
Design and Implementation Raspberry Pi-based

Omni-wheel Mobile Robot

Kirill Krinkin

Saint-Petersburg State

Electrotechnical University

St. Petersburg, Russia

kirill.krinkin@fruct.org

Elena Stotskaya

Pascal Lyceum

St. Petersburg, Russia

elena.stotskaya@yutax.ru

Yury Stotskiy

EMC Corporation

St. Petersburg, Russia

yury.stotskiy@yutax.ru

Abstract Nowadays simultaneous localization and mapping

(SLAM) algorithms are being tested at least in two phases:

software simulation and real hardware platform testing. This

paper describes hardware design and control software for small

size omni-directional wheels robot implemented for indoor

testing SLAM algorithms.

I. INTRODUCTION

Omni-wheel robots are widely used in mobile robotics.

They have unique ability to move instantly in any direction

from any pose [1], but they require more complex control

algorithms and sensitive to underlying surface. Omni-wheel

motion is not new but still actively discussed [2]. Our goal is

create small mobile platform for testing SLAM algorithms in

indoor environment, which will satisfy next requirements:

 based on common, replaceable and chip hardware;

 small sized and small weighted (not more than 2 kg and

20x20x20 cm);

 ability to move with relatively high speed up to 1 m/s;

 provide good connection with different indoor surfaces

(like carpets, wood, concrete,...);

 have enough space for sensor installation (up to two

mini-RGB cameras and four infrared/ultrasound

distance sensors).

The rest of paper is organized following way. In Section II

we discuss the hardware design of robot. Section III is dedicated

to motion algorithms implementation. Section IV describes

calibration and tuning approaches. Sections V and VI present the

robot software architecture and control protocol implementation.

Evaluation of mobile robot design and future plans discussed in

Section VII. The conclusion is in Section VIII.

II. HARDWARE DESIGN

According the requirements, all parts of robot should be
relatively cheap and available widely on market, to be easily
replaced. We used standard mechanics and controllers.

A. Mechanical part

We selected centrosymmetric design with four

circumferentially spaced omni wheels as shown in Fig. 1.

Wheels are directly put to four electric motors contained build-in

speed reduction units. Motors are mounted at the bottom side of

silumin box. The box provides constructional strength and

flexibility for installing electronic components inside and

outside.

Robot radius Rc is equal to 9.6 cm. Angle between motor 1

and motor n spindles Dn is equal to 90 1).

Fig. 1. Omni-wheel mobile robot structure

Initial motors mount design assumed fixed mounting all four

motors and wheels to the box bottom plate. However, such

design does not ensure all wheels touch floor constantly and first

motion experiments demonstrated path instability. Then we

added simple suspension to two adjacent wheels. It improved

path stability dramatically even without any springs and

absorbers. Other two wheels are kept fixed mounting.

The robot uses omni wheels shown in Fig. 2. Wheel radius r

is 25 mm. The wheels have rubber rollers. This allows avoiding

slipping wheels problem defined in [3] even at wood or plastic

(linoleum) surface. However, this kind of wheels demonstrates

big friction that requires robot calibration and applying

compensating correction as described below.

B. Electronics

Electronic part of the system consists of two double-channel

L298 motor drivers, Arduino based controller [4], Raspberry Pi

[5] main onboard computer and Li-Pol 7.4 V battery as it shown

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

in Fig. 3. The battery powers Arduino controller, motor drivers

and motors directly. Raspberry Pi unit is powered by using 5 V

regulator.

The controller provides pulse-width modulation (PWM)

signal for motor drivers calculates and executes basic motion

algorithms and processes sensors input. The controller is also

responsible for buffering motors and sensors related command

from onboard computer, maintaining commands execution

timeline and issuing events and statuses back to onboard

computer.

C. Communications

Onboard computer and the controller communicate each to

other by UART at 115200 baud rate using level shifter between

units that utilize 3.3 V and 5 V TTL levels respectively. High

communication rate makes it possible to send more than 100

commands per second that allows changing motion parameters

every centimeter of the robot route. Actual limitations of

commands flow are amount of Arduino controller memory and

the controller CPU clock rate. These hardware limitations

define maximum buffer length and ability to execute buffered

commands on time. We found that Arduino controller takes up

to 2 ms to process an individual command. Therefore UART

communication rate is enough for selected design.

Another reason of using exactly 115200 baud rate selection

is ability to upload motor controller software over UART

without UART reconfiguration because this baud rate is used

by Arduino boot loader.

Fig. 2. Omni wheels used in the construction

Fig. 3. Electronic components

WiFi dongle is installed to one of two available USB ports

at Raspberry Pi. It provides connectivity between robot and

local network and Internet. Communication with robot could

be made over ssh.

