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Abstract—Meta-learning is an approach for solving the al-
gorithm selection problem, which is how to choose the best
algorithm for a certain task. This task corresponds to a dataset in
machine learning and data mining. The main challenge in meta-
learning is to engineer a meta-feature description for datasets.
In the paper we apply meta-learning for feature selection.
We found a meta-feature set which showed the best result in
predicting proper feature selection algorithms. We also suggested
a novel approach to engineer meta-features for data preprocessing
algorithms, which is based on estimating the best parametrization
of processing algorithms on small subsamples.

I. INTRODUCTION

Curse of dimensionality [1] arises in many fields of artifi-
cial intelligence, especially in data mining. One of the com-
monly used approaches to handle this problem is application
of dimensionality reduction techniques. Decreasing the number
of variables describing data leads to increasing the speed and
sometimes the efficacy of applied algorithms. Dimensionality
reduction techniques are divided into [2] feature (or variable)
selection and feature extraction. Feature selection algorithms
are constrained to return only subsets of the original feature set,
while feature extraction algorithms can return any feature set,
which causes high time consumption in comparison to feature
selection. Another advantage of feature selection is the explicit
satisfaction of the interpretability request: in many practical
domains it is required to estimate the influence of each variable
on the answer and algorithm performance. For instance, this
is essential in bioinformatics and computational linguistics. In
this paper we will focus only on feature selection algorithms.

Selection of the proper feature selection algorithm is con-
sidered to be complicated [3] because it is usually hard to
compare different algorithms and because too many feature
selection algorithms are available [4], [5]. This problem is not
specific to the algorithm selection domain, but arises in almost
every field of artificial intelligence and computer science. Rice
is known to be the first to provide a theoretical framework for
algorithm selection problem [6]. Wolpert and Macready's well-
known No Free Lunch Theorems as well as related results [7],
[8], [9], [10] prove the impossibility to create the universal
algorithm for a certain problem, in particular, feature selection
problem. Nowadays, algorithm selection is an expert problem
for most tasks.

Meta-learning is an approach providing a framework for
reasonable selection of an algorithm (and sometimes its
parametrization) for a certain task from given set of algo-
rithms [11]. The main idea of meta-learning is reducing the
algorithm selection problem to a machine learning supervised

problem: tasks are described with special meta-features rep-
resenting their properties (for example, is dataset sparse or
high-dimensional). It can be understood as a formalization of
heuristics which are applied or could be applied by a data
analyst in order to select the most appropriate algorithm. Meta-
learning can be considered as a formalized case of transfer
learning, because it selects an algorithm grounded on the
knowledge of previously estimated algorithms behavior. This
is implemented with supervised learning paradigm: all tasks
are described with meta-features, algorithm performance is
evaluated on tasks from a training set, and then a prediction
of the best algorithm for a new dataset is made. Meta-
learning is applied in many artificial intelligence domains, such
as evolutionary algorithms [12], [13], constraint satisfaction
problems [14], [15], discrete problems [16], [17], and mostly
to machine learning problems. The overwhelming majority of
papers on meta-learning were dedicated to classifier selection.
This can be simply explained by the fact that classification
is the most prevailing problem in data mining. Also there are
two main restrictions which prevent generalization of meta-
learning algorithms and systems to other problems: the issue
of quality measure selection and problem of creating a meta-
feature description.

The described disproportion can be illustrated this way:
there are more than 100 articles on classification algorithm
selection, but rarely more than 10 articles on clustering [18],
[19], regression [20], [21] or forecasting [22], [23]. The
only work on feature selection algorithm recommendation (we
will use word recommendation instead of selection to avoid
multiple usage of the latter word) is the paper by Wang et
al [24]. In this paper authors used only 13 meta-features taken
from classification algorithm selection problems. They provide
neither exploration, nor explanation of why they used this
meta-feature space. Therefore, we can state that the problem
of meta-feature description for feature selection algorithm
recommendation has, to the best of our knowledge, never been
considered.

