PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

The Internet of Machines - Technological Synergy
and Computer Music

Eugene Cherny
Saint-Petersburg State University of
Information Technologies, Mechanics and Optics
Saint-Petersburg, Russia
eugene.cherny @niuitmo.ru

Abstract—The Internet of Machines radically changes human
culture. The upcoming shapes of post-NGN world philosophy in-
spire the ultra modern approaches to the creativity phenomenon.
The novel forms of art exploit the new possibilities of network
environments, collaborating with human beings and without
them. The paper describes the model of intellectual system for
computer music generation based on a network of autonomous
computational agents. The proposed model uses OWL ontology
for representing knowledge of the agents in network.

I. INTRODUCTION

The rise of the Internet of Things (IoT) due to an increasing
number of online devices, as well as the development of inter-
machine communication provides a new ideological basement
for the new forms of collaborative computer art. Such systems
should create original art forms by the means of interaction
between number of participants, where human beings go
together with intellectual agents.

During the last decade informational telecommunications
has become “the technology of technologies”, rapidly trans-
forming the face of modern life. Nowadays such changes
have infiltrated almost every part of human activity. They are
rapidly evolving from fundamental technological basements of
present life towards the new forms of art [1]. The latter in turn
have always been bounded with technologies. The result of
application of computers for musical composition in the 50’s
gave birth to the discovery of the so-called computer music
and algorithmic composition [2], where composer becomes a
programmer of the machine which calculates the music score
according to the preliminary set of rules and algorithms. The
discussed approach could hardly be applied to the traditional
music, i.e. song writing, but it is useful for creating long-scale
soundscapes, sound design and experimental art. The algorith-
mic composition system achieves a new plane of possibilities
if it becomes distributed. The modern world of the Internet of
Things provides an excellent base for experiments in this field
of art.

The IoT world features the great number of heterogeneous
devices, working together in the same network [3]. Due to
heterogeneity of connected devices IoT implementation should
provide interoperability functions, such as those based on
the universal method for data representation and exchange.
This method should allow to integrate the data produced in
the network. One of the most promising technologies for
implementing these functions is the Semantic Web Stack [4],

Gleb Rogozinsky
The Bonch-Bruevich Saint-Petersburg
State University of Telecommunications
Saint-Petersburg, Russia
gleb.rogozinsky @ gmail.com

which includes a universal data model (Resource Description
Framework, RDF) with the basic vocabulary of terms (RDF
Schema, Web Ontology Language — OWL) for high-level
concepts description.

The process of creativity automation (generative art, etc.)
has always been on the edge of computer music research,
where computational methods were used to formalize parts
of the creative process. Such generative systems often include
the compositional model: a set of algorithms, implementing
specific rules, e.g. the rules describing the melodies, harmonic
structures, rhythmic patterns, etc. Thus, the compositional
model represents semantics of the musical piece by defining a
set of the music-related facts (rules) and links between them
(how rules are used). Such models are static by their design
and could not be applied to the creativity simulation due to
its dynamic nature. For instance, the person’s taste changes
over time, as well as their creative activities. In the case of
music such changes affect the musical composition paradigm
the person exploits. Thus, the compositional model should be
able to change itself to modify the musical output, adding or
removing facts in the model and changing the links between
them.

Distribution and heterogeneity of the IoT imply that there
is no single entity to possess the all available knowledge,
thus every entity is potentially capable for self-development by
obtaining the new knowledge. The possibilities of IoT-based
creativity model are limited only by the diversity of the real
world processes.

The IoT will radically change the face of the global
network [5]. Together with the evolution of traditional services
the novel ones appear, characterized by fundamentally different
relations between human and machine. One of the most
important components of the network traffic is the multimedia.
Thus, the research of the new IoT-based multimedia services
becomes significant. Authors explore the possibilities of IoT
technologies for creation of new IoT-based multimedia solu-
tions. In this paper we propose the system for computer music
generation, based on the multi-agent architecture and OWL, as
an example of the new service.