For debugging and uploading initial Arduino controller

software we utilized external computer connected to the

controller by using Arduino USB connector or HC-06

Bluetooth module connected to the controller UART instead

of Raspberry Pi.

We also kept ability to connect remote USB keyboard and

mouse and HDMI based display to Raspbery Pi.

C. Sensors

Ultrasonic HC-SR04 distance sensor is installed at one of

the robot box side and connected to Arduino GPIO pins. Based

on our experiments the sensor can detect distance from 3 to

500 cm. We are going to extend number of ultrasonic sensors

in future.

There are plans to mount other sensors like video camera

and laser locator but exact sensors configuration depend on

planned research and still under discussion.

III. SIMPLE MOTION ALGORITHMS

At the first stage, we implemented two motion algorithms:

Move and Rotate. They are enough to perform arbitrary motion

in a room that has complex shape and some interior. They also

allow orienting robot and its sensors in required direction.

These algorithms are based on known formulas as defined

below. Exact software implementation is created from scratch by

the article authors.

A. Move

This universal motion defines the robot movement along a

curve (including straight-line motion) at specified velocity as

shown in Fig 4.

A motion specified by the following parameters:

1) Distance L is requested distance to move the robot for.

2) Velocity V is linear speed of the robot geometric center.

3) Curve C is the robot route curvature that is reciprocal of

the route radius (see Fig. 4).

Fig. 4. Motion along a curve at constant course relative to the robot body

4) Course D is direction followed by the robot relative to the

ro 1. Course is defined as

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 40 --

angle between wheel number 1 motor spindle direction

(ro robot motion line.

If Curve is equal to zero then Move is straight-line motion and

corresponded motor number n power Pnl can be defined by

formula (1) in accordance with [6].

Pnl = K l sin(D+Dn) (1)

Here K is power per cm/s factor defined by motor

characteristics. Kl, (at this formula), Kt, and Kr (at next

formulas) are calibration factors connected to wheels friction

and motors resistance and depend on velocity, course and

curve values. These factors discussed below.

To implement motion at Curve different from zero we have

turning the robot for full circle relative to the floor as soon as the

robot traveled 2 /C path length. This is equivalent to adding the

robot rotation around its geometrical center at circular frequency

W = V 4.

Robot geometry c

where r is wheel radius and w is the wheel rotation circular

frequency. Required rotation means adding supplement

velocity Vt

axis.

Using Vt in formula (1) and considering D + Dn we can

calculate additional motors power Pnt required for turning.

Pnt = K t V c

Total motor power for Move motion is Pn = Pnl + Pnt. Time

to apply calculated motor power is T = L/V.

B. Rotate

Move motion type cannot ensure rotation around the robot

geometrical center. Rotate motion used instead and specified

by:

1) Angle A to turn.

2) Frequency F of rotations in angle units per second.

For this case motors power Pnr and time T can be calculated

as

Pnr = K r 2

T = A/F (4)

The benefit of these two simple motion types is motor power

permanence in time for each individual motion. Motors power is

a constant of time at equations (1) to (3). This reduces motor

controller algorithms complexity. However, such useful motions

as, for example, linear travel and simultaneous robot rotation

cannot be executed by applying static motor powers. Such

motion implementation requires dividing travel path to short

sections (about 2 cm in the robot path length) and issuing

separate Move or Rotate command to motor controller per each

section. At maximum robot speed 100 cm /s, it requires sending

up to 50 commands per second from onboard computer to motor

controller that may overload UART communication channel and

the controller command queue.

IV. CALIBRATION

Equations (1) to (4) describe motion for ideal case. Real

algorithms have to take motor resistance, minimal motor start

power, wheel friction and wheel slipping into consideration.

That means Kl, Kt and Kr coefficients are not constant but

functions of velocity and course. These functions are different

for each of three power entries: Pnl, Pnt and Pnr.

We did three series of experiments to measure linear

mov

corresponds to wheel path along circumference Rc). Fig 5

shows experimental distance in cm passed by the robot in one

second for different motors power.

is applied to two opposite

motors in positive and negative rotate direction respectively.

Two other motors are

same power is applied to all motors but even and odd motors

(as numbered in Fig. 1) were powered in opposite directions.

For rotation case, all motors are powered to turn in the same

direction.

We found that floor surface material affects wheel friction

and slipping and introduces a difference up to 20% for the

motion distance and curvature if the same power applied to

motors in experiments. Therefore, calculated and calibrated

Pnl, Pnt and Pnr cannot ensure precise motion without feedback

from some sensors. We get calibration data for two reference

surfaces (wood and carpet floors) and applied piecewise linear

approximation for calibration functions based on average data

obtained at different surfaces.

