
Search for Answers in Ontological-Semantic Graph

Anastasia Mochalova

IKIR FEB RAS, Paratunka (Kamchatka region), Russia

PetrSU, Petrozavodsk, Russia

stark345@gmail.com

Abstract In this work we propose an architecture of a

question answering system constructing anticipated answers and

on fuzzy comparison of ontological-semantic graphs of

anticipated answers and the analyzed text. We describe a method

of ontological-semantic graphs comparison using an ontological-

semantic analyzer based on basic ontological-semantic rules. In

the working process of the ontological-semantic analyzer, the text

is gradually reduced in accordance with basic ontological-

semantic rules. In the work we implemented in software the

ontological-semantic analyzer and a question answering system

prototype. We have conducted the experiments that allow to

conclude about efficiency of using an expert system in the

ontological-semantic analyzer and about productivity of the

described approaches to implementation of the question

answering system and the ontological-semantic analyzer.

I. INTRODUCTION

Development of a question-answering system is becoming

more and more relevant problem in the present days. It is
connected with an avalanching increase in information volume

that contemporary people have to operate.

A variety of approaches to organizing the architecture of

question answering system (QAS) exist. For example, in the
most known QAS Watson, analysis of the asked question is
performed as well as its classification, decomposition into

simple parts and generation of possible answers by means of

search in knowledge sources. These may be unstructured
knowledge such as usual web pages, weakly structured

knowledge such as Wikipedia articles, and structured
knowledge such as RDF storages. The process of hypotheses

production is divided into two phases: primary search and

generation of answers hypotheses. In the primary search

process, reference to various knowledge sources is performed.
On the stage of hypotheses generation, transformation of the
primary search results into answer format is performed. The

algorithm of this transformation is specific for the knowledge

source. For example, for the results found by the index

is returned as an answer. When the relevant results are found

in the RDF-triples storage, transformation into expression in
natural language is performed, etc. [1].

The aim of this work is development of the architecture

and software implementation of a natural-language QAS
prototype. User inputs into the system the following data:

As output data, the system must provide the user with:

 a question in natural language;

 an analyzed text in which the system must look for an

answer to user's question

As output data, the system must provide the user with:.

 an answer in natural language;

 information about basing on which data the answer is

given.

For the moment, one of the most effective methods of
implementation of a QAS is considered to be a method based
on comparing semantic graphs of the question and of

sentences of the analyzed text. Usage of such method for

development and implementation of such systems is described

in a series of research works (for instance, [2-6] etc.) and is
admitted by their authors to be effective.

In this paper we propose a QAS architecture utilizes
comparison of extended semantic graphs that use data from the

ontology. For representation of such graphs we use the notion

ogical- -

Another feature of the proposed approach to organization
of QAS architecture is that instead of traditional comparison of

semantic graphs, comparison of ontological-semantic graphs is
considered. In the working process the program compares such

graphs constructed from anticipated answers with graphs

constructed from the analyzed text. With that, the ontological-
semantic graph of the analyzed text is constructed by all

ontological-semantic graphs that were constructed from
separate sentences of the given text considering logical

connections between indivisible sense entities of the text.

II. ONTOLOGICAL-SEMANTIC GRAPHS

A semantic dependency is a certain universal relation that

a native speaker beholds in the language. This relation is
binary, that is, it holds from one semantic node to another [7].

It is convenient to regard indivisible sense entities of the
language as semantic nodes. They can be represented, for

example, by the named entitites. We say that two different

semantic nodes and from the same sentence are related

by a semantic dependency named R (denote) if

there is a certain universal binary relation between and .