II. RELATED WORK

A. Electric Sheep

One of the most remarkable and self-explaining examples
of the distributed systems of collective art is a popular screen-

ISSN 2305-7254

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

saver program for laptops and mobile devices called Electric
Sheep [6], which could be depicted as an abstract distributed
art piece, generated by thousands of computers and mobile
devices across the world web. The program is based on genetic
algorithm, which controls the mutation of initial fractal-like
visual primitives. In the beginning of its work Electric Sheep
downloads a set of initial visuals from the remote server, which
are used further for obtaining new visuals. Any user could
vote for the visuals he/she likes, gaining the current offspring’s
chances for the new cycle of genetic selection or exclude it
from the evolution process. The offsprings of initial visual set
travel from computer to computer, interbreeding and creating
new combinations of visuals.

B. Experiments in Musical Intelligence

Similar approach was explored by David Cope in his
work Experiments in Musical Intelligence (EMI) [7]. The
new music is generated according to the results of previously
analyzed compositions. The proceeds of composing by itself
consists of the three parts: deconstruction (that is analysis and
segmentation), authors’ “sign” analysis (that defines style) and
combination of all fragments together into one piece. This
model describes not only the sequences of notes and chords,
but also provides common form of piece and its structure in
general. Using this approach the result of the work is always
depends on compositions to be analyzed (the training set).

The scaling of EMI in the multi-agent domain is possible,
if the context of agent is thought as the pre-existing base of
source musical material.

The EMIs main flaw is its demand for exact music scores
which in some form should exist in the database, providing
“ideas” for the model. It disallows to perform the intellectual
selection of material for composition, obstructing the usage
of algorithms for automated combining of pieces by their
features. On the other hand, the knowledge representation
using ontologies could provide an easy solution to apply the
automated aggregating of composed material according to Al
decisions.

C. The Listening Machine

The Listening Machine project
(http://thelisteningmachine.org/) analyzed activity of 500
Twitter users in UK. With the use of machine learning and
natural language processing, the system analyzed tweets and
generated music in real-time. The project remained active for
nine months from May 2012 to January 2013, continuously
creating algorithmic music and broadcasting it through the
Internet.

D. #tweetscapes

Another project worth mentioning here is #tweetscapes
(http://heavylistening.com/tweetscapes/). It converts tweets of
German users according to their content into sounds and
visuals. The algorithm uses as input such parameters as user
name, geoposition, hash-tags and other information are used.
As the result, each tweet creates sound in stereo, accompanied
by specific visualization.

148

III. IDEA

We propose a model for automated music generation, based
on distributed network of autonomous agents. In the discussed
model each agent is able to carry some knowledge or state
of compositional model, that is used for music generation.
Every agent is able to uphold some number of connections
with others. Under the context we term the aggregate of all
connections of agent. The context one way or another affects
the internal state of agent, changing its compositional model
used to generate music. Thus the process of music material
generation becomes the product of analysis and processing
of existing musical pieces. The knowledge extracted from
the analysis stage is used to create a score for the sound
synthesizers. Each agent could be understood as a single sound
synthesis entity in the global orchestra of machines, making
music through the interchanging of ideas and sound samples
across the network.

We using the Web Ontology Language for knowledge
representation and Csound audio programming language [8]
for sound synthesis.

IV. IMPLEMENTATION OVERVIEW

In the present state of research the system possesses
simplified design. To gather information from surround world
the system uses a set of agents, which is capable of interact
with the user. Currently, we have two implementations of the
user interaction: an on-screen GUI with XY-controller and a
video tracking.

