
Fault Tolerance Support of Smart-M3 Application on
the Software Infrastructure Level

Ivan V. Galov∗ Dmitry Korzun∗†
∗Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia
†Helsinki Institute for Information Technology (HIIT)

and Department of Computer Science and Engineering (CSE), Aalto University

Helsinki, Finland

{galov, dkorzun}@cs.karelia.ru

Abstract—The Smart-M3 platform allows constructing soft-
ware applications consisting of agents that interact by sharing
information in a smart space. An important problem is achieving
the dependability of applications in case of failures, a common
situation for existing networked environments. The most sensitive
operation is subscription—a persistent networked query. In this
paper, we consider a generic software infrastructure for a
Smart-M3 application and propose infrastructure-level solutions
to support the application fault tolerance. Our first solution
augments the infrastructure with a content service. It improves
safety (preservation) and integrity of volumetric data due to
the delegation of storage functions to a separate element of
the application infrastructure. The service employs the well-
known matured web technology. The second solution consists of
mechanisms for the fault tolerance support to detect failures of
subscription and to recover effectively. For case study, we use
an existing Smart-M3 application—the SmartRoom system. Our
evaluation confirms that our solutions lead to better dependability
without essential degradation of the performance.

I. INTRODUCTION

Smart space concept relates to creating of ubiquitous
computing environments. Participants of this environment are
involved in collaborative accumulation and sharing of informa-
tion about the environment and participants [1], [2], [3], [4].
Every smart space forms service-oriented integrated system
that provides: 1) service composition based on dynamic par-
ticipants interaction via accumulated information sharing and
2) service delivery to end-user via various interface devices of
a computing environment. Typically, a computing environment
is localized in a physical spatial-constrained space with many
locally equipped devices. In particular, Internet of Things
(IoT) technologies are utilized for organization of network
communication between devices and external systems (e.g.,
web services in the Internet).

Smart-M3 platform [5] is an open source research proto-
type intended for creating smart spaces in IoT environments.
Every Smart-M3 application is built up as a distributed system
of software agents interacting with each other and running
on computing devices of the IoT environment. In Smart-M3,
an agent is called knowledge processor (KP). They interact
and share information with each other through a specialized
subsystem (server)—semantic information broker (SIB). It

controls access to shared information in the smart space. Such
indirect interaction follows the well-known blackboard [6]
and publish/subscribe [7] models. Changes made by one KP
are available to other KPs [8]. The subscription operation
allows any KP to perform persistent queries to keep a track of
information changes in the smart space [5], [9]. One or several
KPs construct a service, which, in turn, is delivered to other
services or users (via their client KPs).

Dependability of Smart-M3 applications is disrupted by
frequent failures of the IoT environment or elements of the
application itself. Generally, fault tolerance constitutes in abil-
ity of the application to deliver its service in presence of
faults. In Smart-M3, the subscription operation is one of the
most sensitive operations for faults. Such issues as a network
disconnection or loss of regular subscription indications lead
to essential failures that breaks the application dependability.
For a Smart-M3 application, we distinguish its software infras-
tructure, which provides the means for application operation.
Our focus is on solutions implementable on the infrastructure
level.

There is a number of works, including [10], [11], [12], [13],
that studied an application infrastructure for smart spaces and
ubiquitous computing environments. They considered either
very abstract infrastructures or very particular ones. These
approaches cannot be applied directly to Smart-M3 applica-
tions. In this paper, we analyze generic software infrastructures
for Smart-M3 applications in respect to the problem of fault
tolerance. We evolve the notion of the Smart-M3 application
infrastructure, which previously appeared in [14], [15], [16].

For the fault tolerance support in a Smart-M3 applica-
tion, we proposed two solutions. The first one augments the
infrastructure with a special service to support an operation
with volumetric data. Introduction of an application-wide file
storage is a well-known approach, which is also beneficial
for smart spaces. This service preserves collected data files
and manipulation with them in case of failures. The second
solution includes two mechanisms. 1) Subscription control
allows to determine problems with the subscription whether it
was disrupted or some data were lost. 2) Fault recovery allows
an application to restart and continue its services if failures are
detected (automatically or manually).

