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Abstract Nowadays simultaneous localization and mapping 

(SLAM) algorithms are being tested at least in two phases: 

software simulation and real hardware platform testing. This 

paper describes hardware design and control software for small 

size omni-directional wheels robot implemented for indoor 

testing SLAM algorithms.  

I. INTRODUCTION 

Omni-wheel robots are widely used in mobile robotics. 

They have unique ability to move instantly in any direction 

from any pose [1], but they require more complex control 

algorithms and sensitive to underlying surface. Omni-wheel 

motion is not new but still actively discussed [2]. Our goal is 

create small mobile platform for testing SLAM algorithms in 

indoor environment, which will satisfy next requirements: 

 based on common, replaceable and chip hardware; 

 small sized and small weighted (not more than 2 kg and 

20x20x20 cm); 

 ability to move with relatively high speed  up to 1 m/s; 

 provide good connection with different indoor surfaces 

(like carpets, wood, concrete,...); 

 have enough space for sensor installation (up to two 

mini-RGB cameras and four infrared/ultrasound 

distance sensors). 

The rest of paper is organized following way. In Section II 

we discuss the hardware design of robot. Section III is dedicated 

to motion algorithms implementation. Section IV describes 

calibration and tuning approaches. Sections V and VI present the 

robot software architecture and control protocol implementation. 

Evaluation of mobile robot design and future plans discussed in 

Section VII. The conclusion is in Section VIII. 

II. HARDWARE DESIGN 

According the requirements, all parts of robot should be 
relatively cheap and available widely on market, to be easily 
replaced. We used standard mechanics and controllers. 

A. Mechanical part 

We selected centrosymmetric design with four 

circumferentially spaced omni wheels as shown in Fig. 1. 

Wheels are directly put to four electric motors contained build-in 

speed reduction units. Motors are mounted at the bottom side of 

silumin box. The box provides constructional strength and 

flexibility for installing electronic components inside and 

outside. 

Robot radius Rc is equal to 9.6 cm. Angle between motor 1 

and motor n spindles Dn is equal to 90 1). 

 

Fig. 1. Omni-wheel mobile robot structure 

Initial motors mount design assumed fixed mounting all four 

motors and wheels to the box bottom plate. However, such 

design does not ensure all wheels touch floor constantly and first 

motion experiments demonstrated path instability. Then we 

added simple suspension to two adjacent wheels. It improved 

path stability dramatically even without any springs and 

absorbers. Other two wheels are kept fixed mounting. 

The robot uses omni wheels shown in Fig. 2. Wheel radius r 

is 25 mm. The wheels have rubber rollers. This allows avoiding 

slipping wheels problem defined in [3] even at wood or plastic 

(linoleum) surface. However, this kind of wheels demonstrates 

big friction that requires robot calibration and applying 

compensating correction as described below. 

B. Electronics 

Electronic part of the system consists of two double-channel 

L298 motor drivers, Arduino based controller [4], Raspberry Pi 

[5] main onboard computer and Li-Pol 7.4 V battery as it shown 
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in Fig. 3. The battery powers Arduino controller, motor drivers 

and motors directly. Raspberry Pi unit is powered by using 5 V 

regulator. 

The controller provides pulse-width modulation (PWM) 

signal for motor drivers calculates and executes basic motion 

algorithms and processes sensors input. The controller is also 

responsible for buffering motors and sensors related command 

from onboard computer, maintaining commands execution 

timeline and issuing events and statuses back to onboard 

computer. 

C. Communications 

Onboard computer and the controller communicate each to 

other by UART at 115200 baud rate using level shifter between 

units that utilize 3.3 V and 5 V TTL levels respectively. High 

communication rate makes it possible to send more than 100 

commands per second that allows changing motion parameters 

every centimeter of the robot route. Actual limitations of 

commands flow are amount of Arduino controller memory and 

the controller CPU clock rate. These hardware limitations 

define maximum buffer length and ability to execute buffered 

commands on time. We found that Arduino controller takes up 

to 2 ms to process an individual command. Therefore UART 

communication rate is enough for selected design. 

Another reason of using exactly 115200 baud rate selection 

is ability to upload motor controller software over UART 

without UART reconfiguration because this baud rate is used 

by Arduino boot loader. 

 

Fig. 2. Omni wheels used in the construction 

 

Fig. 3. Electronic components 

WiFi dongle is installed to one of two available USB ports 

at Raspberry Pi. It provides connectivity between robot and 

local network and Internet. Communication with robot could 

be made over ssh. 