The goal of this work is to find out which meta-features
can be used for feature selection algorithms recommendation.
The contribution of this paper is two-fold. First, we introduce
a new approach for meta-features engineering, which is shown
to be useful for feature selection algorithm recommendation.
Second, we conduct an almost complete analysis of popular
meta-features and suggest the best optimal meta-feature sets
for different cases.

The remainder of this paper is organized as follows.
In Section II we describe the principles of meta-learning
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systems both in the general case and for feature selection
algorithms. Section III contains description of existing and
novel meta-features. In Section IV the described meta-features
are analyzed and optimal subsets are selected. These results
are discussed in Section V, and Section VI summarizes and
concludes the paper.

II. META-LEARNING SYSTEM FOR FEATURE SELECTION

ALGORITHM RECOMMENDATION

Modern meta-learning systems implement the very sim-
ilar architecture to METAL [25] (with the exception of
more complicated systems such as multi-agent one, described
in [26]). This architecture is task-independent, therefore it
is applicable not only for classification task. The feature
subset selection algorithm recommendation system [24] also
shares this architecture.The system consists of two main parts
that implement different steps of an offline machine learning
algorithm: learning and application. These parts are learning
and recommendation correspondingly.

Let 2 denote the universal set of datasets, D
{di,....dipj)} C 2 denote training datasets, A
{a1,...,a)4} denote the algorithm set, F' = {f1,..., fir|}
denote the meta-features, which are functions defined on

2, fi + 2 — Codomain(f;), and let F(d) =
{fi(d),..., fir|(d)} denote the meta-feature description of
dataset d.

A. Learning part

The most popular algorithm on meta-level is KNN. It is
based on the assumption that each algorithm performs in a
similar way on similar datasets. This well-known algorithm
simply finds k datasets in D that are the nearest to a new
dataset d,e,. KNN is a distant-based algorithm, therefore a
distance function is required to be defined on Z. In this work
we will use the popular L; metric, which defines the distance
between two datasets as follows:

|7

dist(di, dy) = | F(di) = F(dy)ll, = Y |feldi) = fuldy)]-

t=1

The very common step in data analysis is feature normal-
ization. In particular, it is the always applied for meta-features.
We apply the following normalization:

norm __ f - Il’lin(f)
! ~ max(f) — min(f)’
where min = fféiﬁ( f(d)) and max = I;lgag(( f(d)) are the

minimum and maximum values of meta-feature f value. After
this normalization all the meta-features values are in the
interval [0, 1].

kNN is a lazy algorithm, therefore no explicit learning
step is performed. The system only calculates all values in
features—object matrix (which is meta-features—datasets in this
case) P. Each cell P; ; of this matrix contains a performance
evaluation of algorithm a; on dataset d; with respect to a
certain performance measure P :
P = (P(A;, D))"

i=1,j=1
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Algorithm performance measures are defined by the type
of task. We discuss the performance measure P for feature
selection in subsection II-C.

B. Recommender part

The recommender part of the system is the one that is used
for processing a new dataset d,,e,, and return list of algorithm
recommendations. METAL was the first meta-learning system
whose output was not a single algorithm, but rather a ranked
list of algorithms.

Let kN(d) = (dy, ..., d)) denote the k nearest datasets
to dataset d. Expected performance measure of algorithm A;
on dyey 1S estimated as

d; Sk N (dnew)

Ppred(aiadnew) = Wj - P(ai7dj)7

-1

Yhoad

Algorithms from A are sorted with respect to Pp,..q. This
sorted list of algorithms is the recommendation. The system
returns the top N algorithms, where N usually equals three.
If N =1, the algorithm is a classifier, which returns a single
algorithm expected to be the best as the answer.

where w; =

dj = diSt(dnew, dj)

C. Performance measure

A feature selection algorithm performance can be estimated
with respect to the three measures: runtime, number of selected
features, and efficacy of a classifier C' executed on selected
features. The classifier efficacy reveals importance of the
selected features for the further processing; the runtime shows
how fast is the feature selection algorithm; the number of
selected features represents the degree of data compression.