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

The rest of the paper is organized as follows. Section II
describes related work. Section III considers a generic software
infrastructure applicable for Smart-M3 applications. Section IV
introduces a new element to infrastructure—Content-service,
which is used for enhancing data integrity in the application.
Section V presents several mechanisms to improve the fault
tolerance of Smart-M3 applications. Section VI evaluates the
proposed solutions. Section VII summarizes the contribution
of this paper.

II. RELATED WORK

The concepts of middleware platforms and software in-
frastructures for applications in ubiquitous computing envi-
ronments are well-known. SISS [10] is an example of many
existing platforms for creating applications based on agent
interactions. In particular, SISS defines a layered software
infrastructure: the communication layer provides QoS and
reliability in agents interaction, the coordination layer supports
agent collaboration, and the service layer contains common
shared services.

Wang et al. [11] proposed a class of infrastructures for
smart spaces based on Semantic Web technologies. Such in-
frastructures are focused on explicit representation, expressive
querying, and flexible reasoning of contexts.

Sathish and di Flora [12] introduced a infrastructure devel-
opment framework for smart spaces. It aims at infrastructures
with dynamic service compositions and takes into account se-
curity and privacy issues. An infrastructure consists of several
modules such as modules for data representation and access,
data storage and manager, external data repository, and support
of data security and privacy.

da Costa et al. [13] considered reference infrastructures for
ubiquitous computing and formulated their key development
issues and challenges. An architectural model was proposed,
where the dependability becomes a key property, along with
the heterogeneity, scalability, and interoperability. A notable
conclusion is that failure-detection and recovery strategies,
such as check-pointing, compensation, isolation, or reconfigu-
ration, need to be applied in ubiquitous computing.

The above work provides characteristic properties, refer-
ence models, and case studies for development of application
infrastructures in smart spaces. In contrast, we consider the
case of Smart-M3 applications and propose particular solutions
applicable for this case.

In the Smart-M3 case, Vasilev et al. [17] proposed a
substitution mechanism, which allows substituting a compro-
mised agent with another one. The application dependability is
improved on the level of software infrastructure. Replacement
agents are additional infrastructural elements, thus making
development and deployment more complicated. In contrast,
our solutions do not rely on extensive expansion of the
infrastructure with many additional agents.

III. INFRASTRUCTURE OF SMART-M3 APPLICATION

Software infrastructure of a Smart-M3 application consists
of the SIB and those KPs (infrastructural KPs) that are
responsible for service construction and delivery [14], see
Fig. 1. Infrastructure is deployed in computing environments

Fig. 1. Smart-M3 application infrastructure consists of the deployed SIB and
service-responsible KPs

TABLE I. DEPLOYMENT OPTIONS FOR INFRASTRUCTURAL KPS

Option Properties
1. Clustering
near the SIB

Effective access to information shared in the smart space. Online
24/7 service mode with easy installation and maintenance.
Example: core services of application.

2. Device-aware
location

Effective interaction with involved service-specific devices.
Example: KPs for sensors, cameras, climatic equipment.

3. Server-oriented
location

Extensive or complex data processing.
Example: mediation of external data sources and services.

including the host devices, network equipment, and system
software, which provide operation and network communica-
tion. In general, deployment is a process of installing, setting
up, and launching all infrastructural elements. We consider
three deployment options for infrastructural KPs, see Table I.

The first deployment option assumes launching a KP on
the same machine where the SIB operates. Typically, the SIB
is continuously running on a powerful server computer, so the
KP is able to run persistently, to perform resource-intensive
operations, and access the smart space with no network latency.

The second deployment option is running a KP on a ded-
icated computer connected to one or several specific devices
which are required for service delivery (projector, interactive
whiteboard, sensor, camera, microphone, etc.). For instance,
a KP that supports the participation of low-capacity devices
in the smart space, since they are not able to run the KP
themselves [18].

The third option is launching a KP on a server machine
different from the one with the SIB running. Such KPs usually
deliver services that require resource-intensive computations
and can affect on the SIB performance. In particular, a medi-
ator KP connects external data sources with the smart space
and performs data transformation and synchronization [19].
This deployment option assumes a variety of computers, from
local and corporate servers to cloud systems in the Internet.

Consider SmartRoom system [15], [16] for an example
of software infrastructure. The system is used for automated
holding of collaborative activities such as conferences, meet-
ings, or lectures. The basic installation for conference mode
includes KPs responsible for the following services: confer-
ence management (Conference-service), presentation control
for speaker (Presentation-service), and storage of participants’
materials for use during presentations (Content-service). The
deployment scheme is shown in Fig. 2.

