PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

Evaluation of the Modern Visual SLAM Methods

Arthur Huletski, Dmitriy Kartashov
The Academic University
Saint-Petersburg, Russia
{hatless.fox, dmakart} @gmail.com

Abstract—Simultaneous Localization and Mapping (SLAM) is
a challenging task in robotics. Researchers work hard on it, so
several novel SLAM algorithms as well as enhancements for the
known ones are published every year. We have selected recent
(2013-mid. 2015) approaches that in theory can be run on mobile
robot and evaluated it. This paper gives brief intuitive descrip-
tion of ORB-SLAM, LSD-SLAM, L-SLAM and OpenRatSLAM
algorithms, then compares the algorithms theoretically (based
on given description) and evaluates them with TUM RGB-D
benchmark.

I. INTRODUCTION

Simultaneous Localization and Mapping is a promising
area of research in robotics. The area focuses on methods
that allow robots to estimate their position (localization part)
simultaneously with gathering information related to envi-
ronment (mapping part). SLAM problem is hard due to its
“chicken-egg” nature: robot should use constructed map to
localize itself simultaneously with pose usage to update the
map. The problem becomes even harder since robot’s sensors
and actuators are subject to noises (e.g. robot have to use a
map for localization since odometry error grows very fast).
Various probabilistic methods are used to deal with uncertainty
introduced by noise: Kalman Filter, Extended Kalman Filter,
Particle Filter, etc. In a few words all these methods are based
on Bayesian inference provide a technique for random value
estimation [1]. The main idea of probabilistic methods is to
continuously incorporate new observation to the existent one
in order to refine the estimate. Thrun et al. provide good
introduction to these methods [1].

Many proposed SLAM algorithms are based on described
idea. It is useful to answer the following questions to have the
very first impression of algorithm’s uniqueness and its features:

e Which one and how values are estimated?

e How environment map is estimated?

e Which sensors and actuators are used?

e How the algorithms differs from its base method?

e What assumptions and approximation were made to
derive the algorithm?

We believe that the last question is the most important since
its answer implicitly determines algorithm’s limits and quality.
The answer is also important since probabilistic robotics can be
thought as “the art of approximation” because there is a simple
algorithm (based on Bayes theorem) that produce correct result
but the algorithm is not useful since it is computationally
expensive [1].

Kirill Krinkin

St. Petersburg State Electrotechnical University "LETI”

Saint-Petersburg, Russia
kirill.krinkin @fruct.org

Comparison versus the base method (the last but one
question) is also worth to be considered since it refines the
algorithm’s contribution. As an example consider DP-SLAM
algorithm [2], that is based on Rao-Blackwellized Particle
Filter [3]. It proposes a new effective way for map organization
as well as hierarchical organization of itself to be able to
process larger maps [4].

Several algorithms that use only monocular camera (and
sometimes odometry) have been presented recently. These
approaches try to extract information about environment and
(sometimes) robot motion from camera images and use it to
solve SLAM problem. Such algorithms are known as visual
SLAM algorithms. It is worth to compare these algorithms
since many of them require only monocular camera as a
sensor. This makes a robot more affordable since monocular
camera is an inexpensive sensor (comparing, for example, with
a LIDAR).

This paper aims at comparing recent visual SLAM algo-
rithms that have open source implementation. The remainder
of the paper is organized as follows: Section II describes
criteria that were used for comparison. We list algorithms
chosen for analysis and provide brief description for each
of them in Section III. Section IV provides comparison in
two forms: “theoretical” (table with algorithms’ summary) and
“practical” (evaluation of performance on various datasets). A
brief conclusion is given in section V.

II. SLAM ALGORITHMS CHARACTERISTICS

SLAM methods can be classified at least by used sensors
and output map type and sometimes they have common under-
lying math methods (e.g. Kalman filter or bundle adjustment).
Such “theoretical” features of the algorithms are described
in Section IV-a. In this section we focus on the measurable
characteristics.

