore. Then go through backups as if they have been put in
a stack during creation. There are to possible cases:

• Incremental backup.
First, perform bitwise and for bitmap with blocks we
want to restore and inverted bitmap of changed blocks
from current incremental backup. This gives us bitmap
with blocks that are uninitialized after current backup
handling. All changed blocks (except unused ones)
from current backup should be written to result image.
The last operation can be performed by other thread.
Since content of determined changed block is the most
actual, any previous changes in a block can be safely
ignored. If bitmap of blocks that should be restored is
empty – backup can be treated as completed.
This is correct since no more blocks that require
update and no extra blocks can appear from previous
changes.

• Snapshot backup. In this case both bitmaps are
scanned simultaneously and all blocks that require to
be set are copied to result file system image.

This approach is described by Algorithm 3 in more formal
way.

Algorithm 3 Disk image restore

uninit bm = init bm(fs size, 1);
disk image = init disk image(raw size);
backup = get last backup();
while !bm is empty(uninit bm) do
if is incremental(backup) then

uninit bm = uninit bm and (not backup.ch bm);
update blocks(disk image, backup);

end if
if is snapshot(backup) then

snapshot update(disk image, uninit bm, backup);
clear bm(uninit bm);

end if
backup = get next backup(backup);
end while

Variables and functions description:

• uninit bm – bitmap with uninitialized blocks marked;

• fs size – size of restored file system in blocks;

• init bm – creates bitmap of given size, default state
is passed as the second parameter;

• raw size – size of file system in bytes;

• disk image – image (file) with restored file system;

• init disk image – creates image of given size initial-
ized with zeroes;

• backup – backup to be handled;

• backup.ch bm – changed and unused bitmap of cur-
rent backup;

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 182 --

• get last backup – retrieves the most recent backup
made for restored image;

• bm is empty – checks whether all items are not
marked in given backup;

• is incremental – checks whether given backup is
incremental;

• update blocks – copies content of blocks that marked
as changed by given incremenetal backup;

• is snapshot – checks whether given backup is snap-
shot;

• snapshot update – copies content of required blocks
(marked by the seconds parameter) from given snap-
shot backup;

• clear bm – clears given bitmap.

This approach allows to individual block updates to be
independent and be performed only once, so this process
can be done concurrently. Main thread can determine which
blocks should be stored and issue a new task for image block
initialization, so fork-join framework described in [12] can be
used naturally.

IV. PERFORMANCE AND EVALUATION

Since market solutions have closed sources and there is no
precise description of how snapshot compression in performed
the only available strategy is to use such software as a black
box. By the time of writing only library and test environment
is implemented (without adaptors), so only expected evaluation
can be done.

UBC approach allows to store exactly actual data used by
filesystem, so degree of efficiency (comparing with plain copy)
linearly depends on disk usage percentage. Further processing
related to particular filesystem structure can reduce this amount
by ignoring blocks that contain file systems backups (super
blocks, GDT chunks for Ext).

Current implementation of Ext analysis costs O(n) time
and O(n) memory, where n is size of image. Both bounds are
related to GDT size (depends on image size and size of FS
block). Memory usage can be reduces to O(k) (k – size of file
system block) by replacing entire GDT loading with iterative
approach.

NTFS analysis costs O(m) time (m – number of dataruns
in $BITMAP file) and O(k) memory (k – size of filesystem
block).

V. CONCLUSION

Virtual disk image compression based on information about
used blocks introduces simple and universal way to save
storage space, since it doesn’t take into account actual file
content and doesn’t require deep parsing of underlying file
system (in case of described Ext* and NTFS). Library that
allows to retrieve usage info from listed file system has
been implemented to verify this approach. Algorithm that
uses incremental backups and by design minimizes IO by
performing incremental backups in reverse order has also been
described.

The main drawback of unused block compression is not
being deduplication friendly, since we can operate only with
binary data. Natural solution is to create huge hash map and
store only indexes instead of actual blocks (as mentioned in
[2] and [13]) but it can be extremely inefficient and requires
further investigation.

Another drawback is full disk read in the worst case to
create snapshot backup.

REFERENCES

[1] EMC, “EMC Avamar backup and recovery for VMware environments”,
unpublished white paper.

[2] Acronis, “How Deduplication Benefits Companies of All Sizes”, unpub-
lished white paper.

[3] VMware knowledge base website, Changed Block
Tracking (CBT) on virtual machines (1020128), Web:
http://kb.vmware.com/selfservice/microsites/search.do?language=en US
&cmd=displayKC&externalId=1020128.

[4] Oracle online documentation website, 8 RMAN Backup Concepts, Web:
http://docs.oracle.com/cd/E11882 01/backup.112/e10642/rcmcncpt.htm
#BRADV002.

[5] Partimage website, Main page, Web:
http://www.partimage.org/Main Page

[6] VirtualBox online website, 8.23 VBoxManage modifyhd, Web:
http://www.virtualbox.org/manual/ch08.html#vboxmanage-modifyvdi

[7] B.Carrier, File System Forensic Analysis. Upper Saddle River, NJ:
Pearson Education, 2005.

[8] Ext4 Wiki website, Ext4 Disk Layout, Web:
https://ext4.wiki.kernel.org/index.php/Ext4 Disk Layout.

[9] Microsoft TechNet website, How NTFS Works, Web:
http://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx.

[10] R.Russon, Y.Fledel, “NTFS documentation”, unpublished.

[11] B.O’Sullivan, Mercurial: the Definitive Guide. Sebastopol, CA:
O’Reilly Media, 2009.

[12] D.Lea, “A Java fork/join framework”, in Proc. ACM 2000 Conf., 2000,
pp. 36-43.

[13] S. Quinlan, S. Dorward, “Venti: a new approach to archival storage”,
in Proc. FAST 2002 Conf., 2002, Article No. 7.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 183 --

