
Evaluation of Program Code of Smart-M3

Knowledge Processors Developed Using the

SmartSlog Tool

Aleksandr A. Lomov and Dmitry G. Korzun

Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia

{lomov, dkorzun}@cs.karelia.ru

Abstract—The SmartSlog is a software development tool

for programming Smart-M3 agents (Knowledge Processors).

SmartSlog applies the model-driven code generation

approach. Given OWL ontologies of agent problem domain,

SmartSlog produces the ontology library as middleware for

agent developer. SmartSlog ontology library allows easier

constructing the program code. The developer thinks in agent

domain ontology terms (classes, relations and individuals)

instead of RDF triples, as it happens in the low-level

development approach of Smart-M3. In this talk, we focus on

performance evaluation and on measurement of program code

metrics to show effectiveness of SmartSlog tool.

I. INTRODUCTION

A smart space is a virtual, service-centric, multi-user,

multi-device, dynamic interaction system that applies a

shared view of resources in a given computing

environment [1], [2]. Smart-M3 [3] is an open software

platform that implements smart spaces, focusing on the

multi-device, multi-vendor, and multi-domain properties of

modern computing environments and advanced digital

services. Software agents, which are called knowledge

processors (KP), run on devices of the computing

environment. A smart space (SS) is served by a semantic

information broker (SIB). KPs act cooperatively accessing

and generating information. SS content is represented using

the RDF model from the Semantic Web. Interaction of KPs

is supported by the publish/subscribe model, and any KP

can persistently detect changes in the shared content of the

KP’s interests [4].

SmartSlog [5] is a software development tool for

programming KPs and their interaction in the smart space.

There are two approaches for the KP development (Fig. 1).

KP logic is programmed on the level of RDF triples or on

higher level using domain terms represented in the code as

ontological classes, properties, and individuals. On the

RDF level, the SS access primitives are provided by KP

interface (KPI). On the high-level, SS access primitives are

ontology-oriented and provided by middleware. The

Fig. 1. Approaches for smart spaces agent development

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

middleware converts operations to access primitives of the

given KPI and data structures to RDF triples.

SmartSlog includes a code generator for such

middleware. The latter is called SmartSlog ontology

library. In particular, it implements programming

mechanisms to automate programming of interaction of KS

in a smart space. There are four general interaction

patterns [6]: intelligent join, knowledge center, knowledge

hub, and global mediator. Note that such interaction is

indirect; instead of direct exchange the information is

shared in the smart space.

To check the effectiveness of SmartSlog for KP

development three groups of experiments were performed.

The first group of experiments aims at evaluation of the

performance. In KP runtime execution, its SmartSlog

ontology library needs extra CPU resources to convert

ontology-oriented operations and structures to RDF-

oriented access primitives of KPI and vice versa. Fig. 2

shows the time required to process incoming triples

depending on the number of locally stored RDF triples (for

low-level C KPI) or objects that represent these RDF-triples

(for SmartSlog). The average decrease of performance is

7% (0.15 ms). Note that this property only slightly

increases the execution time and does not affect the

SmartSlog programmability of KPs for various devices.

The second group of experiments measures the amount

of programming operations to implement indirect

interaction. An operation is defined as one complete action

(creating an individual or a set of triples). The experiment

result is shown in Fig. 3. For SmartSlog ontology library an

operation is a line of code, for C KPI developer such an

operation takes several lines of code. The average reduction

in the number of operations to program is about 39%.

The third group of experiments shows how KP’s

program code can be simplified if using Smartslog

ontology library. We estimate the cyclomatic

complexity [7] for basic examples of KPs, as shown in the

Table I. The “Hello Word” example for C KPI with

synchronous subscription is more complex than the same

example for SmartSlog with asynchronous subscription. To

use asynchronous subscription with C KPI the developer

manually organizes concurrent threads in the KP’s logic

code. In this case the cyclomatic complexity is much

higher. Notably that the “GPS” example, which uses some

features of SmartSlog ontology library (subscription to

properties and classes, tracking network errors), has almost

the same complexity as the simple example “Hello World”

for C KPI.