There are several metrics in the SLAM area that don’t
depend on sensor or output map types. Though it’s clear
that the actual output of the SLAM algorithm often depends
on sensor quality or algorithm implementation, these metrics
allow to estimate performance and quality of an algorithms
and decide whether an algorithm is suitable for the concrete
task.

e Localization accuracy is the main property of the
SLAM algorithm. Usually it’s a root-mean-square
error (RMSE) between robot’s positions predicted by
a SLAM algorithm and the ground truth data.

e Dataset processing time or data chunk processing

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

time or mean CPU usage reflects the computational
effectiveness of an algorithm.

e Peak memory consumption allows to estimate memory
requirements of the one algorithm relative to other
algorithms on the same dataset. This is often important
for mobile robots which have the limited hardware
resources.

Also there are metrics that are specific for particular SLAM
type, for example:

e Camera frame processing time or FPS (frames per
second) is specific for visual SLAM. Actually, it’s
desirable to process camera video stream in real
time to timely react to the environment changes. It’s
especially important for the flying robots.

e Map quality, i.e. differences in SLAM output map and
ground truth map, is specific for SLAMs which output
map is in form of occupancy grid (e.g. GMapping [5]).
It can’t be measured for most graph-based SLAM as
there’s no actual environment map.

Besides the metrics mentioned above, some important but
hard to measure SLAM algorithm characteristics exists. These
include:

e Robustness can be defined as the ability of the algo-
rithm to not degrade the localization accuracy over the
long time or the ability to work in any environment
(e. g. indoor and outdoor). From the other point of
view, robustness can be thought as algorithm’s ability
to produce similar results for multiple runs on the
same input.

e Convergence can be defined as the time that is nec-
essary for the algorithm to minimize the localization
error after the last relocalization procedure.

III. DESCRIPTION OF RECENTLY PROPOSED ALGORITHMS

We looked through a set of algorithms that were proposed
recently (2013-2015), have open implementation and can be
(at least in theory) used by common autonomous ground/aerial
mobile robot.

The following algorithms were picked for evaluation:

¢ ORB-SLAM;

e OpenRatSLAM;
e LSD-SLAM;

e L-SLAM.

The algorithms are briefly described below.

A. ORB-SLAM

ORB-SLAM [6] is the visual SLAM method that utilizes
ORB-features [7]. As opposed to some other visual SLAM
algorithms it doesn’t use any external odometry. This algo-
rithm has several features. During robot exploration the place
recognition database is constructed. This database contains
bag of words representation of the current camera image that

20

is bound to the specific position in the map. This database
allows to perform queries with the set of currently observed
ORB descriptors to recognize current place. Details on the
usage of such database are described in [8]. Another feature
of this SLAM is the covisibility graph in which vertices are
keyframes and an edge connects two vertices if they share
enough common features. Such graph is useful for finding
several frames with the images of the same object from
different view angles.

The SLAM system consists of 3 modules that work in
parallel threads:

e tracking thread localizes camera in every new frame
and decides when a new keyframe insertion is needed;

e Jocal mapping processes new keyframes and performs
local bundle adjustment to achieve an optimal space
reconstruction in the surroundings of the camera pose;

e Joop closure searches for large loops when the new
keyframe is available.

Camera tracking begins with ORB feature extraction from
the new camera frame. If the tracking was successful in the
last frame then the first estimation of the camera pose in the
new frame is the camera pose in the last frame. For each
ORB feature from the previous frame, which has a map point
associated, a match in the current frame is searched. This gives
a set of 3D to 2D correspondences, so the camera pose can
be computed by solving a PnP problem. If the tracking is lost
then the frame is converted into the bag of words and the
recognition database is queried for relocalisation candidates.
For each candidate the ORB correspondences between the
current frame and the ORB features associated to map points
are computed. This gives a set of 2D to 3D correspondences so
the PnP problem can be solved for each candidate keyframe.
Best solution is considered as the camera pose estimation.