For debugging and uploading initial Arduino controller 

software we utilized external computer connected to the 

controller by using Arduino USB connector or HC-06 

Bluetooth module connected to the controller UART instead 

of Raspberry Pi. 

We also kept ability to connect remote USB keyboard and 

mouse and HDMI based display to Raspbery Pi. 

C. Sensors 

Ultrasonic HC-SR04 distance sensor is installed at one of 

the robot box side and connected to Arduino GPIO pins. Based 

on our experiments the sensor can detect distance from 3 to 

500 cm. We are going to extend number of ultrasonic sensors 

in future. 

There are plans to mount other sensors like video camera 

and laser locator but exact sensors configuration depend on 

planned research and still under discussion. 

III. SIMPLE MOTION ALGORITHMS 

At the first stage, we implemented two motion algorithms: 

Move and Rotate. They are enough to perform arbitrary motion 

in a room that has complex shape and some interior. They also 

allow orienting robot and its sensors in required direction. 

These algorithms are based on known formulas as defined 

below. Exact software implementation is created from scratch by 

the article authors. 

A. Move 

This universal motion defines the robot movement along a 

curve (including straight-line motion) at specified velocity as 

shown in Fig 4. 

A motion specified by the following parameters: 

1) Distance L is requested distance to move the robot for. 

2) Velocity V is linear speed of the robot geometric center. 

3) Curve C is the robot route curvature that is reciprocal of 

the route radius (see Fig. 4). 

 

Fig. 4. Motion along a curve at constant course relative to the robot body 

4) Course D is direction followed by the robot relative to the 

ro  1. Course is defined as 
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angle between wheel number 1 motor spindle direction 

(ro robot motion line. 

If Curve is equal to zero then Move is straight-line motion and 

corresponded motor number n power Pnl can be defined by 

formula (1) in accordance with [6]. 

Pnl = K l sin(D+Dn)                           (1) 

Here K is power per cm/s factor defined by motor 

characteristics. Kl, (at this formula), Kt, and Kr (at next 

formulas) are calibration factors connected to wheels friction 

and motors resistance and depend on velocity, course and 

curve values. These factors discussed below. 

To implement motion at Curve different from zero we have 

turning the robot for full circle relative to the floor as soon as the 

robot traveled 2 /C path length. This is equivalent to adding the 

robot rotation around its geometrical center at circular frequency 

W = V  4. 

Robot geometry c 

where r is wheel radius and w is the wheel rotation circular 

frequency. Required rotation means adding supplement 

velocity Vt 

axis. 

Using Vt in formula (1) and considering D + Dn  we can 

calculate additional motors power Pnt required for turning. 

Pnt = K t V c  

Total motor power for Move motion is Pn = Pnl + Pnt. Time 

to apply calculated motor power is T = L/V. 

B. Rotate 

Move motion type cannot ensure rotation around the robot 

geometrical center. Rotate motion used instead and specified 

by: 

1) Angle A to turn. 

2) Frequency F of rotations in angle units per second. 

For this case motors power Pnr  and time T can be calculated 

as 

Pnr = K r 2  

T = A/F                                        (4) 

The benefit of these two simple motion types is motor power 

permanence in time for each individual motion. Motors power is 

a constant of time at equations (1) to (3). This reduces motor 

controller algorithms complexity. However, such useful motions 

as, for example, linear travel and simultaneous robot rotation 

cannot be executed by applying static motor powers. Such 

motion implementation requires dividing travel path to short 

sections (about 2 cm in the robot path length) and issuing 

separate Move or Rotate command to motor controller per each 

section. At maximum robot speed 100 cm /s, it requires sending 

up to 50 commands per second from onboard computer to motor 

controller that may overload UART communication channel and 

the controller command queue. 

IV. CALIBRATION 

Equations (1) to (4) describe motion for ideal case. Real 

algorithms have to take motor resistance, minimal motor start 

power, wheel friction and wheel slipping into consideration. 

That means Kl, Kt and Kr coefficients are not constant but 

functions of velocity and course. These functions are different 

for each of three power entries: Pnl, Pnt and Pnr. 

We did three series of experiments to measure linear 

mov

corresponds to wheel path along circumference Rc). Fig 5 

shows experimental distance in cm passed by the robot in one 

second for different motors power. 

is applied to two opposite 

motors in positive and negative rotate direction respectively. 

