
Twitter as a Transport Layer Platform

Dmitry Namiot

Lomonosov Moscow State University

Moscow, Russia

dnamiot@gmail.com

Abstract Internet messengers and social networks have

become an integral part of modern digital life. We have in mind

not only the interaction between individual users but also a

variety of applications that exist in these applications. Typically,

applications for social networks use the universal login system

and rely on data from social networks. Also, such applications are

likely to get more traction when they are inside of the big social

network like Facebook. At the same time, less attention is paid to

communication capabilities of social networks. In this paper, we

target Twitter as a messaging system at the first hand. We

describe the way information systems can use Twitter as a

transport layer for own services. Our work introduces a

programmable service called 411 for Twitter, which supports

user-defined and application-specific commands through tweets.

I. INTRODUCTION

All social networks nowadays offer some public
Application Program Interfaces (API). All social networks
offer the ability for third-party developers to build
applications. APIs enable developers to reuse the basic
functionality of social networks in own projects. For example,
public API for Twitter lets developers (third party
applications) post new tweets, search for tweets, etc. In other

But the main idea for the most o -
applications is still either share data in social networks or
collect shared data. All actions are performed with the hope of
the viral effect of social media. If we can make our content
engaging, interesting and important enough, people will spread
it widely and our content will have a disproportionate impact.

For example, our own application redefined geo-check-in
(a status message with geo-coordinates) with an idea to attract
more users from the huge user base of Facebook [1].

In this paper, we would like to discuss another aspect of
social networks software. Social media besides data sharing
(or more precisely for data sharing support) should maintain
the connectivity between own users. Social media engagement
is a core part of any social media strategy. Users (especially,
mobile users) spend more and more time in social media. As
per [2], 94% of first-year college students use social
networking websites. These data are congruent with more
recent statistics on social networking website use and reinforce
the fact that social networking is an important part of college

real-time information network where people can discover
ormation

instantly and connect with people and businesses around the
globe [3]. Twitter has over 300 million monthly active users.
As per official statistics, 500 million tweets (messages) sent

every day. The company states that 80% of users on Twitter
are accessing it via a mobile device. As per official page, the
company suggests the following business areas for Twitter:

and what the customers are interested in. Business can use
Twitter search to listen to the relevant conversations that are
happening and jump in where a value could be added.

Twitter has got a flat structure for social circles. It is very
easy to connect with anyone. So, it is easy to start new
discussions (and/or join existing discussions).

Business can raise the profile and increase the impact of

own marketing efforts by using Twitter to regularly

communicate with own customers. For example, Twitter

suggests extending the reach even further with Twitter Ads.

The last point is especially interested in working for us.

Twitter (as a company) suggests the usage of the system for

providing customer service. As per many polls, more than

70% of Twitter users said Twitter provides them with a quick

way to reply to customer service issues [4]. Business can use

Twitter to quickly and easily respond to support queries. In an

education, it could give students a low-stress way to ask

questions. As it is mentioned in [5], first-year and/or

introverted students are less comfortable asking questions in

class. The dynamics of Twitter allow students to feel more

comfortable asking questions given the psychological barriers

inherent in online communication. Twitter could be used for

providing academic and personal support. It could be used for

delivery information about academic enrichment opportunities

on campus (for instance, the location and hours for the tutoring

center) in response to student requests for help [5].

responses. Why do not allow applications respond to queries?

It is the main topic for our paper. The core idea is very

transparent. All social media in addition to the exchange of

data (to be exact - for its support) should provide some form of

a link between its users. If users are spending more and more

time on social networks, is it possible to use the connecting

mechanisms of the social media for delivering to users in

social media data from other applications? It is not about

programming for social networks. It is about data delivery via

social networks. It is about the embedding data transfer

mechanisms from social networks (social media) into existing

applications.

The rest of the paper is organized as follows. In Section II,
we briefly describe Twitter API. In Section III, we discuss the
related projects. And Section IV is devoted to our Twitter 411
approach.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

II. TWITTER API

We have mentioned Twitter due to several reasons.

Historically, public API (Application Program Interface) for

Twitter was one of the most popular social APIs across social

web developers. Twitter is a social media and a network

messenger in the same time. Since its launch in 2006, Twitter

has become one of the most important social properties on the

web. Actually, Twitter promoted the growth and engagement

of third party websites through its API.