Previous steps produce an estimation of the camera pose
and an initial set of feature matches. This allows to project
the map into the frame and search for extra map point
correspondences. Two sets of keyframes are selected to achieve
this: the set K consists of keyframes that share map points
with the current frame, and the set Ko consists of neighbors
to the keyframes K in the covisibility graph. Then each map
point that is seen in K; and Ky is searched in the current
frame.

Finally, the camera pose is optimized using the initial esti-
mation and all correspondences found between ORB features
in the frame and local map points. The optimization minimizes
the reprojection error using the Levenberg-Marquadt algorithm
robustified with the Huber cost function.

The local mapping thread processes new keyframes, and
updates and optimizes their local neighborhood. The loop
closure thread detects loops in the map and if the loop is
found it performs global optimizations that maintain the global
consistency of the map. Both these threads process each new
keyframe. The detailed description of these modules can be
found in [6].

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

B. OpenRatSLAM

OpenRatSLAM [9] is the open-source implementation
of the RatSLAM algorithm, that is appearance-based visual
SLAM system originally proposed in [10]. The main feature of
this SLAM algorithm is that it models navigational processes
in the hippocampus (a part of the mammalian brain). It uses
monocular camera as the main source of information about
the environment and also able to visually estimate odometry
(though it may use any other odometry source). As the robot
explores the environment RatSLAM builds robot’s trajectory
map in form of graph in which vertices corresponds to
some unique visual experience and edges contain odometry
information. SLAM system consists of three major modules:
pose cells, local view cells and experience map. Each of these
components is described in details below.

Pose Cells Network (PCN) is a three-dimensional continu-
ous attractor network. In fact, it’s a 3D array of cells (or graph
with vertices arranged in rectangular prism) and each cell is
connected with other by excitatory and inhibitory links which
wrap across the boundaries of the PCN. The dimensions of this
array correspond to the x, y and # coordinates of the ground-
based robot. Each cell has associated activity (energy) level.
The centroid of the cluster of currently active cells is the local
estimation of the robot’s current pose. During the localization
process the internal activity in the PCN is recomputed as
follows:

e active cells propagate their energy through excitatory
links to other cells with respect to the link weight;

e energy in each cell is reduced by specified constant
(global inhibition);

e activity in the whole network is normalized so that the
total energy in the system is equals to 1.

After internal activity update the odometry information is used
to shift activity in PCN. Activity shift is a simple displacement
of the current activity state in the direction that is specified by
odometry.

Local View Cells (LVC) is an array of units, each of which
represents a distinct visual scene in the environment. Local
view cell consist of raw pixel data (visual template) extracted
from camera image and the weighted excitatory link that
connects cell and the current pose estimation cell in the PCN.
Each LVC has activity level that determines the similarity
between the current view and the visual template. The visual
template is produced from camera image by detecting visually
interesting region in the image, converting to grayscale format
and downsampling to the fixed size.

On each step of the SLAM process the visual template
for the current camera image is matched with each previously
gained visual template. A similarity measure is based on the
sum of absolute differences (SAD): the comparison process
finds the minimum SAD while shifting the stored templates
along to the current template in the horizontal direction. If the
smallest difference between the current and stored templates
is less than a threshold, then the corresponding template is
selected as active LVC. Otherwise, the new local view cell is
created for the current visual template. All active LVCs inject

21

activity into the associated pose cells through excitatory links
and thereby affects the activity state of the PCN.

Experience Map is a graphical map that estimates a global
robot pose by combining information from the PCN and LVC.
Each node in the experience map contains current activity
levels in PCN and LVC and global position of the node. A
new experience is created when the current activity state in
PCN and LVC is not closely matched by the state associated
with any existing experiences. As the robot moves between
experiences, a link that contains odometry information is
formed between the previously active experience and the new
experience. Finally, the map graph is updated by relaxation
algorithm that distributes odometric error throughout the graph,
providing a human-readable map of the robot’s environment.