Two other motors are 

same power is applied to all motors but even and odd motors 

(as numbered in Fig. 1) were powered in opposite directions. 

For rotation case, all motors are powered to turn in the same 

direction. 

We found that floor surface material affects wheel friction 

and slipping and introduces a difference up to 20% for the 

motion distance and curvature if the same power applied to 

motors in experiments. Therefore, calculated and calibrated 

Pnl, Pnt and Pnr cannot ensure precise motion without feedback 

from some sensors. We get calibration data for two reference 

surfaces (wood and carpet floors) and applied piecewise linear 

approximation for calibration functions based on average data 

obtained at different surfaces. 

Such approach provides ability to control the robot motion 

with reasonable error and use simple linear approximation 

algorithms at the same time. This allows reducing motor 

controller CPU load. 

Fig. 6 shows used calibrations graph for Kt and Kr. Initially 

we expected Kt to be equal to Kr because both Pnt and Pnr are 

motor power to perform the same robot motion type (rotation 

around robot center). Experimental data proved that rotation 

without movement requires more power than turning 

adjustment. 

 

Fig. 5. Dependence of rate (cm/s) on motors power (PWM pulse ratio) 

We assume rotation spends additional power to get the 

robot moving on but turning adjustment applied to already 
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moving robot and therefore this power addition is included to 

Pnl part of the motion calculation. 

In opposite to Kt and Kr that depend on power only Kl is a 

function of power and course. Dependency on course is caused 

by two reasons. The first one is wheel friction variation and 

another one is power reduction by sinus function in (1) if 

 

Therefore, Kl calibration function provides both 

experimental and theoretical adjustments. Our motor controller 

logic calculates Kl calibration function for c

 7. To calculate Kl 

we use angle between course and nearest motor axis to convert 

   for calibrating. 

During experiments, we found that straight-line motion at 

courses close to any motor axis direction is less predictable 

because two wheels (almost) do not rotate in such cases. These 

two wheels are located across motion path and make largest 

contribution to friction. Friction of wheel we use (see Fig. 1) 

depends very much on wheel angle position in the plane of the 

wheel rotation. This angle position can vary Kl as much as 

front and back wheels to predefined position (with less 

possible friction) in advance. 

 

Fig. 6. Power (PWM pulse ratio) dependence of Kt and Kr calibration factors 

 

Fig. 7. Kl factor for different courses dependence on power 

Considering wheels angle position cannot be set at real 

for straight-line motion. Motion with significant curvature or 

complex motions discussed below are not so sensitive to wheel 

friction instability because all wheels are constantly rotating. 

V. SOFTWARE DESIGN 

This section describes control software for omni-wheel 

robot including basic principles, communication, and sensors. 

High level robot control algorithm is shown in Fig. 8. 

Considering Arduino CPU performance limitation we 

avoided using any third party Arduino libraries and 

implemented all required logic inside our own code to control 

execution timing. 

A. Motor controller 

Arduino runtime library executes main application loop 

infinitely. Any motor controller motion and communication 

algorithms are initiated by some action in this loop. This 

architecture applies such limitation as inability interrupting an 

action and as a result the requirement to keep any action 

execution time below some reasonable time. We keep this 

time below 20 ms that corresponds to maximum motion 

execution inaccuracy about 2 cm at the maximum robot speed 

100 cm/s because of possible delaying motion command 

execution. 

The motor controller software is created from scratch. No 

external additional Arduino libraries are used. This allowed 

predicting code execution timing and memory usage. 

B. UART communication 

String based command protocol is implemented to send 

commands from onboard computer to motor controller and 

receive controller states and events. 

The protocol defines any command or event as ASCII 

characters string consists of key word followed by up to five 

signed integer numeric parameters separated by comma and 

LF and CR symbols. Maximum number of command 

parameters is a trade-off and limited by the controller memory 

allocated for command queue. 

One of the infinite loop actions reads UART stream and 

calls command parser as soon as complete command string 

detected in the stream. The parser executes the command 

immediately or put it to circular buffer (command queue). All 

motion control commands except immediate stop instruction 

are queued to the buffer to be run one by one as soon as 

previous command execution time T expired. 