Let C' be a classifier. Let tg denote the runtime of al-
gorithm @; on dataset d;, n] denote the number of features
in dataset f;(d;) which is the result of preprocessing dataset
d; with algorithm a;, and accﬁ denote the accuracy of C
applied to dataset d; preprocessed with algorithm a; : acc] =
Accuracy(C(a;(d;))). Then EARR (extended adjusted ratio
of ratios) of a; and a; on dy, is defined [24] as

accy Jaccy
% ¢k kY
L+ a-log(t7/t]) + B - log(ng/n7)

where o and 3 are user-defined parameters representing de-
grees of importance of the runtime and the number of features.
With a certain « and 5 assignment, two algorithms can be com-
pared with respect to FARR: if EARRZ’;,G, > EARRZ{;M
then a; performs better than a; on dataset dj,. Now FARR is
defined for pairwise comparison and it is simply generalized:

EARR%

a;,a;

4
1
EARR%::MW_l > EARRY, .
J=1,j#i

Now EFARR shows how good an algorithm is on a certain
dataset.

EARR has two disadvantages.

The first disadvantage is the use of Accuracy: we use F'-
measure instead which is more universal, because it can deal
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with unbalanced classes [27]. We define FFRR (extended
with F-measure adjusted ratio of ratios):

Hih
EFRRY, = T ’
a;,a; 1+a- log(tf/tf) + - log(nf/nf)

where ff denotes the F'i-measure of C' applied to dataset d;
preprocessed with algorithm a;.

The second disadvantage is that both Accuracy and F'-
measure are absolute, but not comparative measures, therefore
algorithms which show slightly worse performance than the
best one will cause the same error as an algorithm showing
really poor performance. Let EFRR,.. denote the perfor-
mance measure of the recommended algorithm and EFRR,;
denote performance of the best algorithm on dataset d. Then
we measure the performance quality as the ratio between two

values: - ; EFRR,..
(@reesd) = FrRR,.

Consider the following example. Suppose the system
recommends an algorithm with EFRR,.. equals 0.70. If
EFRR,y: equals 0.71, then RPR is equal 0.986 and the
classifier performs comparatively well, it is slightly worse
than the best one. But if EFRR,,; equals 0.95, then RPR
is equal to 0.737 and that means that the system returned a
not very effective algorithm. If RPR = 1, then the system
recommended the best algorithm. In both the considered cases
value of FFRR,.. was the same. This shows that RPR is
better in these terms than EF RR.

III. META-FEATURES SET

Since most meta-learning systems are dedicated to the
classification task, most of the proposed meta-features describe
datasets with known class labels. In this research we are focus-
ing on feature selection for classification, therefore the datasets
are the same as in classification task. The first question must
be asked is if the meta-features for classification algorithm
prediction can be used for feature selection. Feature selection
is a preprocessing step for applying supervised or unsupervised
algorithms. That is why we expect the meta-features used for
classification will suit for feature selection for classification.

A. Standard meta-features

Basic meta-features are divided into [28], [29]:

e  general: the number of samples in dataset, the number
of features, the number of classes, etc.

e  statistical: standard deviation, correlation coefficient,
asymmetry coefficient, etc.

e information-theoretic: mean feature entropy, mutual
information of class and attribute, noise ratio, etc.

Another group is landmark features which are performance
measures of a classifier trained on a small subsample of the
dataset [30].

Yet another group of meta-features is proposed in [31].
These meta-features are based on decision tree structure, which
is learnt on a dataset. In [31] the following characteristics
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are considered: nodes, leaves, branches, tree levels. These
properties are supposed to describe the tree structure well,
therefore they are expected to describe the dataset well. The
following meta-features are engineered: tree width and tree
height, the number of leaves and number of nodes, maximum,
minimum and mean values of branch length, the number of
nodes on each level, number of inner nodes corresponding to
a certain single-feature rule, and variance of all these values.

B. Model-based meta-features

Decision tree based meta-features are grounded upon the
assumption that decision tree structure is a model of data [32],
therefore the features describing this model are expected
to describe the data as well. In this paper we suggest an
intensively generalized approach grounded on the same sug-
gestion: each classifier synthesizes a model of data, therefore
every model description can be used for data description.
For decision trees this model is represented with a tree, for
Bayesian networks — with an acyclic graph with conditional
distributions, for SVMs — with set of hyperplanes, etc. We
will use as meta-features the numerical parameters with which
these models can be described.