There are two main offerings in Twitter API interested for

our tasks: REST API and Streaming API.

The REST APIs provides programmatic access to read and

write Twitter data. It is possible, for example, to publish a new

identifies Twitter applications and users using OAuth;

responses are available in JSON [6].

The Streaming APIs continuously deliver new responses to

REST API queries over a long-lived HTTP connection. It lets

receive updates on the latest Tweets matching a search query,

stay in sync with user profile updates, etc.

 Connecting to the streaming API requires keeping a

persistent HTTP connection open. The difference from REST

API is illustrated in figures 1 and 2 [7].

Fig. 1. Twitter REST API model [7]

In REST API an application (e.g., a web application)

API, then formats and prints the result to the user, as a

response to th

An application which connects to the Streaming APIs will

not be able to establish a connection in response to a user

request. Instead, the code for maintaining the Streaming

connection is typically run in a process separate from the

process which handles HTTP requests. In Fig. 2. we have two

server processes, where one process receives streamed Tweets,

while the other handles HTTP requests.

limits and REST API limits are completely separate entities.

So, obtaining entities via a streaming API doesn't consume any

REST API rate limits.

In our project, we propose the customized replies to

messages (statuses) in Twitter for any selected account.

Technically, there are two ways to

Twitter to the particular account. At the first hand, it is so-

for the targeted account. And the second way is so-called

direct messages. In this case, the status (message) has got an

immediate recipient. The main difference is the visibility. The

mentions (replies) are potentially visible for other readers, the

direct messages are private.

Fig. 2. Twitter Streaming API [7]

III. RELATED WORKS

As a basic prototype model for our service, we used the

well-known scheme of a functioning of information services

based on Short Message Service (SMS).

How does this model work? There is a certain service

number, where incoming messages could be processed

programmatically (by the

Technically, this is an ordinary telephone number to which

you can send SMS. In the simplest case, for this kind of

system, we can use a regular cell phone and a so-called data

cable. The phone can be connected with the computer and

receive from him the standard AT- command. With these

commands, we can read incoming SMS, programmatically

process them and send the answers (also with the help of AT-

commands) [8].

The whole model is the classic question-answer system.

Users send queries via SMS text and receive answers via SMS

too. If the text of the response exceeds 140 characters, it can

be designed as a web page. The link to that page (as an

original or short URL) could be sent as a response. All

existing SMS-customers on mobile phones detect links in

emails and let you open them directly from the text.

The issue of payment for such access to information is, of

course, not a primary question. Technically, this scheme of

SMS processing does not depend on charging. Usually, this

kind of services are designed for specific tasks (information

systems) [9,10]. At the same time, there are a kind of toolbox

(development tool system), which allow to design this kind of

services [11].

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 47 --

In general, such a model can be described as the

deployment of SMS as the transport layer in information

systems. Of course, instead of SMS, we can use multimedia

messaging (MMS) too [12]. Up to this time, the information

systems based on SMS are an important channel to deliver

content to mobile users. Actually, it is not least due to the

convenience of receiving the payments for the delivered

content.

SMS can be used in payment systems [13,14] too. In fact -

it's the same usage of SMS as a transport layer. Our own

services use SMS as transport for delivering geo-location data

[15,16].

All the above-mentioned systems have a common feature

they use a part of the existing service (the transportation

component) in their applications. In the above cases, it was a

part of the service of telecommunications operators. But

currently we see an obvious trend in switching to Internet

services from the pure telecom offerings [17]. In our particular

case, we want to "borrow" the transportation component of the

social networks (Twitter).

We can mention in this connection so-called Tweet-a-

Program application from Wolfram Alpha [18]. It lets you

compose a tweet-length Wolfram Language program and

tweet it to @WolframTaP account. Their Twitter bot will run

your program in the Wolfram Cloud and tweet back the result.

It is illustrated in Fig. 3.:

Fig. 3. Tweet-a-Program and its response [18]

-

Fig. 4. is 140-character expression that produces a graph that

shows which countries (indicated by their flags) share borders.

XMPP protocol and tools, based on this protocol have a

long history of data delivery automation (chat bots, for

example) [20].

Authors in [21] present a tool for chat bots programming.