Computing environment for SmartRoom is localized in a

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 17

Conference-service Content-service

server computer
under Ubuntu Linux

SIB
SIB and services
are handled by
Upstart init daemon

Agenda-service

personal computer
with agenda screen

Presentation-service

personal computer
with presentation screen

Fig. 2. Deployment options in the SmartRoom infrastructure: Conference-service and Content-service are near the SIB, Agenda-service and Presentation-service
are near their multimedia screens

physical room equipped with various computing and media
devices. Devices are connected via wireless and wired local
area networks. There are two public screens in the room: for
presentation slides and for activity agenda. Two projectors are
assigned with these screens and connected to two personal
computers. The server machine running the SIB can be either
physically presented in the room or remote (e.g., in a corporate
network). The KPs of Conference-service and Content-service
are launched on the server machine with the SIB to reduce
network latency (1st deployment option in Table I). The KPs of
Agenda-service and Presentation-service operate on computers
connected to the projectors (2nd deployment option).

In general, a software infrastructure provides means for
application operation and ensures the application is operating
in a proper way. From this vision, a key characteristic is
dependability. A dependable application is such that [20] “re-
liance can justifiably be placed on the service it delivers”. Any
infrastructure must provide the following common attributes of
the application dependability [20].

Availability: readiness for usage.

Reliability: continuity of service.

Safety: nonoccurrence of catastrophic consequences on the
environment.

Confidentiality: nonuccurrence of unauthorized access.

Integrity: nonoccurrence of improper alterations of infor-
mation.

Maintainability: ability to undergo repairs and evolutions.

Runtime failures decrease the application dependability.
One of the approaches to resist failures is introduction of
support for fault tolerance. In general meaning, fault tolerance
includes methods to ensure that the application is capable to
deliver its services in the presence of faults.

At the moment, a Smart-M3 application suffers from the
lack of reliability and integrity, which clearly leads to reduced
availability of the service provision. Failures in basic infras-
tructural elements or during the subscription operation result
in improper application behavior up to breaks and complete
termination of the service delivery. Furthermore, data integrity
can be violated, thus leading to data corruption or loss.

We distinguish three failure reasons, which affects on the
Smart-M3 application dependability: 1) SIB failures, 2) WiFi

TABLE II. INFRASTRUCTURE ELEMENTS FAILURE REASONS

Element Failure
SIB software error (freezing, crashing);

lost subscription connection with KPs; data loss (over-
load).

Wireless net-
work

subscription connection breaks;
data packets loss.

Infrastructural
KP

lost network connection with the SIB;
software error (crashing).

network failures, 3) infrastructural KP failure. Table II provides
their summary.

SIB failures are most serious as they impact on all KPs
which interacts with the SIB and reduce the overall reliability.
Such failures are related to errors in current SIB implemen-
tation (prototype status) as well as the SIB overload caused
by frequent queries to shared information of the smart space
from multiple parallel KPs and large volumes of processed
information. Wireless network failures correlates with the net-
work overload, which leads to high latency or data loss. These
problems can be bypassed with powerful Wi-Fi equipment
and additional application-level mechanisms for control of data
loss. Failures in a particular KP are also related to errors in
the program code or happen due to dynamic nature of KP
participation in the smart space.

An unsafe point, which highly impacts the applications
reliability, is the subscription operation. Failures in subscrip-
tion lead to loss of subscription notifications from the SIB
to its KPs (indication that subscribed information has been
changed). In particular, network connection disruption for
subscription requires the KP to establish a new subscription
(resubscription).

To support the application fault tolerance we propose two
solutions intended to improve reliability and data integrity
of Smart-M3 applications. The first solution is addition of a
content service, as one of basic infrastructural elements, to
the software infrastructure of a Smart-M3 application. This
service supports volumetric data integrity and safety upon the
occurrence of failures, see Section IV. The second solution
consists of mechanisms for subscription control and service
restart. They aim at determining problems with subscription
and subsequent recovering, see Section V.

IV. CONTENT-SERVICE

Many Smart-M3 applications have to deal with volumetric
factual data, e.g., see [19], [4]. Data are collected from

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 18

external sources (web services in the Internet, data bases,
cloud storages) as well as generated or accumulated during
application operation due to activity of the participants. In
the considered example of the SmartRoom system, such data
include presentation, audio and video content, activity history,
or traces of happened events.