We must also note that all these algorithm models are para-
metric. This means that there exists the best parametrization
for a certain task. For instance, the best number of nearest
neighbors is a numerical value, which also characterizes the
data. This is the second type of meta-features we suggest in
this paper.

C. Meta-feature set

The meta-feature set consists of 79 meta-features: standard
meta-features (including meta-features in [24]) and model-
based meta-features. The last group contains meta-features
built with decision tree, kNN, and perceptron. These three
classifiers are based on different paradigms: ensemble of
logical classifiers, distance-based classifier and linear classifier
correspondently.

As the decision tree we use C4.5, both with and without
pruning. Therefore, for each decision tree based meta-features
we evaluated both pruned and unpruned instances.

The meta-feature set contains the following meta-features:

1) general:

e number of instances (NumberOfInstances);
e number of features (NumberOfFeatures);
e number of classes (NumberOfClasses);

e  dataset dimensionality (DataSetDimensionality).

2) statistical (all values are mean by all non-class at-
tributes):

e standard deviation (MeanStandardDeviation);
e  variation coefficient (MeanCoefficientOf Variation);

e  correlation coefficient (MeanLinearCorrelationCoeffi-
cient);

e skewness (MeanSkewness);
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kurtosis (MeanKurtosis).

3) information-theoretic:

average normalized features entropy (MeanNormal-
izedFeatureEntropy);

normalized class
ClassEntropy);

attribute entropy (Normalized-

maximal mutual information between the attribute and
the class (MaxMutuallnformation);

average mutual information between the attribute and
the class (MeanMutuallnformation);

ratio of signal noise (NoiseSignalRatio);

number of equivalent features (EquivalentNumberOf-
Features).

4) decision tree based:

tree height (TreeHeight);

tree width (TreeWidth);

number of inner vertices (TreeNodeNumber);
number of leaves (TreeLeavesNumber);
minimum branch length (TreeMinBranch);
maximum branch length (TreeMaxBranch);
average branch length (TreeMeanBranch);

standard deviation of the tree branch length (TreeDe-
vBranch);

maximum number of vertices on the same tree level
(TreeMaxLevel);

average number of vertices on the same tree level
(TreeMeanLevel);

standard deviation of the vertices on the same tree
level (TreeDevLevel);

minimum number of inner features that are matching
to the same attribute (TreeMinAttr);

maximum number of inner features that are matching
to the same attribute (TreeMaxAttr);

average number of inner features that are matching to
the same attribute (TreeMeanAttr);

standard deviation of the number of inner features that
are matching to the same attribute (TreeDevAttr);

minimum number of leaves that are matching to the
same class (TreeMinClass);

maximum number of leaves that are matching to the
same class (TreeMaxClass);

average number of leaves that are matching to the
same class (TreeMeanClass);

standard deviation of the number of leaves that are
matching to the same class (TreeDevClass).
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5) based on the perceptron structure (sum of weights is the
sum of all weights of the perceptron; number of objects in the
set):

e  weight sum on the full dataset (FullPerceptronWeight-
Sum);

e minimum weight sum; subsamples sizes are N/10,
N/2, and v/ N (MinOneTenthPerceptronWeightSum,
MinHalfPerceptronWeightSum, MinSqrtPerceptron-
WeightSum);

e average weights sum; subsamples sizes are N/10,
N/2, and +/N (MeanOneTenthPerceptronWeight-
Sum, MeanHalfPerceptronWeightSum, MeanSqrtPer-
ceptronWeightSum);

e standard deviation of the weights sum; subsamples
sizes are N/10, N/2, and v/ N (StdDevOneTenth-
PerceptronWeightSum, StdDevHalfPerceptronWeight-
Sum, StdDevSqrtPerceptronWeightSum).