Each agent in the system consists of the following modules:

e Ul gathers information from the sensors (XY con-
troller and video) and processes it to provide high-
level characteristics of the interaction (quantity of
motion, etc.).

e Network Core provides a set of abstractions over OS
network APIs. This module allows to discover agents
in the network and to perform SPARQL-requests to
the agents for getting their state.

e Knowledge Base holds all information about current
agent and its neighbors. It is used by the Network
Core for maintaining knowledge about neighbors and
by the Algorithmic Core to set the parameters for
compositional model.

e Decision Core is responsible for implementing the
business logic of the applications. It provides com-
munication between modules.

o Algorithmic Core implements compositional model. It
utilizes knowledge taken from the Knowledge Base for
configuring the compositional model and generates a
set of commands for Csound Core.

e Csound Core is responsible for sound synthesis. It
receives commands from the Algorithmic Core and
triggers the sound events.

The architecture of agent is presented on the Fig. 1.

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

[u

Interaction descriptors Neigbor states
¢ P Compositional model state

v
[Decision Core]

][Knowledge Base]

Neigbor states

Compositional model state Compositional model state

Algorithmic Core [Network Core]

\ | J
Csound events
Y
e N
Csound Core @
\ /

Fig. 1. Architecture of the agent

V. USER INTERACTIONS

Human interaction capabilities, as we will see further,
provides the way to create diverse variations of soundscapes
by augmenting strict algorithms of the program with human’s
unpredictable actions. The system will try to stabilize itself
when no interaction happened.

Current implementation has two mechanisms for gathering
information from the real world: XY-controller on the device
screen and video tracking. This is due to availability of
sensors which depends on the exact device features: it is very
rarely when laptops have multi-touch display, but smart-phones
almost always have one. We decided to use web-camera video
tracking on laptops and XY- controller on smart-phones for
user interaction to provide integration of different devices to
the single network application.

UI was module designed such way, that the actual sensors
can be interchangeable in the application. This was achieved
by delegation of interaction analysis functions to this module.
The software can be enabled to use video camera or multi-
touch sensor screen with the configuration script.

A. Interaction analysis

Every Ul module provides two interaction descriptors:
average activity and variance. The former gives us the idea
of how intensive actions are, and its implementation depends
on the type of sensor module using. The latter characterizes
variation of actions’ intensity and implemented as a statistical
variance estimator.

Activity in the video tracking Ul module is calculated using
traditional technique by thresholding pixel-by-pixel difference
of two successive image frames:

Ty Sy thresh(Pi(x,y) — Pioa(x,y))
o w-h ’

A;

where 7 — index of current frame in the video stream;
P;(x,y) — pixel value (integer in range 0 . . . 255) of i-th frame

149

at coordinate x, y;

thresh() — function, which outputs 1 if input value is more
than a threshold parameter or 0 otherwise;

w, h — width and height of incoming video in pixels respec-
tively.

Division by w - h is made to normalize parameter A to the
0...1 range.

To lower the CPU usage we grab the video with 320 x 240
resolution at 20 FPS rate.

XY-controller position is captured with the 50 Hz fre-
quency. The activity in its case is the length of the displacement
of controller position in two successive position samples with
normalized coordinates:

A= \/(xl —xi-1)? + (yi — yi-1)?

where 7 is the index of the current sample and x,y are the
coordinates of XY-controller position mapped to the 0...1
range.

To calculate the average activity and variance parameters,
the Ul organizes activity values in the array of size 32 and
then the following calculations are applied:

_ Z?io Ai

pa 32

1 31
2 _ = L 2
A= 32 ;(AZ /U‘A))

where 114 — average activity, A; — activity parameter, stored
in the array at index i, 04 — activity variance.

This calculations are performed every time UI module
collects 16 new activity samples from the input.

The analysis results are sent to the Decision Core as a pair,
defined as Ulp(pa,o?).

B. Contact event

Besides the UIp event, Ul module also sends to the Deci-
sion Core the Ulq(true|false) (contact) event. It represents
the start and the end of interaction process with the user. When
user touches XY-controller or moves inside the camera visibil-
ity zone, UI module sends Ul (true) message. Ul (false)
is sent when no interaction happens in 10 seconds.