C. Commands execution 

Another action of the application loop monitors active 

motion execution time and reads next command from the 

queue as soon as current motion completed. Command 

parameters can instruct controller to run corresponded motion 

infinitely. Such motion continues to be active while command 

queue is empty (no any motion command queued by parser 

after current one). As soon as next motion command detected 

in the queue the infinite command interrupted immediately to 

run next motion instead. 
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Fig. 8. Arduino based motor controller firmware stack 

D. Pulse-width modulation 

Standard Arduino runtime library supports build-in ability 

to generate PWM modulated TTL signal at controller output 

pin by single function call executed by the application. As 

soon as the signal duty factor assigned the controller continues 

issuing the PWM signal while another duty factor not 

assigned. This allowed us to connect motor drivers to PWM 

output pins and apply required Pn or Pnr power to a motor 

permanently by single call in the motor controller application. 

E. Ultrasonic sensor 

Third action of the motor controller application loop is 

periodical echolocation by using ultrasonic sensor. Command 

protocol provides ability switching echolocation on or off, 

defines distance detection rate and configuring two thresholds. 

As soon as detected distance to remote object is inside (or 

outside) of defined thresholds the controller issues event 

notification to onboard computer. 

The echolocation can be configured to initiate immediate 

stop if an object detected too close to the robot. 

Implemented echo processing algorithm uses GPIO pin 

edge interrupt subroutine to detect ultrasonic echo response 

time and do not blocks main loop execution while sensor is 

waiting for echo. 

Our experiments proved stable echo detection at distances 

up to 500 cm. 

F. Onboard computer 

Raspberry Pi onboard computer contains full functional 

Linux package installed at SD card. Network connection over 

WiFi allows updating and installing required libraries. 

Raspberry Pi Linux is configured to avoid using UART as 

kernel logging console and TTY. 

We additionally installed Git and Arduino IDE for ARM. 

As a result full software development cycle can run using the 

robot computers only. This includes motor controller software 

development and uploading it to Arduino, onboard computer 

software development, building, testing and committing it to 

external project repository. 

Considering most hardware specific logic is encapsulated 

into controller software we assume external powerfull 

computer with cross-compiler can be used to develop and 

debug complex algorithm. 

Wiringpi2 for Python and wiringpi for C libraries are used 

to access Raspberry Pi based GPIO pins and communication 

channels. Minicom is installed to debug motor controller 

command protocol. 

Onboard computer application implements a parser similar 

to the parser at motor controller. The application shares header 

file contained communication protocol definitions and the 

robot limits with motor controller software. This guarantees 

communication protocol compatibility. 

The computer is going to be used for implementing 

advanced robot motion and positioning, SLAM and image 

processing algorithms, and robot navigation tasks. However, 

simple test applications only are available for today. 

Because of possible power instability or battery discharge 

SD card file system can be corrupted or SD card can be 

damaged physically. We recommend backup the card image 

periodically to avoid data lost. Monitoring battery power and 

automatic system shutdown can be implemented to protect SD 

card file system if battery discharged below critical level. 

VI. MOTION CONTROL IMPLEMENTATION 

A. Motion commands 

Following protocol commands used to implement Move 

and Rotate motions: 

1) MOVE,L,V,D,C; command requests the robot 

movement. Special distance value used to request infinite 

motion. 

Motor controller remembers parameters of last executed 

MOVE command. This allows issuing motion command as a 

derivative of last executed Move motion or in other words a 

derivative of current robot movement. A usual robot application 

processes some sensor feedback and adjusts current motion to 

return the robot to planned route. Therefore, ability to apply 

incremental adjustment is important feature of motion control 

algorithm. 

2) DELTA,L,V,D,C,R; command is used to request Move 

motion with parameters calculated as sum of last Move motion 

values and provided DELTA parameters. In other words, 

DELTA command defines derivatives to current motion 

parameter values. 

Repeat (R) parameter specifies how many times repeating 

the DELTA command before processing next command from 

the queue. Infinite reiteration can be requested by special 

value of the Repeat parameter. As soon as next command is 
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available in the queue, the infinite reiteration interrupted just 

after current repetition completed. 

3) ROTATE,A,F; command requests rotation around the 

robot center. Similar to distance case there is special angle 

value to request infinite rotation. ROTATE command does not 

change last Move motion values. Therefore, DELTA 

command is able to use the values even if ROTATE command 

issued in between. 

4) STOP; command interrupts current motion, stops all 

motors, clear the queue and resets last MOVE parameters to 

all zeroes. The command is not queued but executed by the 

parser immediately. 

B. Parameter limits 

Parameter limits are defined by the robot geometry and 

characteristics (such as maximum motor power, wheel 

friction) and Arduino platform maximum integer value limit. 