Such approach provides ability to control the robot motion

with reasonable error and use simple linear approximation

algorithms at the same time. This allows reducing motor

controller CPU load.

Fig. 6 shows used calibrations graph for Kt and Kr. Initially

we expected Kt to be equal to Kr because both Pnt and Pnr are

motor power to perform the same robot motion type (rotation

around robot center). Experimental data proved that rotation

without movement requires more power than turning

adjustment.

Fig. 5. Dependence of rate (cm/s) on motors power (PWM pulse ratio)

We assume rotation spends additional power to get the

robot moving on but turning adjustment applied to already

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 41 --

moving robot and therefore this power addition is included to

Pnl part of the motion calculation.

In opposite to Kt and Kr that depend on power only Kl is a

function of power and course. Dependency on course is caused

by two reasons. The first one is wheel friction variation and

another one is power reduction by sinus function in (1) if

Therefore, Kl calibration function provides both

experimental and theoretical adjustments. Our motor controller

logic calculates Kl calibration function for c

 7. To calculate Kl

we use angle between course and nearest motor axis to convert

 for calibrating.

During experiments, we found that straight-line motion at

courses close to any motor axis direction is less predictable

because two wheels (almost) do not rotate in such cases. These

two wheels are located across motion path and make largest

contribution to friction. Friction of wheel we use (see Fig. 1)

depends very much on wheel angle position in the plane of the

wheel rotation. This angle position can vary Kl as much as

front and back wheels to predefined position (with less

possible friction) in advance.

Fig. 6. Power (PWM pulse ratio) dependence of Kt and Kr calibration factors

Fig. 7. Kl factor for different courses dependence on power

Considering wheels angle position cannot be set at real

for straight-line motion. Motion with significant curvature or

complex motions discussed below are not so sensitive to wheel

friction instability because all wheels are constantly rotating.

V. SOFTWARE DESIGN

This section describes control software for omni-wheel

robot including basic principles, communication, and sensors.

High level robot control algorithm is shown in Fig. 8.

Considering Arduino CPU performance limitation we

avoided using any third party Arduino libraries and

implemented all required logic inside our own code to control

execution timing.

A. Motor controller

Arduino runtime library executes main application loop

infinitely. Any motor controller motion and communication

algorithms are initiated by some action in this loop. This

architecture applies such limitation as inability interrupting an

action and as a result the requirement to keep any action

execution time below some reasonable time. We keep this

time below 20 ms that corresponds to maximum motion

execution inaccuracy about 2 cm at the maximum robot speed

100 cm/s because of possible delaying motion command

execution.

The motor controller software is created from scratch. No

external additional Arduino libraries are used. This allowed

predicting code execution timing and memory usage.

B. UART communication

String based command protocol is implemented to send

commands from onboard computer to motor controller and

receive controller states and events.

The protocol defines any command or event as ASCII

characters string consists of key word followed by up to five

signed integer numeric parameters separated by comma and

LF and CR symbols. Maximum number of command

parameters is a trade-off and limited by the controller memory

allocated for command queue.

One of the infinite loop actions reads UART stream and

calls command parser as soon as complete command string

detected in the stream. The parser executes the command

immediately or put it to circular buffer (command queue). All

motion control commands except immediate stop instruction

are queued to the buffer to be run one by one as soon as

previous command execution time T expired.

C. Commands execution

Another action of the application loop monitors active

motion execution time and reads next command from the

queue as soon as current motion completed. Command

parameters can instruct controller to run corresponded motion

infinitely. Such motion continues to be active while command

queue is empty (no any motion command queued by parser

after current one). As soon as next motion command detected

in the queue the infinite command interrupted immediately to

run next motion instead.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 42 --

Fig. 8. Arduino based motor controller firmware stack

D. Pulse-width modulation

Standard Arduino runtime library supports build-in ability

to generate PWM modulated TTL signal at controller output

pin by single function call executed by the application. As

soon as the signal duty factor assigned the controller continues

issuing the PWM signal while another duty factor not

assigned. This allowed us to connect motor drivers to PWM

output pins and apply required Pn or Pnr power to a motor

permanently by single call in the motor controller application.

E. Ultrasonic sensor

Third action of the motor controller application loop is

periodical echolocation by using ultrasonic sensor. Command

protocol provides ability switching echolocation on or off,

defines distance detection rate and configuring two thresholds.

As soon as detected distance to remote object is inside (or

outside) of defined thresholds the controller issues event

notification to onboard computer.