C. Video tracking implementation details

Currently, the video tracking is implemented as Max/MSP
[9] patch, and tracking data is sent to the main application
in a form of OSC [10] message via UDP. Max/MSP is the
visual programming language for creating real-time audio-
visual applications. We used it for rapid prototyping of the
minor features, such as video analysis.

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

VI. SOUND GENERATION

For the sound generation and processing purposes the
proposed system uses Csound, a high-level computer music
programming language. It provides great flexibility for im-
plementing custom sound synthesis and processing modules.
It also has a Java API, which is useful for controlling the
sound synthesis process from the compositional model. Csound
is a cross-platform solution and aside from Windows, Mac
OS X and GNU/Linux, it supports Android and iOS. Also,
Csound is able to work with Raspberry Pi, BeagleBone and
Arduino platforms. Csound was originally developed by Barry
Vercoe in 1985 at MIT Media Lab. Since the 90’s, it has
been developed by a group of core developers, and a wider
community of volunteers which contributes examples, docu-
mentation, articles, and takes part of the Csound development
with bug reports, feature requests and discussions with the core
development team.

Although Csound has a strong tradition as a tool for
composing electro-acoustic pieces, it is used by composers
and musicians for any kind of music that can be made with
the help of the computer. Csound can also be used in real-time
and interactive contexts, on mobile devices or in combination
with the other programming languages.

Csound’s working principle is based on the modular struc-
ture. It means that the sound synthesis algorithms and sound
processing techniques are implemented through connecting
multiple primitives, e.g. sound generators, adders, filters etc.
During its work some modules could be substituted for others,
so sound synthesis algorithms could be altered, in particular
as a result of collaborative decision between several agents.
Typical Csound code consists of two parts: an orchestra,
where all instrument structures are defined, and a score, which
provides event triggering data for instruments defined in the
orchestra.

A. Synthesizer structure

Our main instrument in the present implementation of
sound synthesis part is an ambient drone generator. We use
it to create wide, ambient, reverberating soundscapes with the
multiple variations in timbre.

The instrument consists of number of voices, which differ
from each other only by parameters of the elements, and the
structure of each voice remains the same. The voice structure
is given on Fig 2. It consists of white noise generator (WG),
simple two-stage envelope generator (EG), low frequency
oscillator (LFO) and a 12 dB/octave band-pass filter (BP). The
mix of all voices is fed through delay (DEL) and reverberation
unit (REV). The audio signal path is marked by continuous
line, while the control signal line is dotted.

Envelope generators of each voice are randomly re-
triggered, creating the sense of rain drops when attack and
release parameters are both fast, and evolving layers of sound
otherwise. The output of envelope generator is also fed to
control the filter’s frequency. The central frequencies of all
filters are tuned to cover the whole spectral range. By default,
they are spread harmonically, although some fine adjustments
are possible.

150

The bandwidth of band-pass filters could also change the
timbre of sound. When the band width is narrow, the sound is
close to sine wave. Since the filter frequencies are modulated,
it is possible to achieve vibrating sound structures. LFO unit
provides another way to periodically alter the frequencies of
filters. The effect part makes the mix wider and denser, adding
the sense of space and distance.

All described parameters of the instrument could be orga-
nized in an array of parameters, which could be altered during
the working cycle of the system.

VII. SCORE GENERATION

Algorithmic Core implements compositional model — the
set of algorithms, responsible for musical events generation.
Before moving to the implementation we will describe some
basic concepts behind it.

e The chosen synthesis method, described in the previ-
ous section, imposes certain restrictions on the com-
positional model. Particularly, the synthesizer can not
be controlled with note events. The continuous con-
trol mechanism should be implementing for smooth
control of the drone-synthesizer parameters.

e The compositional model should use the interaction
between several agents to control the sound synthesis
parameters.

e User interaction represents the concept of external
knowledge, that network of agents receives from the
real world, and which it will try to preserve. Every
agent will try to share this new knowledge to its
neighbors, but every time the knowledge is shared,
it reliability decreases until some agent will simply
ignore this knowledge with low reliability.