Chat bot (in their interpretation) is an educational software

tool whose design goal is to motivate students to learn basic

Computer Science concepts through the construction of

automated chats. They should be programmed to answer in

different ways depending on who it is talking to, previous

replies, talked topics, etc.

Fig. 4. Which countries share borders [19]

And what is important for our paper, it has a mode of

operation where it can connect to social networks (e.g.,

Facebook) and reply to chat conversations automatically. In

other words (as per our model) it is an information system on

Aperator [22] makes tweets enable actionable commands

on third-party web applications. Authors describe it as a new

platform for application development. Since users can interact

with third-party applications through the Twitter interface,

Aperator demonstrates the possibility of purely back-end

applications (Fig. 5.).

Fig. 5 Aperator architecture [22]

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 48 --

We can mention in this context M -

powered assistant [23]. It is built atop Facebook Messenger -

Of course, the classical example is IFTT [24]. IFTT lets

connect different applications. It is based on the concept of

recipes. Recipes are simple connections between products

and apps. There are two types of Recipes: DO Recipes and IF

Recipes. DO Recipes run with just a tap and enable users to

create own personalized Button, Camera, and Notepad. IF

Recipes run automatically in the background. They create

powerful connections with one simple statement - if this then

that. For instance, if some user uploads a file to his Dropbox

folder, IFTTT might send a tweet or a text message or post a

status update on any number of services, etc. The range of

recipes permitted by IFTTT is extremely compelling.

The next example is API for bots in Telegram [25]. Bots are

simply Telegram accounts operated by software not people -

and they'll often have Artificial Intelligence features. They can

perform many operations - play, search, broadcast, remind,

connect, integrate with other services, or even pass commands

to the Internet of Things (IoT).

The idea for using messages (human or bots powered) with

IoT applications is quite popular [26]. As one example, we can

mention here Scouts project [27].

IV. T411 FOR TWITTER

In this section, we present our service 411 for Twitter

(T411). It is a platform for developing request-response

services atop of Twitter. The name uses abbreviation from

popular phone directory service in US 411. Our first paper

described this service (in Russian) has been published in

INJOIT [28].

The main idea has been ported from our previous project

for the SMS services platform. T411 lets turn any Twitter

account into programmable auto-responder. It means that user-

defined application will respond to incoming requests in

Twitter.

For Twitter, incoming requests could be defined either as a

mention or direct message. The examples below describe ant

particular base account - @t411. For example, the typical

mention looks like (it is a status in Twitter) so:

@t411 w msk

Actually, it is a real request. Any Twitter account,

originated this status will get back a weekly weather prognosis

message.

We assume that any message (mentions or direct

messages) has got the following structure:

Key Optional_Text

So, in the above-mentioned example, w is a key, msk is a

text. It means that base account can host (provide) a set of

services (each service depends on the own key). Keys are also

user-defined. So, our prototype [29] lets users reserve a key

for own service which will be based on @t411 account.

The next step in service creation is a web hook. It is a

callback activated for a new message. Technically, it is a CGI

script we can access via some URL. The result of its execution

defines the response. On the top level the model for T411

service looks so:

Detect a new message => find a key =>

detect associated web hook => perform HTTP

request => create a response (tweet) with

results

 So, any service in T411 is a pair <key, web hook>. The

global architecture of T411 service is illustrated in Fig. 6.

Fig. 6. T411 service [29]

In our prototype, Cron service has been implemented with

Google AppEngine [30]. The core module has got own REST

API, so we can start and stop it programmatically too. Cron

module uses Core API and periodically starts its engine. This

engine uses Twitter REST API for getting new messages

(mentions and direct messages) for the particular account (it is

@t411 in our example). Core Engine saves extracted messages

in a dedicated Message Bus. The main System Processor

accepts new entries from the Message Bus and evaluates them.

The main data store is a typical key-value data base. A key

here is a key for the service and a value is an appropriate web

hook.

 Any incoming message is a text. The processor

extracts a key, find a web hook, perform HTTP request to CGI

script and uses the response for a new tweet.

 Technically, CGI script (web hook) could be hosted

anywhere on the Internet. T411 always perform GET HTTP

list of the parameters:

t an original text

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 49 --

u
a message)

Of course, this list could be extended.