For concrete semantic nodes and and the

dependency R , the direction is selected in such a way that the

formula would

 is for

By an ontological-semantic graph we shall call an oriented
graph, the vertices of which are indivisible sense entities of the

analyzed text with corresponding information from the

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

ontology, and named edges define the name of semantic

dependencies connecting these indivisible sense entities. The
direction of the edges of the ontological-semantic graph

defines the arguments sequence of such dependencies. In
Fig. 1 there is an example of an ontological-semantic graph

constructed from the sentence bacteriologist

Alexander Fleming discovered penicillin in 1928 . In curly
brackets we indicate the ontological information

corresponding to each vertex of the graph.

Fig. 1. Graphical representation of an ontological-semantic graph

For each interrogative sentence in a QAS we propose to
construct a set of anticipated answers with unique semantic

structure, comprising various most probable answer

formulations to a user-defined question. In case the user's

question contains an interrogative word (where, who, why,

when etc.), these interrogative words are replaced with so-

information is known (for example, some morphological

characteristics or some data from the ontology). In Table I we

present several anticipated answers constructed for an
interrogative sentence with

examples of corresponding sentences from the analyzed text.

In the examples, indefinite components are denoted by
X

characteristics and corresponding data from the ontology are

given. G() means any hyponym or hyperonym for kept

in the ontology, S() any synonym for , its alternative

name or short definition.

We shall call the vertices of an ontological-semantic graph

that correspond to indefinite components of the anticipated
answer as indefinite vertices.

In Fig. 2 we present an example of an ontological-semantic

by X
X, about which

we know that it is a family group (Name) or a

X is encircled with dashed line in the Fig. 2. For transforming

an anticipated answer into an ontological-semantic graph we
use a set of specially developed rules that are more detailly

described in work [8].

An alternative approach to forming the anticipated answers
is described in work [9]: the authors propose an approach of

constructing SPARQL requests after the question asked by the

user in natural language. At this, the following steps are

performed: segmentation of questions into phrases; mapping
of phrases to semantic entities, classes, and relations; and

construction of SPARQL triple patterns.

TABLE I. ANTICIPATED ANSWERS AND EXAMPLES OF THE CORRESPONDING

ANSWERS FROM THE ANALYZED TEXT

Fig. 2. Graphical representation of an ontological-semantic graph of the
anticipated answer

III. QAS ARCHITECTURE UTILIZES ONTOLOGICAL-SEMANTIC

GRAPHS

The proposed architecture of a QAS, utilizes ontological-

semantic graphs, is presented in Fig. 3.

As the input into the system, the user provides an

interrogative sentence in natural language and the analyzed

text , which is anticipated to contain an answer to the

question. and are passed on the input of the module of

initial text processing, where they take the initial processing:
text formatting symbols that do not bear any semantic role are

deleted, orthographical and syntactical errors are corrected, the
text is tokenized (that includes breaking the text into

paragraphs, sentences and words; for each selected word its

morphological characteristics are defined with use of
corresponding morphological dictionaries). The next stage is

segregation of indivisible sense entities, that may be separate

words of word groups united by some common meaning.

Having taken the initial processing and , together

with all data received on this stage (depicted as and

A(Q) on the diagram), are passed: to the module of

ontological-semantic graphs construction, to the

module of anticipated answers construction. After constructing

anticipated answers , in accordance with

the rules using functions for work with ontology (such as G(),

S() etc.), all s, as well as are passed to the module of

ontological-semantic graphs construction.

Anticipated answer Example of the answer

 was S(discover) S(penicillin)

:{Name || G(person)}

In 1928, penicillin was discovered
by Alexander Fleming.

 S(discover) S(penicillin)

:{Name || G(person)}

A British bacteriologist discovered
the first antibiotic in 1928.

who S(discover) S(penicillin),

:{Name || G(person)}

A. Fleming, who discovered
penicillin, was awarded Nobel
Prize.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 175 --

Fig. 3. Architecture of a QAS, utilizes ontological-semantic graphs

The work result of the module of ontological-semantic

graphs construction will be N ontological-semantic graphs of

anticipated answers: and ontological-

semantic graph of the analyzed text: . All these

graphs are passed to the module of ontological-semantic

graphs comparison, where, by the special algorithm detailly

described in the following section, graphs are

pairwise compared with graph , and for each such

pair the similarity coefficient is calculated.