A. Implementation

We introduce following notation for describing the compo-
sitional model implementation:

e P = Pitch, FM,D — the set of synthesizer pa-
rameters (pitch, frequency modulation coefficient and
density respectively).

e Py — synthesizer parameters of the current node.

e P, — mean synthesizer parameters of all connected
nodes.

e K — reliability factor of the current node. This factor
shows, how relevant the knowledge that node holds is.

e K, — mean reliability factor of all connected nodes.

e K, — novelty coefficient. It shows the distance be-
tween reliability of current node and its neighbors.

o Ulcs — “event happened” parameter. Can be true or
false.

The compositional model starts with random parameters:

Py = {random(Pitchyin, Pitchmaz),
random(F Mpin, F Mpaz), random(Dupin, Dmaz) }s

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ﬁfx
<

Nvces

ol
a~]

L) O

Fig. 2. Synthesizer voice structure

where random/(a, b) is the function that generates a new ran-
dom value between a and b. Pitch,,in, Pitch,,ax, F'M,,in,
FM,,ax, Dyin, D,ax are the minimum and maximum
parameter values defined in the configuration file.

After initialization we start the main loop.

First, the parameters analyzed in UI are scaled and used to
update the FM and Density parameters of the synthesizer, but
only if Ul is true (interaction happened):

FM = Scale(ﬂAaFMrninaFMrnaw) | Ulg =true

D = scale(0?, Dimin, Dmaz) | Ulc = true

If interaction happened, reliability factor of the current
node should be 1:

Ko=1|Ul¢c = true

We need to update the novelty coefficient for the later
use. If the mean reliability factor of connected nodes (K,)
is bigger than current (Ky), the novelty coefficient is defined
as difference between K, and K, otherwise zero:

K, = (Kn—KQ,O | K, >K0)

Now we are ready to update the current node’s synthesizer
parameters. If current Ky = 0 we update synthesizer state
with the random parameters, otherwise we do it with the
result of interpolation between current synthesizer’s state and
the neighbor states. If reliability of the neighbor’s knowledge
is less than of current node (K, = 0), we do not modify
the parameters of current node. Otherwise, we interpolate
between parameters of the current node and its neighbors
(delta function).

Py(t+ 1) = (interp(Py(t), delta(t), K, (t)),
random(PO0) | Ko(t)! = 0)

151

interp(a,b, f) — interpolation between values a and b
with the factor f. If f = 0, then this function outputs a; when
f =1, the output will be b.

random(P0) generates new random synthesizer parame-
ters.

delta(t) uses weighted neighbors synthesizer and random
parameters to generate new ones. It adds some randomness to
the mean synthesizer parameters of the neighbors.

delta(t) = random(P0) % (1 — Ky(t)) +
+ (Kn(t)’o | Kn(t) > KO(t)) * Pn(t)

Finally after the update of synthesizer parameters, the K
can be updated:

Ko(t —+ 1) = (Z'Tlte’l"p(Ko,Kn,Ku)7K0 | Kn > Ko)

After that the algorithm returns to the beginning of the
main loop.

VIII. KNOWLEDGE BASE

Compositional model representation should be based on an
unified extensible knowledge model, to be easily understood
by other agents in the network. For this case we use Web
Ontology Language (OWL) as the base for implementing agent
knowledge ontology. The OWL was designed for representing
a structural knowledge in the global network. Due to the
distributed nature of the discussed system, the OWL seems
to be a logical choice for using in such system, because by its
design it allows: 1) to describe connections between entities
as facts, 2) to distribute knowledge and 3) to describe entity
classes.

In the present state of research the system uses rather trivial
ontology. Its main aim — to hold the information about state
of the compositional model and neighbors. Current ontology
contains three classes: NodelD, NodeState, SynthState. NodeID
holds IP address of the node and NodeState. NodeState has

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

links to one or more instances of NodelD classes (representing
neighbor nodes) reliability factor as float and reference to
SynthState, associated with node. The latter holds the param-
eters for synthesizer: base pitch, frequency modulation index
and density.