The following JSP code illustrates stock information

service. The registered key is t. So, all the messages starting

with t will be processed by this service (bot). This bot expects

messages in the following format:

 t stock_symbol

for getting the quote. For example:

t ORCL - quote for Oracle

t YNDX - quote for Yandex, etc.

As a web hook for this bot, we've set an URL for JSP file.

E.g., in this particular case it is

 http://linkstore.ru/t411/quote.jsp

So, for the incoming message

@t411 t ORCL

the processor will issue the following HTTP GET request:

http://linkstore.ru/t411/quote.jsp?t=t%
20ORCL

And JSP file uses a couple of custom taglibs [31] for this

task:

<%@ page contentType="text/plain;
charset=utf-8" %>

<%@ taglib uri="taglib27.tld"
prefix="get" %>

<%

String t = request.getParameter("t");

if (t==null) { out.println("unknown");
return; }

// the pattern is:

// t <space> stock_symbol

int i = t.indexOf(" ");

if (i<=0) { out.println(t+"?? could not
get ticket"); return; }

t = t.substring(i+1).trim(); %>

<get:Quote
symbol="<%=t.toUpperCase()%>" id="A" />

<%=A.get(0)+": "+A.get(1)+"
"+A.get(9)%>

Another standard example in T411 is the above-mentioned

weather information service. It uses a key w, and text

describes a city for weather info request. For example:

@t411 w msk weather in Moscow

@t411 w spb weather in Saint-
Petersburg

Actually, the main model here is the mashup [32]. T411

service lets either connect users to applications or connect

different applications.

The whole @t411 account presents itself a chatbot.

Usually, chatbots are programmed by writing sets of pairs

<text_pattern, text_effect>. The chatbot responds with the

effect when the pattern matches the text received by the

chatbot [33].

Patterns are simply regular expressions, and effects may

include variables and conditionals (among more advanced

structures).

So, you can send any question just to @t411 account and

get some dialogue with the system. As an analogue for this

system we can mention the well-known Eliza system [34]:

@abava> @t411 how are you?

@t411> @abava Let me see, just a minute
please.

As per fault tolerance,

Out application server uses Java Transaction API and keeps

data in safe up to finishing the processing.

Twitter itself may add usage rate limits for own API.

Limits are behind-the-scenes part of Twitter. For example, for

direct messages the limit is 1,000 messages sent per day. And

the limit for tweets is 2,400 statuses per day. The daily update

limit is further broken down into smaller limits for semi-

hourly intervals [35]. These limits include actions from all

devices, including the web, mobile, phone, API, etc. API

requests from all third-party applications are tracked against

the hourly API limit.

For T411 service, the performance depends on the amount

of workers (cron based processes) we can use for data

extraction from Twitter. The own performance for Twitter

API could be obtained in real-time via Twitter info page [36].

For example:

Service Performance

/1.1/friends/ids 543 ms

/1.1/search/tweets 671 ms

/1.1/statuses/home_timeline 879 ms

stream.twitter.com 960 ms

It means that with 3-rd party applications we can reach on

practice the response time in 1 sec. The same information page

shows also the uptime for Twitter API. Usually (historically),

it is 96%-100%. Obviously, it is a top level limit for any 3-rd

party application, including T411.

V. CONCLUSION

Our model service T411 presents a new way for Twitter

deployment. It uses Twitter as a transport layer platform in

information services and mashups. T411 demonstrates a new

means of Twitter usage, which increases engagement for third

party applications.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 50 --

We can describe T411 as a new platform for application

development. The users (the mobile users) can interact with

third-party applications through the Twitter interface. Just

because a Twitter client can work through the web interface,

the potential users do not need to install any applications to

work with the information systems used Twitter as a transport.

This is different from using the Internet messengers. T411

presents a simplest (and free) approach for creating request-

response service for mobile users.

Also, T411 demonstrates a new way for monetization in

Twitter. An ability to add application level interfaces to the

standard account in Twitter could be a part of premium

offerings for business-related accounts.

ACKNOWLEDGMENT

I would like to thank prof. Manfred Sneps-Sneppe from

Ventspils University College for the valuable discussions.

REFERENCES

[1] D.Namiot and M. Sneps-Sneppe. "Customized check-in procedures",
Smart Spaces and Next Generation Wired/Wireless Networking.