Every service produces and/or processes information,
which, in turn, is used by other services or users. Conceptually,
a smart space should not substitute existing data storages.
Instead, it acts as a semantic information hub that links hetero-
geneous data sources and fragments of knowledge with each
other [3], [4], [19]. Factual data, unlike dynamically changing
semantic links between them, should be kept in specialized
storages that provide more effective domain-specific functions
for data storing, accessing, and retrieval.

We propose adding a dedicated service—Content-service—
to the Smart-M3 application infrastructure. The service role
is persistent storage of volumetric data. What data to store is
determined by the application itself, and any its KP can exploit
the service to store data as files. The service employs well-
known file sharing web technologies, which are mature and
considered as providing high dependability. Every KP (or user
through a web interface) can upload some data (text, images,
audio, video, etc.) to the service and then share a download link
for the file. Files can be uploaded directly from KPs or users as
well as from external sources (e.g., video). Data from external
sources are duplicated in the service, allowing reduction the
data access time as the service is located closer to the users. In
this case, Content-service acts as a cache. Another advantage
of the service is support of portable applications working in the
LAN. It helps to use and accumulate data in the environments
without the Internet access.

The proposed architecture of Content-service is shown in
Fig. 3. The service is a web application. In our proof-of-the-
concept implementation for SmartRoom1, the service is written
in Python. Apache web server is used for hosting. Interaction
between the web server and the web application is performed
via a web server gateway interface (WSGI). Content-service
consists of three modules: logic, HTML templates and KP. The
logic processes HTTP requests received from the web server,
generates responses using HTML templates (templates of web
application pages), saves received files (user’s content). The
KP implements interaction with the smart space, where links
to files are published for shared use. Also, the KP provides
necessary information from the smart space to the logic (user
authentication check, already shared links). Apache web server
allows other KPs to receive (request for a file) stored files
directly using a published link from the smart space.

The process of file uploading and sharing is described in
Fig. 4. User 1 passes web authentication and uploads necessary
file(s) to the service via a web form. The file is sent to the
web server using the HTTP protocol. Then the file is passed
for processing to the Content-service logic. The service saves
the file in a special directory of the file system. All files in this
directory are shared and can be accessed by HTTP requests to
the web server. Finally, the service publishes a sharing link to
file in the smart space. If user 2 reads the file link from the

1The open source code (GPLv2) is available at sourceforge.net/projects/
smartroom/files/services/content-service/

Fig. 3. Content-service architecture: the use of matured web technologies to
improve the fault tolerance

Fig. 4. Content-service infrastructural function: steps of file upload and share

smart space, she/he can request the file from the web server.
The web server retrieves the file and sends it to the requester.

Since the Content-service publishes links on shared data
on user’s request and does not track smart space information
changes it has no need to use the subscription operation and
persistent connection to the SIB. Network connections to the
SIB are established only for the time of request processing.

The proposed solution increases the application depend-
ability due to delegating of large volumes data storing to a
specialized storage. The smart space content is not overloaded
by storing volumetric factual data. Support for keeping the
data integrity is due to the use of verified file sharing web
technologies.

V. MECHANISMS FOR FAULT TOLERANCE OF

SUBSCRIPTION

Let us consider mechanisms that support the fault tolerance
of the subscription operation in a Smart-M3 application. The
mechanisms are implemented on the side of infrastructural
KPs. The enhanced infrastructure is shown in Fig. 5.

Subscription control mechanism: infrastructural KPs make
active regular checks for subscribed data (e.g., on timer). It is
used to determine failures in the subscription operation. There
are two types of failures.

1) Notification has not been received although the sub-
scription connection is still working.

2) Subscription connection with the SIB has been lost.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 19

Fig. 5. Enhanced infrastructure for a Smart-M3 application

Checks for subscription can be implemented either in
KP code or in KPI2 middleware. The latter option makes
the application developer free from programming own fault
tolerance support since the control is performed automatically
by the KPI. Note that Content-service does not need this
subscription control mechanism because the service uses no
subscriptions.