If for some graph
*()Ont T being a subgraph of

: the similarity coefficient with one of

ontological-semantic graphs of anticipated answer ()
i

Ont a is

higher than the value defined in the program, then
*()Ont T

is considered to be similar to . As a short answer, the

user receives the vertex of the graph
*()Ont T similar to

()
i

Ont a that corresponds to the indefinite vertex ()
i

Ont a

(in case the indefinite vertex exists which implies existence of

an interrogative word in the question Q). If an indefinite

vertex is not present in ()
i

Ont a , the user receives answer

provided with one or several sentences basing on which such

graph
*()Ont T had been constructed. User can view the text

that precedes and succeeds the sentences proposed by the

system as an answer.

IV. FUZZY COMPARISON OF ONTOLOGICAL-SEMANTIC

GRAPHS

The architecture of a QAS described in the previous section
is utilizes ontological-semantic graphs. The result of such
graphs comparison is the similarity coefficient of ontological-

semantic graphs (let us call it), taking its values in the

interval . Let us consider comparison of ontological-

semantic graphs from the point of view of isomorphism of two

graphs and their subgraphs.

Modifying for ontological-semantic graphs the notion of
isomorphism given in [10] for classical graphs, we give the

following definition: ontological-semantic graphs 1G and

are called isomorphic (), if there exists such one-to-

one correspondence between their vertices and edges that
corresponding edges connect corresponding vertices; in

addition, ontological information about graph vertices

does not contradict ontological information about

corresponding vertices of .

For convenience we introduce the function

that defines similarity coefficient of the graphs 1G and 2G :

.

When comparing ontological-semantic graph of

the anticipated answer with ontological-semantic graph

, there may arise the

following cases (from the point of view of isomorphism of
these graphs):

*

** * ** *

* *

*

() ()

0 if

(), () : () ()

(), () 1, if () ()

() ()

(0,1), if

i

i i

i i

i

Ont T Ont a

AND

Ont T Ont a Ont T Ont a

Des Ont a Ont T Ont a Ont T

Ont T Ont a

AND

O ** * ** *

(), () : () ()i int T Ont a Ont T Ont a

where
** *() (), () ()i iOnt T Ont T Ont a Ont a .

In Fig. 4 we give an example of an ontological-semantic

graph constructed from one of the sentences of the analyzed

h is

isomorphic to the graph presented in Fig. 2.

During our work, we implemented in Java programming
language the algorithm of ontological-semantic graphs
comparison.

Similarity coefficient of two graphs and

 (
*((), ()iDes Ont q Ont T) is calculated in

such way that takes value allowing to consider the graphs

to be similar (in case exceeded the experimentally defined

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 176 --

value) only upon obligatory fulfillment of the following two

conditions:

1) contains ontological-

that have equal initial form (or, for indefinite vertices does

the graph ;

2) in case of presence of an interrogative word in the

question, there is a semantic dependency in ,

defined by the interrogative sentence as main (for a question

w
question with in

the arguments of these dependencies are either equal or (for an

indefinite vertex) not contradicting.

Fig. 4. Example of an ontological-semantic graph, isomorphic to the graph
presented in Fig. 2

In case of finding in and other equal

or non-contradicting relations, the value of the coefficient is

increased; moreover, the higher is the sum of all edges of

connected graph from isomorphic to a connected

graph from is, the higher the sum at which the

increase comes is.

V. ONTOLOGICAL-SEMANTIC ANALYZER

In the course of work we developed an ontological-

semantic analyzer based on basic ontological-semantic rules.