6) kNN best parameter based:

e number of neighbors for the full dataset (FullBestK);

e minimum number of neighbors; subsamples sizes are
N/10, N/2, and v N (MinOneTenthBestK, MinHalf-
BestK, MinSqrtBestK);

e  maximum number of neighbors; subsamples sizes are
N/10, N/2, and v N (MaxOneTenthBestK, MaxHalf-
BestK, MaxSqrtBestK);

e average number of neighbors; subsamples sizes are
N/10, N/2, and v N (MeanOneTenthBestK, Mean-
HalfBestK, MeanSqrtBestK);

e standard deviation of the number of neighbors; sub-
samples sizes are N/10, N/2, and v/ N (StdDevOne-
TenthBestK, StdDevHalfBestK, StdDevSqrtBestK).

IV. ANALYSIS AND SELECTION OF META-FEATURES
A. Experimental setup for meta-feature sets comparison

The training set D contains 84 datasets, which can be
found in the repository http://genome.ifmo.ru/files/papers_
files/FRUCT2015/Datasets.pdf. These datasets have very dif-
ferent nature, and the only fact which is essential is that
these datasets describe real-world problems. Despite such a
low interest in data nature can cause disagreement for many
data science specialist, the core of meta-learning is choosing
algorithm without any under assumption. We assume that
meta-feature description is the only information which is
required to predict algorithms for its processing. This makes
meta-learning very useful in Big Data processing, because
its well-known property is lack of any intuition on how data
should be preprocessed and processed.

Program implementation was performed in Java language,
machine learning algorithms were taken from WEKA li-
brary [33].

The algorithm set A contains 16 different feature selection
algorithms which are listed in Table I. We provide a brief
description of these algorithms taken from WEKA. In this
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library every feature selection algorithm can be represented
as a pair (Evaluator, Search Method). Search method is a
method to be used in feature subset space search, and each
object of this space is evaluated with Evaluator. One special
case of algorithms is ranking filters (Ranker search method,
do not get confused with Rank search search method), where
we do not evaluate subsets, but only single features. This
case is supported in WEKA with attribute evaluation methods;
in this work we used the probabilistic significance measure
(16th algorithm). All the other feature selection algorithms
in this paper are evaluated with different implementation
of two evaluation measures which are dependency (for the
detailed description see [34]) and consistency (for the detailed
description see [35]). We use various search methods, which
description can be found in [36]. The most detailed overview
of WEKA algorithm is given by Witten and Frank in chapter
8 in [37]. We must note that the set of listed feature selection
algorithms is the same as in [24].

e tree” is the set of 38 meta-features, evaluated for
decision trees (union of the previous two sets);

e neural” is the set of 13 meta-features, evaluated for
perceptron;

e ’knn” is the set of 13 meta-features, evaluate for kNN
algorithm;

e  classifier based” is the set of 64 meta-features, eval-
uated for classifiers;

e all” is the set of all the 79 meta-features described
above.

The recommender system efficacy for each meta-feature
subset is shown in Table II. We can see from the table that the
efficacy of the recommender system for different classification
algorithms is maximal on different meta-feature set. This is the
evidence of that the original meta-feature set is not the optimal
one, therefore the proper choice of meta-feature subset will

TABLE 1. LIST OF FEATURE SELECTION ALGORITHMS .
improve the efficacy.