Any command is checked by the parser against limits before 

writing the command to the queue. We apply the following 

limits for MOVE and ROTATE command parameters: 

500 cm < L < 500 cm. 

30 cm/s < |V| < 100 cm/s. Minimal possible velocity 

defined by minimal motors power required to overcome 

mechanical and electrical resistance and get robot moving. 

Combination of distance and velocity signs specifies forth or 

back motion along given course. 

360 < D < 360 degrees. 

100 < C < 100 where C is measured as 1000/cm. Curve 

sign specifies route bend to the left or right relative to the given 

course. Curve equal to 100 corresponds to the robot motion 

around some point at the robot outer radius. 

30000 < A 

used to request several turnovers.  

900 < F < 900 degrees/s. Combination of angle and 

frequency signs specifies clockwise or counter clockwise 

rotation direction. 

DELTA parameter limits are twice more than 

corresponded MOVE limits to provide ability switching 

MOVE parameters in full available range by single DELTA 

command. 

0 < R < 30000. If R equal to zero DELTA command is 

executed ones. 

C. Complex motion algorithms 

Basic motion algorithms Move and Rotate provide ability to 

relocate the robot to any position and orient the robot sensors. 

However, planned missions require moving the robot along 

complex path and turning it simultaneously. 

Developed DELTA command allows realizing various 

complex motions. 

As an example two subsequent commands 

MOVE,2,40,0,0; DELTA,0,0,10,0,36; initiate 37 movements 

to 2 cm at 40 cm/s speed. Each next movement change course 

to 10 degrees compare to previous one. As a result, the robot 

moves around a circle but keeps its orientation relative to 

ground. 

An even more powerful feature is ability to specify infinite 

DELTA command repeat sequence by assigning special value 

(30000 in our implementation) to R. 

The following two commands MOVE,3,60,0, 40; 

DELTA,0,0,10,0,30000; initiate infinite robot movement 

along straight line and simultaneous robot rotation around the 

robot center because first command specify 2 cm motion along 

the left bend curve but subsequent DELTA adds permanent 

course switching in opposite side that compensate bend. 

Such complex movement considers frequent changing 

motor powers. The key feature is executing this motor power 

regulation by motor controller internal algorithms and 

avoiding huge command flow from onboard computer to the 

controller. 

D. Additional commands 

The command protocol implements additional commands 

to provide the following operations and notifications: 

 Apply exact motor power to each motor for defined 

time. The command is mainly used for debug and 

calibration purposes. 

 Switch operation modes like simulating motion without 

applying actual power to motors. 

 Request current motor controller status including 

applied motor powers, last MOVE parameters, and 

command queue usage. 

 Report errors and warnings happened in the controller 

parser and algorithms. 

 Ultrasonic sensor configuration and reporting detected 

distance. 

 

Fig. 9. The robot picture 

The command protocol detailed description is out of this 

article scope. 
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VII. EVALUATION AND FURTHER WORK 

Currently we have simple and robust platform for real 

indoor experiments and extensions. Mechanical design 

demonstrated strength. The robot was tested indoor and at 

some outdoor surfaces at up to maximum speed and 

acceleration without any damage. The robot is small enough to 

be used in rooms with limited space and still provides ability 

to mound additional sensors and electronic equipment.  

Today we can formulate the following possible 

improvements to the current functionality: 

 Add sensors feedback to motion control and implement 

motion primitives in onboard computer application 

library. 

 Install additional ultrasonic sensors and calibrate them 

to use their output as reference distance to interior 

items. 

 Design and test universal connection for fast installing 

sonars and cameras outside of robot body. 

 Add binary command communication protocol over 

UART to reduce communication channel overhead and 

optimize parser performance. 

 Install Robot Operating System on Raspberry Pi 

computer, test performance and tune ROS stack for 

running on low power devices. 

 Test different omni wheel types. 

In a long term perspective we plan the following activities: 

 Install additional sensors and develop an application 

that creates interior maps and navigates around the 

room. 

 Use the platform to research SLAM algorithms and test 

available SLAM solutions at real situation. 

VIII. CONCLUSION 

In this paper we discussed problems and solutions 

discovered during small robust omni-wheel robot 

implementation. The robot is designed for SLAM algorithms 

indoor research. Full stack from hardware implementation up 

to high level software was presented. Real prototype is shown 

in Fig. 9. 

Robot software is available in project repository 

https://github.com/OSLL/omnibot/. 
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