A. Basic ontological-semantic rules

 We shall call the rule, according to which the expert system

(ES) finds in the analyzed text (where indivisible sense entities
have been segregated and each of them has been referred to a
certain ontology class or object) semantic dependencies

between classes and the objects they consist of, the basic

ontological-semantic rule. The basic ontological-semantic rule,
that is a rule of ES, consists of the left and the right side. The

left side describes conditions upon which the actions described
at the right side are performed. For example, in the left side of

the rule a biconnected facts list is always described, as well as

Boolean functions taking facts from this biconnected list as
their arguments. A fact of ES consists of: ontology class (or

object), link to the previous fact (from the left) and to the next

fact (from the right), morphological characteristics and
coordinates in the text (sentence number and position of the

class (or the object) in the sentence).

The right side of the rule contains the list of actions, each

of which can: modify any fact of ES (by means of modifying a
relation in the corresponding common ontology Class or

Object); add to the queue for removal a fact of ES that has a
certain removal priority; other actions.

In the present work we have developed a program in Java

language to transform a BOSR of the form -

:nom,sin - -1-

0- ADD_TO_THE_QUEUE_FOR_REMOVAL(0,7)) into rules

for the ES Drools. The given BOSR means that if in the
analyzed text there has been found an adjective (A) in

nominative case (nom), singular number (sin), followed by a

noun (N) in nominative case, singular number, then form a
semantic relation ATTRIBUTE (belongs to the group of

semantic relations with priority 7), connecting these two facts.
Below we provide a template of the ES Drolls generated by

the program implemented by the author using the described

BOSR

rule "338" // name of the rule (number 338)

salience 100 /* priority of the rule (is not related to the queue

with priority. The point is that the higher is the rule's priority,

the more the rule is likely to be selected upon condition of the

trueness of left-hand sides of several rules) */

when // defines the beginning of the condition WHEN

$w0 : Fact(partOfSpeech == "A", hsAttrs contains "nom",
hsAttrs contains "sin") /* $w0 address of the fact. Fact ->

fact with attributes */

$w1 : Fact(prev == $w0, partOfSpeech == "N", hsAttrs

contains "nom", hsAttrs contains "sin") /* $w1 - address of the

fact. Fact -> fact with attributes. prev -> previous fact */

then // defines the beginning of the condition THEN

SemanticRelation sem = new
SemanticRelation("ATTRIBUTE"); /* create an object sem

with the type ATTRIBUTE */

sem.setLeftAutoPosInText($w1);

// set the left-hand argument to be $w1

sem.setRightAutoPosInText($w0);

// set the right-hand argument to be $w0

boolean changed =
myQueue.addOrUpdateCheckToDelete($w0, 7); /* add to the

queue for removal the fact $w0 with priority 7. If the new

priority for removal is less or equal to the old one (which is

stored in the queue for removal myQueue), then changed =

false. Otherwise changed = true;*/

if(changed)

update(myQueue); /* update the queue for removal myQueue

in the ES Drools */

String indexSem = sem.getIndexString();

if(hsAllIndexedSemanticRelations.contains(indexSem) ==

false)

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 177 --

/* if the semantic relation has not been found before, then add

{

hsAllIndexedSemanticRelations.add(indexSem);

insert(sem);

}

end // end of the rule

After all basical ontological-semantic patterns (with true

left sides) have been found on the current facts of the expert
system, one fact with the highest priority is removed from the

queue for removal and from the working memory of the expert

system. When removing a fact from the working memory of
the expert system, one should update the left and the right

facts for the fact being removed.

B. Ontological-semantic analyzer, integrated with the

ontology

At the input the ontological-semantic analyzer (OSA)

receives a verifiable text T, that goes into the module of initial
text processing where it undertakes a preliminary processing:

text formatting symbols that do not bear any semantic role are
deleted, orthographical and syntactical errors are corrected,

extra spaces and line breaks are deleted etc. Then the text is

tokenized, that includes breaking the text into paragraphs,
sentences and words. For each selected word its morphological

characteristics are defined with use of corresponding
morphological dictionaries. The next stage is segregation of

indivisible sense entities, that may be separate words or word

groups united by some common meaning. Examples of named
entities consisting of several words may be certain named

entities or composite

logical connections in the text.