OpenRatSLAM implementation also includes visual odom-
etry module that determines camera motion by comparing
successive images. The module makes implicit assumption
that the maximum camera motion is limited and the robot
travels at a relatively constant speed. It allows for separate
regions in the image to be specified for determining forward
translational and rotational speeds using scanline profile that
is the sum of the image columns. The rotational velocity is
estimated by determining what relative horizontal offset of two
consecutive scanline profiles minimizes the mean of absolute
differences between the two profiles. The translational velocity
is estimated by multiplying the minimum difference by a
scaling factor and limited to a maximum value. Such visual
odometry estimation is very rough and can be applied only
for car-like robots, but the authors claim that it’s sufficient
to yield a topological map that is representative of the true
environment.

So in brief, on each step of SLAM process PCN updates
internal activity using excitatory and inhibitory links. In the
same time the robot attempts to match current visual scene
with known scenes in LVC. If the current scene can’t be
matched, i.e. visual scene is unique, this scene is sampled and
stored in LVC with binding to the currently active cell in PCN.
Otherwise the energy is injected in the PCN cell that is bound
to the matched view. For most of local view cells a node in
the experience map is created. As the new node is added to
the graph, a relaxation operation that corrects the odometric
error is performed over the map graph.

C. LSD-SLAM

Large-scale direct monocular SLAM (LSD-SLAM) [11] is
an algorithm that uses only RGB images from a monocular
camera as information about environment and sequentially
builds topological map (graph-based map). The most distinc-
tive properties of LSD-SLAM are its ability to reconstruct 3D
environments and direct nature (i. e. entire image is used for
localization and mapping instead of some set of features, such
as angles or lines). The algorithm is actually an extension of
the method that allows to estimate semi-dense inverse depth
map with monocular camera. The method was introduced
in [12].

The semi-dense inverse depth map is a probabilistic partial
estimation of inverse (i.e. d !, d - actual distance) distance to
point in environment that corresponds to a pixel on the image.
The inverse depth map is represented by 2D array of random

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

values. Each r.v. approximates inverse depth with Gaussian, so
it is described by mean and variance values. Pixel to inverse
depth correspondence is partial, since inverse depth map can
be estimated for “good” pixels on the image. The “goodness”
is mainly defined by intensity gradient direction (i.e. direction
in which intensity grows) of a pixel. In a few words, the depth
map is estimated by disparity estimation for each pixel on
current image and some image that has been captured before.
After that estimated values (i.e. new observation) are merged
with current inverse depth map (i.e. previous observation) with
Gaussian merging (similar to Kalman filter). So, the method
allows to continuously estimate current inverse depth map.

The knowledge about the environment is stored as topo-
logical (graph) map. Each node consists of an image and
probabilistic inverse depth map. Nodes are connected with
edges that hold information about relative scale-aware align-
ment (estimated) and corresponding covariance.

We believe the following intuition helps to understand the
algorithm: the entire history of observations (camera images) is
approximated by a set of keyframes (that directly corresponds
to nodes), so entire map is divided into clusters and keyframe
stores cluster-specific data. The main part of this data is
inverse depth map, that acts as a “feature” (i.e. something
that makes keyframe unique). This role of inverse depth maps
makes clear its intention of being scale-aware: since actual
inverse depth map’s values depends on scale (e. g. an obstacle
proximity), it is normalized to present uniform knowledge
about environment’s “profile”. The information about scale
is stores in an edge that connects two keyframes as well as
estimated transformation.

The update loop of LSD-SLAM has the following steps:
1) capture new frame (image) and estimate transfor-
mation with respect to current keyframe (reference
image). The estimation is performed by photometric
error minimization with Gauss-Newton method;
compute “distance” between new frame and current
keyframe;

if “distance” is below threshold — estimate inverse
depth map of the new frame and merge it with current
keyframe’s map. Then go to step 1;

create new keyframe from new frame: create initial
depth map estimate by projecting inverse depth map
of current keyframe with the estimate transformation,
then remove outliers in it;

add current keyframe to the environment map and per-
form loop closure: find keyframe candidates (10 the
most closest (by distance) keyframes and keyframes
proposed by appearance-based mapping [13]), then
try to insert edges between current keyframe and can-
didates: the edge is inserted when estimated indepen-
dently back and forth transformations are statistically
similar.