No Evaluator Search method Evaluation measure

1 CES-SES BestFirst + Seq. Forward Search Dependency TABLE II. MEAN VALUE OF RP R FOR EACH CLASSIFIER AND

2 CFS-SBS BestFirst + Seq. Backward Search Dependency META-FEATURE SUBSETS

3 CFS-BiS BestFirst + Bi-direction Search Dependency

4 CFS-GS Genetic Search Dependency Meta-feature set NaiveBayes C4.5 PART | BayesNet 1B3
5 CFS-LS Linear Search Dependency original 0.9738 0.9653 | 0.9635 0.9714 0.9530
6 CFS-RS Rank Search Dependency general 0.9636 0.9675 | 0.9589 0.9650 0.9530
7 CFS-SS Scatter Search Dependency statistical 0.9391 0.9571 | 0.9532 0.9533 0.9448
8 CFS-SWS Greedy Stepwise Search Dependency information-theoretic 0.9691 0.9616 | 0.9529 0.9589 0.9520
9 CFS-TS Tabu Search Dependency standard 0.9732 0.9643 | 0.9634 0.9711 0.9534
10 Cons-SFS BestFirst + Seq. Forward Search Consistency pruned 0.9502 0.9569 | 0.9563 0.9655 0.9209
11 Cons-BiS BestFirst + Bi-direction Search Consistency unpruned 0.9639 0.9537 | 0.9528 0.9576 0.9403
12 Cons-GS Genetic Search Consistency tree 0.9481 0.9578 | 0.9522 0.9645 0.9505
13 Cons-LS Linear Search Consistency neural 0.9549 0.9519 | 0.9477 0.9631 0.9513
14 Cons-RS Rank Search Consistency knn 0.9571 0.9540 | 0.9187 0.9515 0.9240
15 Cons-SWS Greedy Stepwise Search Consistency Classifier based 0.9575 0.9648 | 0.9574 0.9637 0.9620
16 Signific Ranker Prob. Significance All 0.9601 0.9725 | 0.9653 0.9642 0.9516

Since the RP R measure defined in Section II depends on
a classifier, we used five different standard classifiers in order
to avoid classifier-based bias. These classifiers, implemented
in WEKA, are: naive Bayesian classifier (NaiveBayes), two
decision trees (C4.5 and PART), Bayesian network (BayesNet),
and Nearest Neigbour Classifier (IB3). We use leave-one-out
cross-validation to estimate performance of the meta-learning
system.

B. Comparison of meta-features groups

First, we picked several groups of meta-features:

e original” is the set of 13 meta-features, described
in [24];

e  basic” is the set of 4 general meta-features;
e  statistical” is the set of 5 statistical meta-features;

e “information-theoretic” is the set of 6 information-
theoretic meta-features;

e standard” is the set of 15 meta-features which are
union of the three previous sets;

e pruned” is the set of 19 meta-features, evaluated for
pruned decision trees;

e unpruned” is the set of 19 meta-features, evaluated
for unpruned decision trees;
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C. Meta-feature subset search

Experimental results described in Subsection IV-B show
that even a small change of meta-feature subset can cause a
huge change in meta-learning system efficacy. That is why
we should be more accurate when choosing a meta-feature
description.

Meta-features are features, therefore we apply a feature
subset selection algorithm for solving this problem. The per-
formance measure described in Section II is defined with
a classifier C' performance measure. That is why the only
type of feature selection algorithm we can apply for solving
this problem is wrappers. We chose the wrapper based on
Genetic Search, because classifier performance function is not
analytical.

D. Meta-feature subset optimization for a certain classifier

In meta-feature subset optimization for a certain classifier
(MFSO-single) we fix classifier C' and then find meta-feature
subset F' such that Q(C(F')) is maximal, where @ is a quality
measure of classifier performance.

This approach is designed to archive high score for a
certain classifier and is not so efficient if another classifier is
used. This is explicitly shown in Table III. The same constraint
is valid for wrapper methods.
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TABLE III. MEAN VALUES OF PRP FOR MFSO-SINGLE
NaiveBayes C4.5 PART BayesNet IB3
NaiveBayes 0.9808 0.9700 | 0.9665 | 0.9601 0.9600
C45 0.9639 0.9923 | 09542 | 00570 | 00422
PART 0.9631 0.9630 | 0.9816 | 00768 0.9697
BayesNet 0.9645 0.9601 | 09693 | 0.9820 | 00592
B3 0.9581 0.9841 | 09587 | 09634 | 0.9830
Meta-feature subsets for each classifier are listed

in repository http://genome.ifmo.ru/files/papers_files/
FRUCT2015/Subsets.pdf. These subsets are very dissimilar to
each other, despite some meta-features (such as noise signal
ration and maximum mutual information) are presented in
almost each meta-feature subset.