The text that has undertaken initially processing,

together with all data received at this stage (marked as A(T) on
the diagram), are passed onto input of the module of collation

with basic ontological-semantic rules (BOSR).

The work of the module of collation with BOSR starts from

collation of indivisible sense entities segregated from the

verifiable text T with classes and objects of the ontology. At
this stage the problem of resolving lexical polysemy is solved
in order to define, which of the set of existing classes and/or

objects with equal names does the considered sense entity

belong to. If some sense entity from A(T) corresponds to no
object or class from the ontology, it will be considered without

association with the ontology in the next semantic analysis.

Further, with use of the BOSR that the ES is based on,
search of ontological-semantic dependencies and/or

modification of the particular ontology Ont(T) are performed.

ES, being a component of the OSA, consists of the following
main parts:

1) Knowledge base the assembly of all BOSR;

2) Working memory facts of the ES, that is, indivisible

sense entities from A(T), for which the following
characteristics are defined:

 morphological characteristics (data from the module of

initial text processing);

 coordinates in the text (sentence number of A(T) and

position in this sentence).

Each fact in the ES keeps information about the previous
(and the next) facts from A(T), if they exist (that is, if the fact

does not correspond the first (or the last) indivisible sense

entity) in A(T).

3) Block of logical output a program that forms the

working rules list, selects from it a BOSR with the highest

priority and performs it. Performed rule is deleted from the
working rules list.

4) Component of knowledge acquisition software

component that automates updating of the KB of the expert
system with BOSR.

5) Explanatory component software component that

displays the course of solution by user's request (which BOSR

from KB worked on which facts).

The result of work of the ontological-semantic analyzer is
the ontological-semantic graph Ont(T), that is, a semantic

graph constructed from the analyzed text T, having indivisible
sense entities segregated from T as its vertices, and direction

of the connecting edges as the sequence order of semantic

dependencies arguments found in the text. Each edge of the
semantic graph Ont(T) is named in accordance with the name

of the semantic dependency that produced it.

In Table II we provide examples of BOSRs written in
simplified form, examples of corresponding texts and semantic

relations discovered in these texts.

During our work, we implemented in software the

ontological-semantic analyzer in Java programming language,
basing on basic ontological-semantic templates with deletion.

The Table III shows an example of using the ontological-

semantic analyzer and how the priority queue (Q) is gradually
changing. The analyzed text (AT) is "Yesterday, the yachting

sport school honors left for a camp".

VI. CONCLUSION

Software implementation of the QAS based on construction

of the set of anticipated answers and comparison of

ontological-semantic graphs proves the efficiency of such

approach to organizing the QAS architecture.

The ontological-semantic analyzer that was developed and
implemented in the course of this work and based on basic
ontological-semantic rules with deletion showed the

productivity of the proposed method of its implementation.

This ontological-semantic analyzer has been used as a

component module in the QAS for constructing ontological-
semantic graphs.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 178 --

TABLE II. SEARCH OF SEMANTIC RELATIONS IN THE TEXT USING BOSR

BOSR Text Semantic relations

ONT->{Hyponym(person) || NAME}

ONT->{Synonym(write) ||
Synonym(create)}

ONT->{Synonym(literary work) || NAME}

RELATION->Author (2, 0)

Workers composed a petition Author(petition, workers)

ONT->{DATE}

ONT->{Synonym(start)}

ONT->{Synonym(event)}

RELATION-> Event_start(2, 0)

Lunch starts at 12:00 Event_start(lunch, at 12:00)

The swimming competitions started on Thursday Event_start(competitions, since Thursday)

On 21 October 1947, the Indo-Pakistan war started Event_start(war, 21 October 1947)

TABLE III. AN EXAMPLE OF USING THE ONTOLOGICAL-SEMANTIC ANALYZER

S
te

p

Found semantic

relationships
Operations on Q Elements of Q

1

[0] [1] [2] [3] [4] [5] [6] [7]

[Yesterday], [the yachting] [sport] [school] [honors] [left] [for] [a camp]

Belong(honors, school) insert(Q,(school, 2, [3])) Q = {(school, 2, [3])}

Belong(school, sport) insert(Q,(sport, 2, [2])) Q = {(school, 2, [3]), (sport, 2, [2])}

Property(sport, the yachting) insert(Q,(the yachting, 1, [1])) Q = {(school, 2, [3]), (sport, 2, [2]), (the yachting, 1,[1])}

Location(left, for a camp) insert(Q,(for a camp, 3, [7])) Q = {(school, 2, [3]), (sport, 2, [2]), (the yachting, 1, [1]), (for a camp, 3, [7])}

Action(left, honors) insert(Q,(honors, 15, [4])) Q = {(school, 2, [3]), (sport, 2, [2]), (the yachting, 1, [1]), (for a camp, 3, [7]), (honors, 15, [4])}

 remove(Q, (the yachting,1,1)) Q = {(school, 2, [3]), (sport, 2, [2]), (for a camp, 3, [7]), (honors, 15, [4])}

2

 [0] [2] [3] [4] [5] [6] [7]

[Yesterday], [sport] [school] [honors] [left] [for] [a camp]

(new semantic relationship is not found) AND (isEmpty(Q) = false) => Continue

 remove(Q, (school,2,[3])) Q = {(sport, 2, [2]), (for a camp, 3, [7]), (honors, 15, [4])}

3

 [0] [2] [4] [5] [6] [7]

[Yesterday], [sport] [honors] [left] [for] [a camp]

(new semantic relationship is not found) AND (isEmpty(Q) = false) => Continue

 remove(Q, (sport,2,[2])) Q = {(for a camp, 3, [7]), (honors, 15, [4])}

4
(new semantic relationship is not found) AND (isEmpty(Q) = false) => Continue

 remove(Q, (for a camp,3,[7])) Q = {(honors, 15, [4])}

5
(new semantic relationship is not found) AND (isEmpty(Q) = false) => Continue

 remove{(honors,15,[4])} Q = {}

6

 [0] [5]

[Yesterday], [left]

Time(left, yesterday) insert(Q,(yesterday,7,[0])) Q = { Q,(yesterday,7,[0])}

 remove(Q,(yesterday,7,[0])) Q = {}

7

[5]

 [left]

(new semantic relationship is not found) AND (isEmpty(Q) = true) => End

During our work, we implemented in Java the QAS for
Russian language with the architecture described in section 3.

Ontological-semantic graphs that are used in system's work are

constructed with help of the software implementation of the

semantic analyzer based on basic ontological-semantic rules
(see section 5). The program of the described ontological-
semantic analyzer is registered in Rospatent.

Also, in the process of software implementation of this

QAS we developed various component modules of the QAS,

such as the modules of morphology, tokenization, segregation
of named entities etc., but description of their operation

algorithms is outside the scope of this paper. Also, during our

work we developed an object-oriented ontology model, the

data from which are used when constructing ontological-
semantic graphs. Initial filling of the ontology with data,
including information from hierarchical dictionaries, was

performed. This allowed to define classes inheritance and

belonging of objects to certain classes. We plan to extend the

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 179 --

used ontology using such structured information storages as

DBpedia [11], Freebase [12], Wikidata [13], Wikipedia [14],
Wiktionary [15] and Yago [16].

Results of the QAS work were compared with NLUlite

system [17]. NLulite is based on the use of CYK stochastic
parser, CCGbank [18], Discourse Representation Theory [19],

Ontology given by Wordnet [20] and others. In Table IV we

present examples of texts and questions to them, which were
correctly answered with use of software implementation of the

QAS described in this work, while NLUlite did not give any
answers.