2)

3)

4)

5)

There is also a background thread that performs optimiza-
tion with g2o framework [14].
D. L-SLAM

6-DoF Low Dimensionality SLAM or L-SLAM [15] is
an improvement of FastSLAM 2.0 algorithm [16]. Both

22

algorithms are probabilistic, feature-based and use Rao-
Blackwellized particle filter to track posteriors. Position of
each feature (i.e. points on the environment map) is treated as
random variable as well as robot’s pose. L-SLAM uses Particle
Filter to estimate robot orientation and Kalman Filter to
estimate robot and feature positions. This scheme differs from
the one used by FastSLAM algorithm: Particle Filter is used to
estimate entire robot pose (orientation and location), Extended
Kalman Filter is used for pose estimation of each feature.
L-SLAM also performs Kalman Smoothing to propagate the
newest measurement backwards to already estimated robot
poses (i. e. trajectory) and features (i. e. map).

L-SLAM algorithm uses odometry to sample new robot
orientation with Particle Filter. Posteriors for robot’s (as well
as features’) poses are estimated with Kalman Filter, since
derived approximation of kinematic model of 6 DoF vehicle
is linear.

The observation is defined as a set of features, extracted
by an abstract sensor. Generally speaking, features of any kind
can be used, but model derived in the paper uses 3D laser
scanning sensor as an input. The only (soft) requirement for
feature detector is low noise (since such assumption was made
in process of derivation).

The particle update loop of L-SLAM has the following
steps (for each particle):

1y
2)

sample orientation: update particle with odometry;
estimate feature correspondence: estimate features’
importance factor (Mahalanobis distance between
observation and estimation), then pick feature with
maximum factor;

update observed features: if maximum factor of se-
lected feature is less than the threshold — add a
new feature; otherwise — update position of selected
feature with Kalman Filter;

update trajectory: use Kalman Smoothing to update
previously estimated poses and feature positions that
are not observed by current measurements;

update particle weight by multiplying it by selected
feature weight.

3)

4)

5)

When every particle is updated, loop resampling is per-
formed as part of Particle Filter algorithm. The map is repre-
sented as cloud of features.

Speed of L-SLAM outperforms FastSLAM 2.0 by factor
of 3 according to [15]. This fact can be explained by changing
Extended Kalman Filters to (linear) Kalman Filters for fea-
tures’ position estimation. L-SLAM also uses Particle Filter
for the space of much less size (orientation vs pose) which in
theory makes it more robust. The accuracy of both algorithms
are nearly the same as estimated in [15].

L-SLAM algorithm is presented as an algorithm that uses
odometry and laser scanner as a sensor, but it can be thought as
back-end for a visual feature detector, that returns reasonably
small number of features and has low noise. So the original
algorithm can be altered to be monocular by incorporation of
visual odometry module and visual feature detector.

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

TABLE 1. SLAM ALGORITHMS OVERVIEW
Algorithm Core estimated values Map type Used information Main contribution Assumptions
e camera transformation (by o robot movement between 2
feature matching error min- | e cloud of ORB features; . e usage of ORB as environ- . X
ORB-SLAM L RGB image consecutive frames is rela-
imization); o keyframe graph; ment features; R
L. tively small.
» 3D feature position;
e robot position and orien- | Graph:
tation (by Pose Cell Net- ® vertex — position of the o RGB image: o first biological-nspired ® excitatory lmks' welght ma-
RatSLAM work); unique visual experience; trix has Gaussian distribu-
. . . e odometry; SLAM; .
e visual odometry (option- e edge — distance and travel tion.
ally); time between vertices;
e camera transformation (by Graph: . .
X L . o tracking structure of envi-
photometric error minimiza- e vertex — keyframe (image + ronment: o inverse depth is Gaussian:
LSD-SLAM tion); depth map); RGB image ’ . L pLh 15 fyaussian;
X . . e monocular camera is the » noises are Gaussian;
e inverse depth map (by pix- e edge — constraint (scale-
. i . only sensor;
elwise Kalman Filter); aware transformation);
 orientation (by Particle Fil- * i)ge':—dlmensmn particle. fil-
L-SLAM ter); L. cloud of features * odometry; e derivation of linear model; © sensor noise 1s low
e robot and feature position » cxtracted features;) ® noises are Gaussian;
. o Kalman Smoothing to refine
(by Kalman Filter); . N .
previous estimations;