To implement an active check of subscription one can
use the notification model introduced in [21]. In brief, a
KP subscribes on its own notification type (a special set of
RDF triples kept in the smart space). If such a notification
is published in the smart space and the subscription has
not delivered it to the KP then the infrastructural KP can
check presence of unprocessed notification triples by itself
and continue processing. Checks can be performed either
automatically or manually.

If a failure with subscription has been detected, the follow-
ing mechanism can be used for recovering. For simplicity we
assume that each service is implemented with one infrastruc-
tural KP.

Restart/reconnection: an infrastructural KP reestablishes its
network connection with the smart space (i.e., with SIB) and
restores the previous state. Since the network connection is
reestablished the subscription is also reset. The key point is
restoration of the previous service state (the state the service
was in before the failure). Service restart/reconnection is
performed automatically after the failure detection. Manual
intervention of a Smart-M3 application administrator is also
allowed.

Reconnection implies that the service tries to reestablish
the KP connection with the SIB during runtime, so the service
process remains working. Therefore, connection reestablishing
is performed by means of the service itself. On the other
hand, during restart the service process is terminated, the KPs
implementing this service are started again and connection is
established once more. Restart is performed by means of the
program environment where the service is launched, i.e., by
means of operating system. Restart is convenient for use with
console-oriented KPs (they also may run on a remote server
as daemons). A console application or daemon can be quickly
shut down and started again. In contrast, reconnection is
essential for GUI-oriented KPs because they cannot be closed
and then started again without affecting the users (at least, it

2Knowledge Processor Interface. It provides operations on accessing and
interacting with smart space

TABLE III. USE OF MECHANISMS FOR SUBSCRIPTION FAULT

TOLERANCE IN SMARTROOM

Infrastructure element Restart Reconnection
SIB + (auto) −
Conference-service + (auto) −
Agenda-service + (manual) + (manual)

Presentation-service + (manual) + (manual)

Content-service + (manual) −

cannot be hidden from the users). Although reconnection may
be used in console-oriented KPs but it requires adding signal
handlers into the KP code, thus making their development
more complicated.

The proposed mechanisms of subscription control and
restart/reconnection allow to increase the application depend-
ability. They support detection of failures during subscription,
which is treated as the most sensitive Smart-M3 operation, and
subsequent recovery from such failures.

Consider the use of these mechanisms in the SmartRoom
system (Table III). The SIB and Conference-service are con-
sole applications. Content-service is a web application. They
are launched on the same machine since it is necessary to
make this components working continuously and to have stable
access to the smart space. The server machine is working under
Ubuntu Linux OS, which provides an effective tool for launch-
ing console applications as services (daemons): Upstart event-
based init daemon.3 It controls services starting and stopping.
Furthermore, it provides automatic service respawning: if there
was failure in an infrastructural KP and it crashed then the KP
will be restarted. Upstart also supports starting and stopping
services in a chain: after starting a service, dependent services
are started automatically. Therefore the SIB and Conference-
service are launched as daemons on the server machine and
Upstart performs their reconnection.

Launching the SIB (which consists of two applications:
redsibd and sib-tcp) and Conference-service on the server
machine is performed in the specific order:

redsibd → sib-tcp → conference-service

For example, see Upstart configuration file for Conference-
service below.

launch service after sib-tcp
start on started sib-tcp
stop service before sib-tcp stopping
stop on stopping sib-tcp
restart service on crash
respawn
run service
exec /usr/bin/conference-service

This Upstart configuration file specifies conditions when
the service is started and stopped and what dependent services
to run. Notable configuration statement is respawn. It spec-
ifies restarting the service whenever it crashes.

The same way, the processes of redsibd and sib-tcp are
launched. Table IV shows the dependencies described in con-
figuration files for the SIB and Conference-service.

3http://upstart.ubuntu.com

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 20

TABLE IV. DEPENDENCIES FOR LAUNCHING THE SIB AND

CONFERENCE-SERVICE IN SMARTROOM

Process Launching dependencies
redsibd start on startup (launches with OS)

sib-tcp start on started redsibd
stop on stopping redsibd

conference-service start on started sib-tcp
stop on stopping sib-tcp

In such manner, restart of console services is organized
in the SmartRoom system. After launching redisbd, the other
processes are started in a chain. If one of them is restarted
(restart can be produced automatically by respawn) the
dependent ones will be also restarted.

Since Content-service is a web application, it does not
need a persistent network connection with the SIB. Content-
service launching is controlled by Apache web server, and
connection with the SIB is established only during processing
of a user request. If a failure occurs then restarting Content-
service needs restarting the web server.