Agents are communicating with each other by SPARQL
queries. As each agent has its own triple-store, to avoid URI
conflicts we defined the following rules for using URIs (prefix
“wm” stands for http://wintermuse.net/ontology/demo/0.1/):

1) In every triple-store, instance of the NodelD class,
representing state of the current agent, has the fol-
lowing URI: wm:node#this.

2) NodelD, that represents neighbor agent’s state has the
URI, generated as follows: wm:node# + IP address,
e.g. wm:node#10.0.2.

Due to the first rule agent can always get state of his
neighbor with appropriate SPARQL-request as it know the URI
of the instance to refer. Second rule ensures that neighbors will
never have the same URI.

In the current implementation the agents use Sesame’s
[11] memory store for storing triples, as we do not need a
persistence for our purposes.

IX. CONCLUSIONS AND FUTURE WORK

The present state of the developed system gives rise to
number of different problems and tasks related to different
inter-crossing fields of science. The working model by itself
creates a framework under which those tasks should be solved.
The aesthetic problem is derived from the typical algorithmic
composition problematic field, i.e. how to create the music
which could be decided as written by the human being or how
to create system being able to compose “interesting” music,
which could attract people’s attention. The solution lays on the
thin edge between chaos and determinacy.

The possible applications of the system: adaptive context-
aware soundscape generation (e.g. in public spaces), com-
poser’s instrument, framework for modeling and exploring the
creativity processes.

152

Together with humanity related problems also arise techni-
cal ones. The developed service should be scalable as well as
self-organizing and should allow to introduce new functionali-
ties to the agents by sharing knowledge and software modules
between them. The base ontology should be developed to be
as flexible as possible to facilitate an automated art-related
knowledge engineering inside the distributed system. All of
these topics require further research. To create a long-lasting,
non-stationary, continuously transmogrifying musical compo-
sitions and soundscapes the system should be able to acquire
data from multiple sources and to map it into new creativity
ideas. Several databases (e.g. DBpedia or Europeana) could be
used for that purpose, providing data to agents. Also, agents
could use user’s shared information or sensor data to spread
it later as a new data patterns across the swarm of agents.
The data could include rhythmic patterns, new timbre, novel
composition algorithms and synthesis code modifications, as
well as audio fragments of speech and music, combined with
other media e.g. photos and texts, to extract ideas form.

REFERENCES

[1] S. Nora and A. Minc, Computerization of Society. MIT Press, 1980.

[2] P. Doornbusch, “Computer sound synthesis in 1951: The music of
CSIRAC”, Computer Music Journal, vol.28.1, 2004, pp. 10-25.

[3] L. Atzori and A. Iera and G. Morabito, “The internet of things: A
survey”, Computer networks, vol.54.15, 2010, pp. 2787-2805.

[4] 1. Horrocks et al., “Semantic web architecture: Stack or two towers?”,
in Proc. of Principles and practice of semantic web reasoning, 2005,
pp. 37-41.

[S] “Vision and challenges for realising the Internet of Things”, European
Commission, 2010.

[6] S. Draves, “The electric sheep screen-saver: A case study in aesthetic
evolution”, in Proc. of EC’05 Proceedings of the 3rd European confer-
ence on Applications of Evolutionary Computing, 2005, pp. 458-467.

[71 D. Cope, Computer models of musical creativity, MIT Press, 2005.

[8] R.C. Boulanger, The Csound book: perspectives in software synthesis,
sound design, signal processing, and programming, MIT press, 2000.

[9] Cycling’ 74 official website, Max visual programming language, Web:
http://cycling74.com/products/max/

[10] M. Wright, “Open Sound Control-A New Protocol for Communicationg
with Sound Synthesizers”, in Proc. of the 1997 International Computer
Music Conference, 1997, pp. 101-104.

[11] OpenRDF Sesame’s official
http://www.openrdf.org/

website, Main page, Web:

