PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

Indirect Interaction of Agents in a Smart Space:
Operation Efficiency and Fault Tolerance Support

Ivan V. Galov
Petrozavodsk State University (PetrSU)
Petrozavodsk, Russia
galov@cs.karelia.ru

Abstract—The Smart-M3 platform allows to create distributed
applications due to interaction of agents via shared information
space. The important problem is dependability of agent inter-
actions which can be affected by various failures in ubiquitous
computing environment. To support agent interactions we suggest
improved agent operation processing scheme, notification model
for effective agents coordination and fault tolerance mechanisms.

I. INTRODUCTION

Various ubiquitous computing environments become more
popular [1]. Smart spaces is a paradigm related to creating such
environments. Typical smart space system is targeted for use in
a physical spatial-constrained space involving multitude of var-
ious devices employing Internet of Things (IoT) technologies.
Smart-M3 [2] is an open source prototype for developing and
deploying smart spaces. It allows to create distributed multi-
agent applications based on publish/subscribe and blackboard
models. Applications are constructed due to indirect interaction
of agents via shared information space which is maintained by
semantic information broker (SIB). Smart-M3 agents are called
knowledge processors (KPs).

An important issue in smart spaces is a way of constructing,
deploying and running systems in IoT environments. It brings
different challenges such as failures in interaction between KPs
during processing KP requests or failures in smart space infras-
tructure [3], [4] because of volatile nature of IoT environment
devices and communications. To overcome such problems we
consider approaches of agent interactions support on SIB side
as well as on KP side.

The rest of the abstract is organized as follows. Section II
describes problem of indirect interactions support and related
work. Section III suggests operation processing scheme in
SIB to increase operation efficiency. Section IV considers
notification model to coordinate KP interactions. Section V
is related to fault tolerance mechanisms to improve Smart-M3
applications dependability. Section VI concludes the abstract.

II. AGENT INTERACTIONS SUPPORT

Agent interactions are performed due to operation requests
processing in SIB. The way the operation processing is per-
formed and supported in SIB affects on operation efficiency
during KP interaction. If some operations are not properly
processed it results in interaction problems and errors in
applications. Thus it is necessary to have reliable and effective
operation processing scheme in SIB.

Subscription is the most important operation which im-
plements indirect interactions. As subscription is a resource-
consuming operation it is essential to arrange KP interactions
in effective way with minimized number of subscriptions. With
minimal subscriptions number SIB load decreases and applica-
tions become more dependable as less number of subscriptions
decreases the chance of subscription connection failure.

Besides dependability of interactions also depends on
smart space infrastructure. Failures in infrastructure elements
can lead to disruption in interactions and violate the right
application operation. Utilizing mechanisms which support
infrastructure elements and restore their operability in case of
failures allows to increase applications dependability.

Currently there are works related to constructing and sup-
porting of smart space applications and services [5], [6], [7],
[8]. But they do not provide definite methods how to support
dependable interactions between KPs and deploy dependable
smart space infrastructure in IoT environment. We suggest
three approaches to support smart space deploying and improve
dependability of KP interactions: a) by improving SIB opera-
tions processing scheme, b) by introducing notification model
to assist programmers in developing effective and dependable
agent interactions, and c¢) by enforcing Smart-M3 software
infrastructure with fault tolerance mechanisms.

III. SIB OPERATIONS PROCESSING

Current SIB implementations have several drawbacks af-
fecting their dependability [9] thus we suggested plug-in
based SIB architecture used in our CuteSIB implementation.
Improved architecture allows to configure operation processing
flow and extends standard SSAP operations with SIB rules.
CuteSIB operation processing scheme is shown in Fig. 1.

SPARQL
Handler »
‘operation
result
operatiol
command ; y DHfe
Network Basic Operation | resuft Redland
L > | R
part Handler »| Triplestore
response A operation
‘command
response triple thanges ~ ©Peration
command,
subscription B
indication opeiation
> Subscripti
ubscription
Handler

Fig. 1. Operation processing in CuteSIB

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

All requests from KPs are represented as commands.
Commands are created in network part of SIB and then are
sent to scheduler module sequentially. Scheduler identifies
command type (type of request) and then dispatches command
to corresponding command handler. There are several com-
mand handlers: for basic operations (insert, remove, update,
query), SPARQL requests and subscription operations. Using
different command handlers allows to process different com-
mands simultaneously. Besides improved architecture allows
to activate/deactivate different command handlers thus it is
possible to configure operation processing in SIB according
to environmental needs. Each command handler gains access
to triplestore (which is maintained by Redland library), per-
forms corresponding operation and send response command
to network part via scheduler.

Subscription is a special operation as subscription handler
should interact with basic operations handler. When basic op-
eration (which changes some data in triplestore) is performed,
information about changes is sent to subscription handler
asynchronously. Subscription handler checks all subscriptions
according to changes and sends subscription indication re-
sponse to network part if it is required.

CuteSIB operations implementation is based on RedSIB
[10]. Unlike RedSIB, CuteSIB does not use D-BUS to com-
municate between network part and triplestore. We measured
percent of failed subscription indications (indications which
were not received) emulating 100 KPs working at a time. In
the experiment parallel working KP processes sent random
triples they are subscribed to and counted number of received
subscription indications. Then the average subscription loss
percent is evaluated. The experiment showed that CuteSIB
subscription loss is about 6% and RedSIB subscription loss
is 45%. Thus D-BUS elimination leads to decrease of sub-
scription indication loss. on 39%. We also measured operation
processing time (time since operation request is received and
operation response is ready) on CuteSIB and RedSIB. Opera-
tion processing time on both SIBs remained approximately the
same as they use the same operation implementations. Thus
in comparison with RedSIB operation efficiency in CuteSIB
improved due to decreasing of subscription indication loss with
preserved operation processing time.

IV. NOTIFICATION MODEL

Apart from reliable SIB operations processing it is essential
to have an approach for designing an effective interactions
between agents. Notification model [11] allows to initiate in-
teraction in situation when changing some particular ontology
data is not sufficient for inducing interaction on subscription.
Notification is represented as a set of special triples which are
sent from one KP to another to initiate interaction (Fig. 2).
Notification can transfer to another KP either text message or
some part of application data (individuals from ontology).

Usage of notification model by programmers consist in
several steps: a) defining number of interactions between
every two KPs, b) describing notification properties and its
parameters in notification ontology for every interaction, c)
interactions programming according to notification ontology.
This way programmers can design and describe effective
interactions between KPs.

157

Smart Space
ot st s

notification triples

G4 Jindividual-‘l Jproperty-1,"value1” r \\
§ individual-1,property-2,"value2” 3

T individual-n,property-1,"value1” ’:‘
~« _individual-n,property-2,"value2” .«

Fig. 2. Relation between notification and application triples

Consider notification model usage in SmartRoom system
[12]. There are three base services: conference-service which
controls conference runtime, agenda-service which displays
conference agenda and presentation-service which displays
speaker presentations. When chairman starts the conference —
“startConference” notification is sent to conference service and
it starts the conference. During the conference start conference-
service sends “updateAgenda” notification to agenda-service
to update current speaker and “startPresentation” notification
to presentation-service to start presentation slides show. At
the end of presentation speaker or chairman sends “endP-
resentation” mnotification to the conference-service, the next
presentation is started and the process repeats. In this case
notification model is used to initiate execution of particular
actions by service.

Notification model can be used for defining interactions
between KPs in Smart-M3 application in unified and ef-
fective way. Notification allows to initiate interaction and
pass information to another KP due to possibility to transfer
either text data or link to smart space data with notification.
Such approach allows to reconsider and minimize number of
subscriptions needed for KPs in Smart-M3 application.

V. FAULT TOLERANCE MECHANISMS

Dependability of KP requests processing can be supported
by special fault tolerance mechanisms implemented on SIB
or KP side or on software infrastructure level. Such mecha-
nisms extend software infrastructure of Smart-M3 application
with restart/reconnect and subscription control functionality
and introduce special content-service for persistent storage of
volumetric data [13]. Fig. 3 shows enhanced infrastructure
for a Smart-M3 application. Every KP implements reconnect
function and in case of network problems can reestablish
network connection with SIB. If there is a problem with
KP application then operating system software can restore
KP functioning with restarting this KP. Subscription control
mechanism performs regular checks for subscribed data and
in case of failure can restore KP’s subscriptions. Many Smart-
M3 applications can work with volumetric data. Content-
service represents a file store which allows other KPs to store
volumetric data and share links to this data in a smart space.

Fault tolerance mechanisms considered above can be ap-
plied in any Smart-M3 application to increase its dependability.
Due to network connection and subscription recovering KPs
can interact in ubiquitous computing environments and con-
tinue interactions with each other in case of failures. In case

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

Mechanisms: Infrastructure of Smart-M3 application
SC — subscription control RS
RS —restart - RS RC
RC - reconnect [! SIB Content-service
iy
computer network
c . SCRS =1 SCRS é SCRS

; RC H RC RC

B e I I

Fig. 3. Enhanced infrastructure for a Smart-M3 application

of failure of full infrastructure content-service allows to keep
volumetric data safe.

VI. CONCLUSION

In this abstract we suggested three approaches to support
interactions between KPs: operation processing scheme, no-
tification model and fault tolerance mechanisms. They allow
to define effective interactions between KPs, process opera-
tions in more dependable and effective way and recover KP
interactions on failures. It increases dependability of the whole
Smart-M3 application and software infrastructure.

ACKNOWLEDGMENT

This research is financially supported by the Ministry of
Education and Science of Russia within project # 1481 of
the basic part of state research assignment for 2014-2016 and
project # 14.574.21.0060 (RFMEFI57414X0060) of Federal
Target Program “Research and development on priority direc-
tions of scientific-technological complex of Russia for 2014—
2020”. The reported study was supported by the Russian Foun-
dation for Basic Research, research project # 14-07-00252. We
would like to thank Dmitry Korzun, Alexey Kashevnik, and
Sergey Balandin for their feedback and expertise.

REFERENCES

[11 J. Augusto, V. Callaghan, D. Cook, A. Kameas, and I. Satoh,
“Intelligent environments: a manifesto,” Human-centric Computing
and Information Sciences, vol. 3, no. 1, 2013. [Online]. Available:

http://dx.doi.org/10.1186/2192-1962-3-12

158

(2]

(3]

(51

(71

(8]

(91

(10]

(11]

[12]

[13]

J. Honkola, H. Laine, R. Brown, and O. Tyrkkd, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). 1EEE Computer Society, Jun. 2010, pp. 1041-1046.

P. Pande and A. R. Padwalkar, “Internet of things—a future of internet:
A survey,” International Journal of Advance Research in Computer
Science and Management Studies, vol. 2, no. 2, pp. 354-361, 2014.

I. Galov and D. Korzun, “The SmartRoom infrastructure: Service
runtime reliability,” in Proc. 14th Conf. of Open Innovations Association
FRUCT, S. Balandin and U. Trifonova, Eds. SUAI, Nov. 2013, pp.
188-189.

D. Korzun, “Service formalism and architectural abstractions for smart
space applications,” in Proc. 10th Central & Eastern European Software
Engineering Conference in Russia (CEE-SECR 2014). ACM, Oct.
2014.

S. Balandin and H. Waris, “Key properties in the development of smart
spaces,” in Proc. 5th Int’l Conf. Universal Access in Human-Computer
Interaction (UAHCI °09). Part II: Intelligent and Ubiquitous Interaction
Environments, LNCS 5615, C. Stephanidis, Ed. Springer-Verlag, 2009,
pp- 3-12.

S. Balandin, I. Oliver, S. Boldyrev, A. Smirnov, A. Kashevnik, and
N. Shilov, “Anonymous agents coordination in smart spaces,” in Proc.
4th Int’l Conf. Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2010), Oct. 2010, pp. 242-246.

I. Paramonov, A. Vasilev, D. Laure, and I. Timofeev, “Agent substitution
mechanism for dataflow networks: Case study and implementation in
Smart-M3,” in Proc. 13th Int’l Conf. Next Generation Wired/Wireless
Networking and 6th Conf. on Internet of Things and Smart Spaces
(NEW2AN/ruSMART 2013), ser. LNCS 8121, S. Balandin, S. Andreev,
and Y. Koucheryavy, Eds. Springer-Verlag, Aug. 2013, pp. 60-71.

I. Galov and D. Korzun, “Design of semantic information broker for
localized computing environments in the Internet of Things,” in Proc.
17th Conf. of Open Innovations Association FRUCT. 1TMO Univeristy,
Apr. 2015, pp. 36-43.

F. Morandi, L. Roffia, A. D’Elia, F. Vergari, and T. S. Cinotti, “RedSib:
a Smart-M3 semantic information broker implementation,” in Proc. 12th
Conf. of Open Innovations Association FRUCT and Seminar on e-
Tourism, S. Balandin and A. Ovchinnikov, Eds. SUAI, Nov. 2012,
pp. 86-98.

I. Galov and D. Korzun, “A notification model for Smart-M3 ap-
plications,” in Proc. 14th Int’l Conf. Next Generation Wired/Wireless
Networking and 7th Conf. on Internet of Things and Smart Spaces
(NEW2AN/ruSMART 2014), LNCS 8638, S. Balandin, S. Andreev, and
Y. Koucheryavy, Eds. Springer-Verlag, Aug. 2014, pp. 121-132.

D. Korzun, I. Galov, A. Kashevnik, and S. Balandin, “Virtual shared
workspace for smart spaces and M3-based case study,” in Proc. 15th
Conf. of Open Innovations Association FRUCT, S. Balandin and U. Tri-
fonova, Eds. ITMO Univeristy, Apr. 2014, pp. 60-68.

I. Galov and D. Korzun, “Fault tolerance support of Smart-M3 applica-
tion on the software infrastructure level,” in Proc. 16th Conf. of Open
Innovations Association FRUCT. ITMO Univeristy, Oct. 2014, pp.
16-23.