In GUI-oriented services, such as Agenda-service and
Presentation-service, restart is performed manually. (One has
to close the application and start it again.) This way is not
appropriate in SmartRoom since the services continuously
display information: activity agenda and speaker’s presenta-
tion. Their closing will spoil the visual experience of partici-
pants. The preferable way here is reconnection, which can be
performed manually by an administrator. The subscription is
recovered without termination of the service operation.

VI. EVALUATION

The considered above Content-service and mechanisms
for subscription fault tolerance all support the dependability
of Smart-M3 applications. They improve such attributes as
reliability, integrity and maintainability. This section evaluates
the proposed solutions. We analyze reduction of negative con-
sequences for possible failures and confirm that the solutions
are acceptable for such systems like SmartRoom.

A. Content-service

Let files be stored directly in the smart space. If failures
occur (with SIB, network or sending KP) during file saving
or processing then such a file will be corrupted or lost.
Smart space content is represented as a set of RDF triples.
Converting volumetric factual data to triples is complex and
time-consuming task. If a failure interrupts such conversion
then the data integrity is broken and the operation should
be started from the beginning. Content-service uses matured
web technologies for file receiving and reliable file system for
storing. It clearly improves the application reliability and data
integrity.

Another failure occurs if a Smart-M3 application processes
a file stored on a remote host. If there are network problems or
the host is shut down the file becomes unreachable. Content-
service duplicates the file locally in advance. Thus, it ensures
that the file will be available.

Content-service automates (to some extend) the process of
file collecting. In such systems as SmartRoom the participants
should provide their presentational content to organizers. In

manual file collection, faults frequently occur due to the human
factor. The user can easily make an error when collecting or
saving files. Content-service defines a uniform way to collect
files, thus reducing the human factor.

Although Content-service enhances separate attributes of
the application dependability (reliability, integrity), it still acts
as a centralized solution, with certain limits of the depend-
ability. Nevertheless, a distributed storage can easily make the
system complicated and worsen the dependability due to the
increased number of elements. Our deployments of Smart-
Room system in various practical setting confirms that such
a centralized solution is acceptable for the considered class of
Smart-M3 applications. Note that many failures in Content-
service can be controlled and repaired by other mechanisms.

B. Mechanisms for subscription fault tolerance

Subscription control is intended to determine a failure in
two situations: 1) when subscription indication was lost and
2) when subscription connection was disrupted. In the first
situation, the mechanism checks for subscribed data and in
case of changes it means that a failure occurred. Hence proac-
tive subscription operation is augmented with active checking
on time. In the second situation, connection disruption is
determined and subscription is restored.

In these mechanisms, the application reliability and main-
tainability are improved due to control that the subscription
is working and notifications on changed data are received. If
a failure has occurred then the application is recovered and
continues its operation. Nevertheless, it is not always possible
to detect correctly information changes. (Between subsequent
checks, some data are changed and then the data are changed
back.) Also there is no clear criterion on how to identify breaks
in a subscription connection.

Recently, this problem results in development of mathe-
matical methods to estimate the frequency of such checks. For
the Smart-M3 case, a model of subscription check interval is
considered in [22]. Note, however, that approach is focused
on client KPs. In contrast to infrastructural KPs, client KPs
are mobile and their individual operation is less crucial for the
whole application operation.

Restart/reconnect is a subsequent action of the subscription
control. The action recovers application after a detected failure.
It is effective against failures in operation of a particular
infrastructural element: freezes, crashes, or misbehavior. Apart
from the subscription control, additional control mechanisms
are still needed to detect other types of failures and to invoke
restart/reconnection.

C. Performance

We measured the time that is needed to restart and recon-
nect the SmartRoom services. The experimental setup includes
a server computer (Ubuntu Linux, Intel Xeon 2.30GHz, 4GB
RAM) for hosting the SIB, Conference-service, and Content-
service. The server is located in the corporate network, not in
the same LAN of SmartRoom.