The echolocation can be configured to initiate immediate

stop if an object detected too close to the robot.

Implemented echo processing algorithm uses GPIO pin

edge interrupt subroutine to detect ultrasonic echo response

time and do not blocks main loop execution while sensor is

waiting for echo.

Our experiments proved stable echo detection at distances

up to 500 cm.

F. Onboard computer

Raspberry Pi onboard computer contains full functional

Linux package installed at SD card. Network connection over

WiFi allows updating and installing required libraries.

Raspberry Pi Linux is configured to avoid using UART as

kernel logging console and TTY.

We additionally installed Git and Arduino IDE for ARM.

As a result full software development cycle can run using the

robot computers only. This includes motor controller software

development and uploading it to Arduino, onboard computer

software development, building, testing and committing it to

external project repository.

Considering most hardware specific logic is encapsulated

into controller software we assume external powerfull

computer with cross-compiler can be used to develop and

debug complex algorithm.

Wiringpi2 for Python and wiringpi for C libraries are used

to access Raspberry Pi based GPIO pins and communication

channels. Minicom is installed to debug motor controller

command protocol.

Onboard computer application implements a parser similar

to the parser at motor controller. The application shares header

file contained communication protocol definitions and the

robot limits with motor controller software. This guarantees

communication protocol compatibility.

The computer is going to be used for implementing

advanced robot motion and positioning, SLAM and image

processing algorithms, and robot navigation tasks. However,

simple test applications only are available for today.

Because of possible power instability or battery discharge

SD card file system can be corrupted or SD card can be

damaged physically. We recommend backup the card image

periodically to avoid data lost. Monitoring battery power and

automatic system shutdown can be implemented to protect SD

card file system if battery discharged below critical level.

VI. MOTION CONTROL IMPLEMENTATION

A. Motion commands

Following protocol commands used to implement Move

and Rotate motions:

1) MOVE,L,V,D,C; command requests the robot

movement. Special distance value used to request infinite

motion.

Motor controller remembers parameters of last executed

MOVE command. This allows issuing motion command as a

derivative of last executed Move motion or in other words a

derivative of current robot movement. A usual robot application

processes some sensor feedback and adjusts current motion to

return the robot to planned route. Therefore, ability to apply

incremental adjustment is important feature of motion control

algorithm.

2) DELTA,L,V,D,C,R; command is used to request Move

motion with parameters calculated as sum of last Move motion

values and provided DELTA parameters. In other words,

DELTA command defines derivatives to current motion

parameter values.

Repeat (R) parameter specifies how many times repeating

the DELTA command before processing next command from

the queue. Infinite reiteration can be requested by special

value of the Repeat parameter. As soon as next command is

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 43 --

available in the queue, the infinite reiteration interrupted just

after current repetition completed.

3) ROTATE,A,F; command requests rotation around the

robot center. Similar to distance case there is special angle

value to request infinite rotation. ROTATE command does not

change last Move motion values. Therefore, DELTA

command is able to use the values even if ROTATE command

issued in between.

4) STOP; command interrupts current motion, stops all

motors, clear the queue and resets last MOVE parameters to

all zeroes. The command is not queued but executed by the

parser immediately.

B. Parameter limits

Parameter limits are defined by the robot geometry and

characteristics (such as maximum motor power, wheel

friction) and Arduino platform maximum integer value limit.

Any command is checked by the parser against limits before

writing the command to the queue. We apply the following

limits for MOVE and ROTATE command parameters:

500 cm < L < 500 cm.

30 cm/s < |V| < 100 cm/s. Minimal possible velocity

defined by minimal motors power required to overcome

mechanical and electrical resistance and get robot moving.

Combination of distance and velocity signs specifies forth or

back motion along given course.

360 < D < 360 degrees.

100 < C < 100 where C is measured as 1000/cm. Curve

sign specifies route bend to the left or right relative to the given

course. Curve equal to 100 corresponds to the robot motion

around some point at the robot outer radius.

30000 < A

used to request several turnovers.

900 < F < 900 degrees/s. Combination of angle and

frequency signs specifies clockwise or counter clockwise

rotation direction.

DELTA parameter limits are twice more than

corresponded MOVE limits to provide ability switching

MOVE parameters in full available range by single DELTA

command.

0 < R < 30000. If R equal to zero DELTA command is

executed ones.

C. Complex motion algorithms

Basic motion algorithms Move and Rotate provide ability to

relocate the robot to any position and orient the robot sensors.

However, planned missions require moving the robot along

complex path and turning it simultaneously.

Developed DELTA command allows realizing various

complex motions.