For further experiments with SmartSlog, we consider to

extend the third group with Halstead [8], [9] and Jibs [10]

metrics. The Halstead metric counts operators, keywords

(return, if, continue), identifiers, and constants. The Jibs

metric is defined as saturation of the program code with

such expressions as IF-THEN-ELSE. These metrics allow

determining which parts of low-level KP code can be

programmed more effectively. Also, these metrics can be

used for improvement of SmartSlog ontology library by

changing some of the functionality to provide the developer

more effective ways for KP programming.

Fig. 2. CPU-Time for processing RDF-triples incoming from smart space

Fig. 3. Cyclomatic complexity for base KP examples

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 162

ACKNOWLEDGMENT

This research is financially supported by project #

1481 from the basic part of state research assignment #

2014/154 of the Ministry of Education and Science of the

Russian Federation and by research project # 14-07-00252

of the Russian Fund for Basic Research. The authors are

grateful to the Open Innovations Association FRUCT for

its support and R&D infrastructure. We would also like to

thank Alexander V. Smirnov, Andrey A. Pechnikov,

Andrew A. Krizhanovsky, and Alexey M. Kashevnik for

their feedback and expertise.

REFERENCES

[1] A. Smirnov and A. Kashnevik and N. Shilov and I. Oliver,

S. Balandin and S. Boldyrev, “Anonymous agent coordination in

smart spaces: Stateof-the-art”, in Proc. 9th Int’l Conf. Next

Generation Wired/Wireless Networking (NEW2AN’09) and 2nd

Conf. Smart Spaces (ruSMART’09), LNCS 5764. Springer-Verlag,

2009, pp. 42–51.

[2] S. Balandin and H. Waris, “Key properties in the development of

smart spaces,” in Proc. 5th Int’l Conf. Universal Access in Human-

Computer Interaction (UAHCI ’09). Part II: Intelligent and

Ubiquitous Interaction Environments, LNCS 5615. Springer-

Verlag, 2009, pp. 3–12.

[3] J. Honkola and H. Laine and R. Brown and O. Tyrkko, “Smart-M3

information sharing platform”, Proc. IEEE Symp. Computers and

Communications, ser. ISCC ’10. IEEE Computer Society, Jun.

2010, pp. 1041–1046.

[4] A. A. Lomov and D. G. Korzun, “Subscription operation in Smart-

M3”, Proc. 10th Conf. of Open Innovations Association FRUCT

and 2nd Finnish–Russian Mobile Linux Summit. SUAI, Nov. 2011,

pp. 83–94.

[5] G. Korzun and A. Lomov and P. Vanag and S. Balandin and

J. Honkola. “Generating Modest High-Level Ontology Libraries for

Smart-M3”, Proc. 4th Int'l Conf. on Mobile Ubiquitous Computing,

Systems, Services and Technologies (UBICOMM 2010), October 25

- 30, 2010, Florence, Italy, pp. 103-109.

[6] M. Murth and E. Kühn. “Knowledge-Based Interaction Patterns for

Semantic Spaces”, In Proceedings of the 2010 International

Conference on Complex, Intelligent and Software Intensive Systems

(CISIS '10). IEEE Computer Society, pp. 1036-1043.

[7] A. H. Watson and T. J. Mccabe and D. R. Wallace. “Structured

Testing: A Software Testing Methodology Using the Cyclomatic

Complexity Metric”, Technical Report NIST Special Publication

500-235, National Institute of Standards and Technology (NIST),

September, 1996.

[8] H. Halstead, Elements of Software Science. Amsterdam: Elsevier

North-Holland, 1977.

[9] A. Serebrenik, Software metrics, Web:

http://www.win.tue.nl/~aserebre/2IS55/2010-2011/10.pdf

[10] R. B. Hassan. Automatic Measurement of Source Code Complexity.

Master of Science Computer Science and Engineering. Web:

https://pure.ltu.se/portal/files/33040726/LTU-EX-2011-

32994156.pdf

TABLE I. NUMBER OF OPERATIONS FOR VARIOUS ACTIVITIES OF THE INDIRECT INTERACTION

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 163