A personal computer (Windows, Intel Core 2 Quad
2.40GHz, 8GB RAM) is used to run Agenda-service and
Presentation-service. The computer is in the same LAN with

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 21

TABLE V. SERVICE AVAILABILITY: RESTORATION TIME

Infrastructure element Restart (sec) Reconnection (sec)
SIB 1.045 −
Conference-service 2.023 −
Agenda-service 1.350 0.134

Presentation-service 0.230 0.075

Content-service 2.193 −

mobile SmartRoom clients. In the case of restart, the time be-
tween service shut down and full start up (readiness of service
to process requests) was measured. In case of reconnection,
the time from the disconnect point until service readiness was
measured. For each experiment, 10 samples were measured.
The experimental results are summarized in Table V.

We may conclude that both restart and reconnection mech-
anisms are rather fast. The time is less than 2 seconds, which
is appropriate for the considered class of applications.

For evaluation of the Content-service efficiency the file
upload time is estimated. Upload time was measured on two
popular web servers: Apache and nginx. They represent the
“heavy” and “lightweight” server types, respectively. Testing
on different servers analyzes the dependency of Content-
service on hosting middleware. To upload a 10Mb-file, it takes
1.814 seconds on average (standard deviation is 0.014) and
1.842 seconds (standard deviation is 0.030) for Apache and
nginx, respectively. The size of 10Mb shows the worst case
since it is the maximal permitted size for presentation in
the SmartRoom system. Therefore, Content-service runs with
similar efficiency on both considered web servers and takes
less than 2 seconds to upload a presentation.

VII. CONCLUSION

This paper particularized the notion of software infras-
tructure for the case of Smart-M3 applications. We presented
two solutions for the fault tolerance; both are implemented on
the software infrastructure level of a given application. The
first solution adds to the infrastructure a dedicated service to
control of content. This Content-service improves data safety
and integrity when the application operates with volumetric
factual data. The second solution consists of mechanisms for
subscription control (fault detection) and recovery (when fault
has happened). Using the SmartRoom system as a use case
study, we show the applicability of our solutions for the
real-life Smart-M3 application. We experimentally confirm the
efficiency of the proposed solutions.

ACKNOWLEDGMENT

This research is financially supported by project # 1481
from the basic part of state research assignment # 2014/154
of the Ministry of Education and Science of the Russian
Federation and by research project # 14-07-00252 of the
Russian Fund for Basic Research. The work is a part of project
14.574.21.0060 (RFMEFI57414X0060) of Federal Target Pro-
gram “Research and development on priority directions of
scientific-technological complex of Russia for 2014–2020”.
The article was published with financial support from the
Strategic Development Program of Petrozavodsk State Uni-
versity. The authors are grateful to the Open Innovations
Association FRUCT for its support and R&D infrastructure.

We would also like to thank anonymous reviewers for their
valuable comments on this paper.

REFERENCES

[1] D. J. Cook and S. K. Das, “How smart are our environments? an updated
look at the state of the art,” Pervasive and Mobile Computing, vol. 3,
no. 2, pp. 53–73, 2007.

[2] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty,
“Intelligent agents meet the semantic web in smart spaces,” IEEE
Internet Computing, vol. 8, pp. 69–79, November 2004.

[3] S. Balandin and H. Waris, “Key properties in the development of smart
spaces,” in Proc. 5th Int’l Conf. Universal Access in Human-Computer
Interaction (UAHCI ’09). Part II: Intelligent and Ubiquitous Interaction
Environments, LNCS 5615, C. Stephanidis, Ed. Springer-Verlag, 2009,
pp. 3–12.

[4] D. Korzun, S. Balandin, and A. Gurtov, “Deployment of Smart Spaces
in Internet of Things: Overview of the design challenges,” in Proc.
13th Int’l Conf. Next Generation Wired/Wireless Networking and 6th
Conf. on Internet of Things and Smart Spaces (NEW2AN/ruSMART
2013), LNCS 8121, S. Balandin, S. Andreev, and Y. Koucheryavy, Eds.
Springer-Verlag, Aug. 2013, pp. 48–59.

[5] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[6] D. D. Corkill, “Collaborating Software: Blackboard and Multi-Agent
Systems & the Future,” in Proc. the Int’l Lisp Conference, October
2003, invited paper.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, pp.
114–131, June 2003.

[8] A. Smirnov, A. Kashnevik, N. Shilov, I. Oliver, S. Balandin, and
S. Boldyrev, “Anonymous agent coordination in smart spaces: State-
of-the-art,” in Proc. 9th Int’l Conf. Next Generation Wired/Wireless
Networking (NEW2AN’09) and 2nd Conf. Smart Spaces (ruSMART’09),
LNCS 5764. Springer-Verlag, 2009, pp. 42–51.