We conducted a more detailed research on meta-feature
significance. We define a measure we call mean significance
Sc of meta-feature f in the following way: we run a meta-
feature selection algorithm 7' times and for every time when
f was selected we add PRP of the learnt classifier C with
the selected meta-feature subset to the value of the S

Se(f) = 7 3. PRP(C(F))f € Fi),

where T is the number of runs, F(;) is a meta-feature subset
returned by the feature selection algorithm on ¢th run and [b],
where b is a boolean formula, is defined as [b] = 1 if b and 0
if —b.

We take T" equal 10. Top ten meta-features with the highest
value of mean significance are listed in Table IV. Mean sig-
nificance of all the other meta-features as well as significance
for each classifier can be found in repository http://genome.
ifmo.ru/files/papers_files/FRUCT2015/Significance.pdf.

TABLE IV. TEN META-FEATURES WITH THE HIGHEST VALUE OF MEAN
SIGNIFICANCE
Meta-feature Mean significance
MaxMutual Information 0.6527
NumberOfFeatures 0.5135
MinOneTenth PerceptronWeightSum 0.4843
MaxOneTenthBestK 0.4794
MinHalf PerceptronWeightSum 0.4667
DataSetDimensionality 0.4644
NumberOflnstances 0.4586
MinSqrt PerceptronWeightSum 0.4491
EquivalentNumber OfFeatures 0.4487
MeanMutual Information 0.4449

E. Meta-feature subset optimization for the general case

Meta-feature subset optimization for a general case
(MFSO-general) is a classifier-independent method. To achieve
this, we take an average value of all PRP values for each
classifier. In this case the feature selection algorithm is not
being adjusted to characteristics of a certain algorithm, but
keeps only the features that are universal for all the classifiers
we use for testing.

Only 18 meta-features are left after applying this algorithm:
e  DataSetDimensionality;
e  MeanSkewness;

e  MeanNormalizedFeatureEntropy;
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e  MaxMutuallnformation;

e  PrunedTreeDevAttr;

e  PrunedTreeMinAttr;

e  PrunedTreeMinBranch;

e  PrunedTreeDevClass;

e  PrunedTreeMaxClass;

e  UnprunedTreeLeavesNumber;
e  UnprunedTreeMaxAtt;

e  UnprunedTreeMaxLevel;

e  UnprunedTreeMinBranch;

e  UnprunedTreeDevClass;

e  MinSqrtBestK;

e  MinOneTenthBestK;

e  MeanHalfBestK;

e  MinHalfPerceptronWeightSum.

We must note that most of the selected meta-features are
model-based.

Comparison of MFSO-general performance with original
meta-feature set as well as the best of group choice from
Table II is represented in Table V. It shows that MFSO-general
outperforms all the other approaches.

TABLE V. COMPARISON ON RP R ON DIFFERENT SUBSETS WITH

MFSO-GENERAL

Meta-features NaiveBayes C4.5 PART BayesNet 1B3
Original 0.9738 0.9653 | 0.9635 0.9714 0.9530

Group choice 0.9738 0.9725 | 0.9653 0.9714 0.9620

MESO general 0.9739 0.9841 | 0.9720 0.9755 0.9725

Comparison of MFSO-single performance with the other
approaches to retrieve meta-feature subset are presented in
Table VI. As it can be expected, all the MFSO-algorithm
outperforms MFSO-general due to their adjustment to the
specific classifier.

TABLE VL COMPARISON ON RP R ON DIFFERENT SUBSETS WITH

MFSO-GENERAL AND MSFO-SINGLE

Meta-features NaiveBayes C4.5 PART BayesNet 1B3
Original 0.9738 0.9653 | 0.9635 0.9714 0.9530
Group choice 0.9738 0.9725 | 0.9653 0.9714 0.9620
MESO general 0.9739 0.9841 0.9720 0.9755 0.9725
MFSO single 0.9808 0.9923 | 0.9816 0.9820 0.9830

Now we estimate average significance, which is composi-
tion of significance for each classifier. Ten meta-features with
the highest average significance are listed in Table VII.

Average of all the other significance can be found in repos-
itory http://genome.ifmo.ru/files/papers_filess/FRUCT2015/Av_
significance.pdf.