TABLE IV. ANALYZED TEXT AND QUESTIONS.

 Text Question

1

The red and rubber ball lay in the
field.

What is the ball color?

2 Peter gave the ball to Jack. Who has the ball?

3 Elephants can live up to 70 years in
the wild.

How long can live

elephants?

4 Peter has three apples. Peter ate
two apples.

How many apples remained?

5 On the table lies an apple. What is on a table?

6 Pushkin wrote the novel. Who is the author of the
novel?

The results show the importance of using ontologies in the

QAS and prove the working efficiency of the QAS the
architecture of which is utilizes comparing ontological-

semantic graphs, and also the working productivity of the

implemented ontological-semantic analyzer.

Also, we can conclude about possibility to construct a
hybride QAS based on combination of the algorithms proposed
in this work with the algorithms of NLUlite system.

In the work we have shown by experiments that the

implementation of the proposed working method of the

ontological-semantic analyzer with use of the expert system

Drools [21], using the algorithm of quick comparison with
templates PHREAK [22], results in time profit in average 9-11

times in comparison with a software implementation that does
not use expert systems. Testing of the QAS and the

ontological-semantic analyzer were performed with Intel Core

i7-4702MQ CPU 2.20GHz processor, SSD disk and in the
operating system Ubuntu 14.04.

ACKNOWLEDGMENT

The work was implemented with financial support from the
Russian Foundation for the Humanities as part of research

-04-

electronic resource with an online version of a Russian-

language question answering system.

REFERENCES

[1] D.A. Ferrucci, E.W. Brown, J. Chu-
AI Magazine, vol. 31, No 3,

2010, pp. 59 79.
[2] D. Han, Y. Kato, K. Takehara, T. Yamamoto, K. Sugimura, M.

b searching and semantic
IFIP International Federation for Information

Processing, vol. 228, Boston: Springer, pp. 123-133.
[3]

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.204.5721.
[4]

Proceeding COLING '04 Proceedings of the
20th international conference on Computational Linguistics Article

No. 693.
[5]

Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational
Natural Language Learning, Prague, June 2007, pp. 12 21.

[6] A.A. Sol
Method of answeres validations based on fuzzy matching of semantic

Russian Information

Retrieval Evaluation Seminar. ROMIP Proceedings, 2010, Kazan.
[7] A.V. Sokirko, as

PhD. tech. sci. diss, Moscow,
2001.

[8] Some issues of work of a Russian-language
,

Proceedings
, Svetlogorsk, 2015.

[9] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, G.
EMNLP-

CoNLL '12 Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 379-390.

[10] S.V. Yablonsky, Introduction to discrete mathematics, Moscow:
Higher school, 2003, 384 p.

[11] DBpedia official website, Web: http://wiki.dbpedia.org.
[12] Freebase official website, Web: http://www.freebase.com.
[13] Wikidata official website, Web: https://www.wikidata.org.
[14] Wikipedia official website, Web: https://ru.wikipedia.org.
[15] Wiktionary official website, Web: https://ru.wiktionary.org.
[16] Yago official website, Web: www.mpi-

inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/.

[17] NLUlite , Web: https://nlulite.com/.
[18] J. Hockenmaier, M. Steedman. CCG bank: User's Manual.

Web: http://repository.upenn.edu/cgi/viewcontent.cgi?article=1054&
context=cis_reports.

[19] H. Kamp, U. Reyle, From discourse to logic: introduction to
modeltheoretic semantics of natural language, formal logic and
discourse representation theory. Part 1, Springer Science & Business
Media, 1993, 713 p.

[20] WordNet official website, Web: https://wordnet.princeton.edu/.
[21] Drools official website. Web: http://www.drools.org/.

[22] Drools Documentation official website.

Web: http://www.drools.org/learn/documentation.html.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 180 --