IV. EVALUATION

We found useful to compare algorithms in two steps. The
first one recaps algorithms’ description and gives answers to
the set of questions mentioned in the first section of the paper.
The second part of evaluation compares criteria described in
the section II. Actual values for each algorithm are obtained
by running it on various datasets.

A. Theoretical Comparison

We compare the selected SLAM algorithms using the
following criteria:

e Estimated values are parameters that are used in the
specific algorithm in order to compute robot’s position

and construct the environment map.

Map type. Different SLAM methods provide different
map types (occupancy grid, feature cloud, trajectory
graph, etc.). Fach applied task may require specific
map type: for example, the graph maps are more
suitable for self-driving cars and street mapping while
occupancy grid map may be used for tasks where the
environment is static.

Used information defines the set of sensors that is re-
quired for running the algorithm. Most of the modern
visual SLAM methods require only monocular camera
and estimate odometry using the camera video stream,
but some 2D SLAM methods (e.g. GMapping [5])
require external odometry as well as range-scan data.

Contributions of the algorithm in the solving of the
whole SLAM problem.

Assumptions. As it was mentioned above, the as-
sumptions, on which the SLAM algorithm is based,
implicitly determines algorithm’s limits and quality.

The algorithm comparison results are aggregated in the
Table L.
B. Practical Comparison

The practical comparison of the selected SLAM methods
is performed on the Amazon EC2 virtual server with 2.4 GHz

23

Intel Xeon CPU and 8 Gb RAM. The algorithms are tested
using the subset of the TUM RGB-D benchmark datasets [17]
by running each algorithm 15 times on each dataset. We made
the following tweaks that allowed to achieve better output
quality:

¢ ORB-SLAM: camera settings were updated with the
settings from dataset;
e RAT-SLAM: datasets were played at 0.5 speed.

We excluded L-SLAM from the testing because the ver-
sion described in corresponding paper is not a visual SLAM
algorithm. The testing results for RMSE are shown in the
Table II and also visualized in Fig. 2. Also a sample of the
SLAM output trajectory for fr3_long_office_household dataset
is shown in the Fig. 1.

Value that corresponds to a median has two parts: RMSE
mean and information related to algorithm robustness in brack-
ets (optional). Robustness has the following values:

e “” —none of trials was executed successfully (e. g.
tracking was lost (LSD-SLAM)). RMSE result is
calculated for partial trajectory;

e ‘“number” — percents of trials that were executed

3 L)
ground truth
LSD
RAT
2F ORB
|
0
-1
-2
-3
-5 -4 -3 -2 1 0 1 2
Fig. 1. SLAM trajectories for fr3_long_office_household test