[9] A. A. Lomov and D. G. Korzun, “Subscription operation in Smart-
M3,” in Proc. 10th Conf. of Open Innovations Association FRUCT
and 2nd Finnish–Russian Mobile Linux Summit, S. Balandin and
A. Ovchinnikov, Eds. SUAI, Nov. 2011, pp. 83–94.

[10] W. Xie, Y. Shi, G. Xu, and Y. Mao, “Smart platform — a software
infrastructure for smart space (SISS),” in Proc. 4th IEEE Int’l Conf. on
Multimodal Interfaces (ICMI ’02). IEEE Computer Society, 2002, pp.
429–434.

[11] X. Wang, J. S. Dong, C. Chin, S. R. Hettiarachchi, and D. Zhang,
“Semantic space: An infrastructure for smart spaces,” Computing, vol. 1,
no. 2, pp. 67–74, 2002.

[12] S. Sathish and C. di Flora, “Supporting smart space infrastructures:
a dynamic context-model composition framework,” in Proc. 3rd Int’l
Conf. on Mobile Multimedia Communications. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), 2007, p. 67.

[13] C. A. da Costa, A. C. Yamin, and C. F. R. Geyer, “Toward a general
software infrastructure for ubiquitous computing,” IEEE Pervasive
Computing, vol. 7, no. 1, pp. 64–73, 2008.

[14] I. Galov and D. Korzun, “The smartroom infrastructure: Service run-
time reliability,” in Proc. 14th Conf. of Open Innovations Association
FRUCT, S. Balandin and U. Trifonova, Eds. SUAI, Nov. 2013, pp.
188–189.

[15] D. Korzun, I. Galov, and S. Balandin, “Development of smart room
services on top of smart-m3,” in Proc. 14th Conf. of Open Innovations
Association FRUCT, S. Balandin and U. Trifonova, Eds. SUAI, Nov.
2013, pp. 37–44.

[16] D. Korzun, I. Galov, A. Kashevnik, and S. Balandin, “Virtual shared
workspace for smart spaces and M3-based case study,” in Proc. 15th
Conf. of Open Innovations Association FRUCT, S. Balandin and U. Tri-
fonova, Eds. ITMO Univeristy, Apr. 2014, pp. 60–68.

[17] A. Vasilev, I. Paramonov, S. Balandin, E. Dashkova, and Y. Kouch-
eryavy, “Mechanism for context-aware substitution of Smart-M3 agents

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 22

based on dataflow network model,” in Proc. Int’l Congress on Ul-
tra Modern Telecommunications and Control Systems and Workshops
(ICUMT). IEEE, 2013, pp. 113–117.

[18] R. Kadirov, E. Cvetkov, and D. Korzun, “Sensors in a Smart Room:
Preliminary study,” in Proc. 12th Conf. of Open Innovations Association
FRUCT and Seminar on e-Tourism, S. Balandin and A. Ovchinnikov,
Eds. SUAI, Nov. 2012, pp. 37–42.

[19] D. G. Korzun, I. V. Galov, A. M. Kashevnik, N. G. Shilov, K. Krinkin,
and Y. Korolev, “Integration of Smart-M3 applications: Blogging in
smart conference,” in Proc. 4th Conf. Smart Spaces (ruSMART’11)
and 11th Int’l Conf. Next Generation Wired/Wireless Networking
(NEW2AN’11). Springer-Verlag, Aug. 2011, pp. 51–62.

[20] M. R. Lyu et al., Handbook of software reliability engineering. IEEE
computer society press CA, 1996, vol. 222.

[21] I. Galov and D. Korzun, “Notification model for Smart-M3 appli-
cations,” in Proc. 14th Int’l Conf. Next Generation Wired/Wireless
Networking and 7th Conf. on Internet of Things and Smart Spaces
(NEW2AN/ruSMART 2014), LNCS 8638, S. Balandin, S. Andreev, and
Y. Koucheryavy, Eds. Springer-Verlag, Aug. 2014, pp. 121–132.

[22] A. Vdovenko and D. Korzun, “Active control by a mobile client of
subscription notifications in smart space,” in These Proceedings, Oct.
2014.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 23