The meta-features we have already mentioned in Subsec-
tion IV-D, which are noise signal ration and maximum mutual
information, are in this top. It is worth to note that lists of
mean and average significance values are similar. That allows
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TABLE VII. TEN META-FEATURES WITH THE HIGHEST VALUE OF

AVERAGE SIGNIFICANCE

Meta-feature Average significance
MaxMutuallnformation 0.7973
MaxOneTenthBestK 0.6124
MeanMutualInformation 0.5640
NoiseSignalRatio 0.5543
UnprunedTreeMaxClass 0.5542
MinOneTenthPerceptron WeightSum 0.5346
EquivalentNumberOfFeatures 0.4959
NumberOfFeatures 0.4958
PrunedTreeMinBranch 0.4861
UnprunedTreeMeanAttr 0.4667

us to claim that noise signal ration and maximum mutual infor-
mation are more important meta-features for feature selection
algorithm recommendation than correlation coefficient or class
entropy.

V. DISCUSSION

A. Time-consuming evaluation of meta-features based on pa-
rameter tuning

Algorithm parameter tuning is known to take much time,
therefore evaluation of the meta-feature described in Sec-
tion III which are based on these parameters is costly. The
time spent on new dataset meta-features extraction is usually
greater than the time spent on meta-learning system prediction
computation. That is why we are interested in working with
fast-evaluated meta-features. In this subsection we suggest
an approach to reduce the time spent on evaluation of best-
parameter-based meta-features.

The fast modern approach for parameter optimization is
sequential based model optimization (SMBO) [38]. Therefore,
we may use only an approximation of the best parametrization
which we will get after applying a number of steps in SMBO.
Also meta-learning is applied for predicting certain details in
SMBO, such as initial values [39]. The corresponding meta-
features may be used instead of best-parameter-based features.

B. Trade-off between significance and evaluation time

Nevertheless, the approach described above is only a par-
ticular way to handle a certain type of meta-features. Devel-
opment of meta-learning systems and creation of new meta-
features will definitely lead to existence of highly significant,
but expensive-to-evaluate meta-features. To illustrate this idea,
we give an example of the most significant meta-feature, which
is the best algorithm. If we can evaluate this meta-feature for
a dataset, then the prediction of the best algorithm is trivial:
we should only return the value of that feature. But in order
to evaluate this meta-feature value, we need to spend the time
equal to the exhaustive algorithm search time. Therefore, a
trade-off between using significant and fast-to-evaluate meta-
features should be found.

We see two solutions which can be suggested. The first
solution is to measure each meta-feature both with its signif-
icance and its evaluation time. This allows to reduce meta-
feature selection problem to multi-criteria optimization prob-
lem. The second solution is to allow active feature evalua-
tion: split meta-feature set to fast-to-evaluate and other meta-
features. Then evaluate meta-features from the first part. If the
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algorithm performance is not high enough, then try to evaluate
new features which are expected to improve it.

C. When evaluation time is not that meaningful

This section is not complete without mentioning the case
when meta-feature evaluation time is not critical. This case is
algorithm comparison based on meta-feature space. The main
idea of this approach is to find for each algorithm its area of
competence, on which this algorithm is the best with respect
to a fixed performance measure [40], [12]. Therefore, in order
to find if a new algorithm is good or bad, we do not need it
to be compared with several other algorithms. The only thing
we should do is to find its area of competence and to estimate,
how likely real-world datasets will appear in this area.

The space in which such areas are located is described
with meta-features. The key challenge in this approach is
to find a proper meta-feature description. Evaluation time is
a secondary question. Therefore, best-parameter-based meta-
features are applicable for algorithm comparison.

VI. CONCLUSION

In this paper we have suggested a novel approach for
creating meta-features based on classifier model and the best
parametization of classifier. We expect this approach to be
applicable for a classifer selection as well. We have found an
optimal meta-feature subset for each of the classifiers we used
to evalute feature selection algorithm performance and for the
general case which is based on averaging different classifiers
evaluation.

For future work we plan to investigate which model-
based meta-features can be evaluated in small time. Another
challenge is to predict best feature selection algorithm for
clustering.
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