As an example two subsequent commands

MOVE,2,40,0,0; DELTA,0,0,10,0,36; initiate 37 movements

to 2 cm at 40 cm/s speed. Each next movement change course

to 10 degrees compare to previous one. As a result, the robot

moves around a circle but keeps its orientation relative to

ground.

An even more powerful feature is ability to specify infinite

DELTA command repeat sequence by assigning special value

(30000 in our implementation) to R.

The following two commands MOVE,3,60,0, 40;

DELTA,0,0,10,0,30000; initiate infinite robot movement

along straight line and simultaneous robot rotation around the

robot center because first command specify 2 cm motion along

the left bend curve but subsequent DELTA adds permanent

course switching in opposite side that compensate bend.

Such complex movement considers frequent changing

motor powers. The key feature is executing this motor power

regulation by motor controller internal algorithms and

avoiding huge command flow from onboard computer to the

controller.

D. Additional commands

The command protocol implements additional commands

to provide the following operations and notifications:

 Apply exact motor power to each motor for defined

time. The command is mainly used for debug and

calibration purposes.

 Switch operation modes like simulating motion without

applying actual power to motors.

 Request current motor controller status including

applied motor powers, last MOVE parameters, and

command queue usage.

 Report errors and warnings happened in the controller

parser and algorithms.

 Ultrasonic sensor configuration and reporting detected

distance.

Fig. 9. The robot picture

The command protocol detailed description is out of this

article scope.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 44 --

VII. EVALUATION AND FURTHER WORK

Currently we have simple and robust platform for real

indoor experiments and extensions. Mechanical design

demonstrated strength. The robot was tested indoor and at

some outdoor surfaces at up to maximum speed and

acceleration without any damage. The robot is small enough to

be used in rooms with limited space and still provides ability

to mound additional sensors and electronic equipment.

Today we can formulate the following possible

improvements to the current functionality:

 Add sensors feedback to motion control and implement

motion primitives in onboard computer application

library.

 Install additional ultrasonic sensors and calibrate them

to use their output as reference distance to interior

items.

 Design and test universal connection for fast installing

sonars and cameras outside of robot body.

 Add binary command communication protocol over

UART to reduce communication channel overhead and

optimize parser performance.

 Install Robot Operating System on Raspberry Pi

computer, test performance and tune ROS stack for

running on low power devices.

 Test different omni wheel types.

In a long term perspective we plan the following activities:

 Install additional sensors and develop an application

that creates interior maps and navigates around the

room.

 Use the platform to research SLAM algorithms and test

available SLAM solutions at real situation.

VIII. CONCLUSION

In this paper we discussed problems and solutions

discovered during small robust omni-wheel robot

implementation. The robot is designed for SLAM algorithms

indoor research. Full stack from hardware implementation up

to high level software was presented. Real prototype is shown

in Fig. 9.

Robot software is available in project repository

https://github.com/OSLL/omnibot/.

ACKNOWLEDGMENT

Authors would like to thank Saint-Petersburg Computer

Science Center, for provided equipment. Some parts of this

paper have been prepared within the scope of project part of

the state plan of the Board of Education of Russia (task

2.136.2014/K).

REFERENCES

[1] M.O. Tatar, C. Popovici, D. Mandru, I. Ardelean, and A. Plesa,

Design and development of an autonomous omni-directional mobile
robot with Mecanum wheels , 2014 IEEE International Conference

on Automation, Quality and Testing Robotics (AQTR), DOI:

10.1109/AQTR.2014.6857869.New York: Wiley, 1991.

[2] I. Doroftei, V. Grosu, and V. mobile robot -
design and i -Chapter, Bioinspiration and

Robotics - Climbing and Walking Robots, Editor Maki K. Habib,
Published by Advanced Robotic Systems International (Vienna) and
ITech, 2007, pp. 511-529.

[3] Freie Universitat Berlin,

Web: http://www.inf.fu-berlin.de/lehre/WS04/Robotik/omnidrive.
pdf.

[4] Arduino / Genuino UNO official website, Web: https://www.
arduino.cc/en/Main/arduinoBoardUno, access date 29.09.2015.

[5] Raspberry Pi 2014 website, Web: https://www.raspberrypi.org/
documentation/hardware/raspberrypi/schematics/Raspberry-Pi-B-
Plus-V1.2-Schematics.pdf, access date 29.09.2015.

[6] L. Huang, Y.S. Lim, David Li, and Christopher E.L.
and analysis of a four-wheel omnidirectional mobile r , Second
International Conference on Autonomous Robots and Agents,

December 13-15 2004, Web: http://www-ist.massey.ac.nz/
conferences/icara2004/files/Papers/Paper74_ICARA2004_425_428.
Pdf.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 45 --