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

TABLE II. RMSE COMPARISON IN THE TUM RGB-D BENCHMARK [17]
Dataset Median (m) Mean (m) Standard Deviation (m)
LSD ORB ORB Sc. Rat LSD ORB ORB Sc. Rat LSD ORB ORB Sc. Rat
fr1_desk 0.75 (7%) 0.05 0.05 1.21 0.75 0.05 0.04 1.12 X 0.02 0.01 0.22
frl_room 0.05 (-) 0.19 (87%) 0.09 0.97 (93%) 0.05 0.18 0.1 0.95 0 0.12 0.07 0.06
frl_xyz 0.17 (93%) 0.04 0.013 0.22 0.26 0.05 0.018 0.22 0.18 0.03 0.01 0.01
fr2_desk 0.43 (7%) 0.74 0.16 2.56 (93%) 0.43 0.76 0.19 2.56 X 0.09 0.14 0.01
fr2_pioneer_slam2 0.55 (7%) 0.24 0.05 1.62 0.55 0.62 0.13 1.62 X 0.62 0.12 0.006
fr3_large_cabinet 0.80 (20%) 1.75 (40%) 0.53 1.88 0.71 1.75 0.56 1.88 0.14 0.07 0.11 0.001
fr3_long_office_household 0.54 (-) 1.11 0.04 1.38 0.54 1.10 0.04 1.26 0.22 0.02 0.008 0.25
2.75
=
25 - T
225 T -
2 r -
—
1.75 [-
— —
E 15 .
: '
= 125 ['
w
' I = 1
0.75 [~ L] I 1
i —] |
0.5 f—
025 [I p—it I i
- - » | | —
LSD ORB RAT LSD ORB RAT LSD ORB RAT LSD ORB RAT LSD ORB RAT LSD ORB RAT LSD ORB RAT
fr1_desk fr1_room fr1_xyz fr2_desk fr2_pioneer_2 fr3_cabinet fr3_long_office

Fig. 2. RMSE comparison

successfully. RMSE was calculated using only these
results.

The absence value in brackets means that all trials were
executed successfully. The “X” value in standard deviation
column indicates that we haven’t enough data to compute it
(e.g. only one trial was successful).

Note that ORB-SLAM has extra “Sc.” measurements. We
haven’t changed OotB settings (except camera) and the algo-
rithm’s output we get doesn’t have proper trajectory scale, so
we had to tune the scale manually to obtain the smallest error.
Note that “scaled” measurements has the same rate of success
runs as the original ones. Since LSD-SLAM and RatSLAM are
supposed to be scale-aware, scale adjustment wasn’t performed
for them.

The following observations and conclusions can be made
basing on our experience and data after the testing:

e We couldn’t obtain stable tracking and low error of
trajectory on the dataset for any of described visual
algorithms. For example, RMSE is big enough and
rate of success runs is low on some real-world tests
(e.g. in case of fr3_large_cabinet).

e We couldn’t get robust results for any of the algo-
rithms when run their out-of-the-box implementations,
because: RatSLAM is not accurate and fast enough
(datastream was explicitly slowed down by factor of
2, otherwise the algorithm wasn’t able to finish suc-
cessfully at all); ORB-SLAM requires postprocessing

24

and LSD-SLAM requires tweaking and very non-
deterministic.

e LSD-SLAM showed very non-deterministic behavior
(rate of success runs) on the dataset. In addition,
tracking was lost in completely different frames for
some tests (e.g. fr3_long_office household). We can
conclude that the algorithm require more sophisticated
tuning that we were able to do. FoV of camera that
captured the dataset can be thought of another possible
reason of low tracking robustness.

e ORB-SLAM requires manual adjusting of the trajec-
tory scale, which can be seen by comparing data in
“ORB” and “ORB Sc.” columns. On the one hand,
adjusted trajectory is very accurate (see Fig. 1), but
on the other hand, posterior scale adjustment is unac-
ceptable for robots that work in real-life environments.

e RatSLAM is the most slow and inaccurate of all. The
last is probably caused by inaccuracy of its visual
odometry model.

V. CONCLUSION

Visual SLAM algorithms occupies notable place in taxon-
omy of SLAM methods. Such algorithms require monocular
camera, which makes a robot affordable. Recently proposed
visual SLAM methods (LSD-SLAM, ORB-SLAM and Open-
RatSLAM) were analyzed and evaluated at RGB-D dataset
from TUM. Unfortunately, our runs of examined methods
either showed significant error or requirement of manual
postprocessing to make the error small.

PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

Estimated RMSE values lead us to equirement for a new
visual SLAM algorithm that can be fairly (i. e. without
postprocessing) used by mobile robot:

e method that estimates camera transformation should
have at least medium level on noise (RatSLAM draw-
back);

e an algorithm should be scale-aware (ORB-SLAM
drawback);

e in case of tracking loss an algorithm should use some
fallback strategy instead of giving up (LSD-SLAM
drawback).

We believe the most promising areas for future efforts
in monocular SLAM includes methods of robust and accu-
rate camera transformation estimation and approaches that
automatically adjust trajectory scale, since robust monocular
odometry is a necessary condition for a monocular SLAM as
it was shown by tests.

ACKNOWLEDGMENT

Authors would like to thank JetBrains company for pro-
vided support and materials for working on this research.
The paper has been prepared within the scope of project
part of the state plan of the Board of Education of Russia
(task # 2.136.2014/K).

REFERENCES

[11 S. Thrun, W. Burgard, D. Fox, “Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents)”. Cambridge: The MIT Press, 2005.
A. Eliazar, R. Parr, “DP-SLAM: Fast, Robust Simultaneous Localization
and Mapping Without Predetermined Landmarks”, in Proc. of the 18th
International Joint Conference on Artificial Intelligence, pp. 1135-1142,
2003.

[2]

25

(31

(4]

(6]

(71

(91

(10]

(11]
(12]

(13]

[14]

[15]

[16]

(17]

A. Doucet, N. de Freitas, K. Murphy, S. Russell, “Rao-Blackwellised
Particle Filtering for Dynamic Bayesian Networks”, in Proc. of the 16th
Conference on Uncertainty in Artificial Intelligence, pp. 176-183, 2000.

A. Eliazar, R. Parr, “Hierarchical Linear/Constant Time SLAM Using
Particle Filters for Dense Maps”, in Proc. of NIPS, pp. 339-346, 2005.
G. Grisetti, C. Stachniss, W. Burgard, “Improved Techniques for Grid
Mapping with Rao-Blackwellized Particle Filters”, IEEE Transactions
on Robotics, pp. 34-46, 2007.

R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System”, IEEE Transactions
on Robotics, 2015.

E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “ORB: an efficient
alternative to SIFT or SURF”, ICCV, 2011.

R. Mur-Artal, J. D. Tardos, “Fast relocalisation and loop closing in
keyframe-based SLAM”, in Proc. of IEEE International Conference on
Robotics and Automation (ICRA), June 2014.

D. Ball, S. Heath, J. Wiles, G. Wyeth, P. Corke, M. Milford, “Open-
RatSLAM: an open source brain-based SLAM system”, Autonomous
Robots, April 2013.

M. Milford, G. Wyeth, “Mapping a Suburb with a Single Camera using a
Biologically Inspired SLAM System”, IEEE Transactions on Robotics,
vol. 24, pp. 1038-1053, 2008.

J. Engel, T. Schops, D. Cremers, “LSD-SLAM: Large-Scale Direct
Monocular SLAM”, ECCV, 2014.

J. Engel, J. Sturm, D. Cremers, “Semi-Dense Visual Odometry for a
Monocular Camera”, ICCV, 2013.

A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth,
“OpenFABMAP: An open source toolbox for appearance-based loop
closure detection.”, ICRA, 2012.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgar, “g20:
A General Framework for Graph Optimization”, ICRA, 2011.

N. Zikos, and V. Petridis, “6-DoF Low Dimensionality SLAM (L-
SLAM)”, Journal of Intelligent and Robotic Systems, vol. 79, 2015,
pp. 55-72.

M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, “FastSLAM 2.0: An
Improved Particle Filtering Algorithm for Simultaneous Localization
and Mapping that Provably Converges”, IJCAI, 2003.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, “A
Benchmark for the Evaluation of RGB-D SLAM Systems”, Proc. of the
International Conference on Intelligent Robot Systems (IROS), 2012.