Springer Berlin Heidelberg, 2011, pp. 160-164.
[2] N.Ellison, C.Steinfield, and C. Lampe. "The benefits of Facebook

sites", Journal of computer-mediated Communication, vol. 12, no.4,
2007, pp. 1143-1168.

[3] Twitter for business https://business.twitter.com/basics/learn-twitter

Retrieved: Aug, 2015
[4] B.J.Jansen, M.Zhang, K.Sobel, A. Chowdury, Twitter power:

Tweets as electronic word of mouth Journal of the American
society for information science and technology, vol. 60, no. 11, 2009,

pp. 2169-2188.
[5] R.Junco, G.Heiberger, E.Loken, The effect of Twitter on college

student engagement and grades Journal of computer assisted

learning, vol. 27, no. 2, 2011, pp. 119-132.
[6] Twitter API documentation:

https://dev.twitter.com/overview/documentation Retrieved: Aug 2015
[7] Streaming API Overview: https://dev.twitter.com/streaming/overview

Retrieved: Aug, 2015

[8] C.P. Xuan, H.Wang, G.L.Zou, Sending Short Messages by GSM
Wireless Module Journal Computer Applications, 5, 2004.

[9] M.Fafchamps, B.Minten, Impact of sms-based agricultural

information on indian farmers The World Bank Economic Review,
vol. 26, no.3, 2012, pp.383-414.

[10] A.Tanadumrongpattana, A.Suethakorn, S.Mitatha, C.Vongchumyen,

SMS Information Display Board Procedia Engineering, 8, 2011,
pp.186-189.

[11] F.Bamba, S.J.Barnes, SMS advertising, permission and the

consumer: a study Business Process Management Journal, vol. 13,
no. 6, 2007, pp. 815-829.

[12] R,Moreno, R.E.Mayer, Engaging students in active learning: The
case for personalized multimedia messages Journal of Educational

Psychology, vol. 92, no. 4, 2000, pp.724.
[13] M.Toorani, A. Beheshti, SSMS-A secure SMS messaging protocol

for the m-payment systems In Computers and Communications, Jul
2008, pp. 700-705.

[14] H.Harb, H.Farahat, M.Ezz, SecureSMSPay: secure SMS mobile

payment model In Anti-counterfeiting, Security and Identification,
Aug 2008, pp. 11-17.

[15] D.Namiot, Geo messages In Ultra Modern Telecommunications

and Control Systems and Workshops (ICUMT), Oct 2010, pp. 14-19.
[16] D.Namiot, M.Sneps-Sneppe, Where Are They Now Safe Location

Sharing Internet of Things, Smart Spaces, and Next Generation
Networking, 2012, pp. 63-74.

[17] A.Stephenson, D.Namiot, On data transfer between mobile web

clients International Journal of Open Information Technologies,
vol. 3, no. 1, 2015, pp.30-40.

[18] Introducing Tweet-a-Program

http://blog.wolfram.com/2014/09/18/introducing-tweet-a-program/
Retrieved: Sep, 2015

[19] One-line-mathematics http://blog.wolfram.com/2010/12/17/the-

mathematica-one-liner-competition/ Retrieved: Sep, 2015
[20] A.Hornsby, R. Walsh, From instant messaging to cloud computing,

an XMPP review In Consumer Electronics (ISCE), 2010 IEEE 14th
International Symposium on, Jun 2010, pp. 1-6.

[21] L.Benotti, M. F. Schapachnik, Engaging high school
students using chatbots In Proceedings of the 2014 conference on
Innovation & technology in computer science education, Jun 2014,

pp. 63-68.
[22] P.Zakin, S.Sen, M. Chiang, Aperator: making tweets enable

actionable commands on third party web applications In Presented

as part of the 3rd USENIX Conference on Web Application
Development (WebApps 12), Jun 2012.

[23] M, a personal digital assistant inside Facebook Messenger
http://www.wired.com/2015/08/how-facebook-m-works/ Retrieved:
Sep, 2015

[24] IFTT https://ifttt.com/wtf Retrieved: Sep, 2015
[25] Telegram Bot API https://telegram.org/blog/bot-revolution Retrieved:

Sep, 2015

[26] D.Namiot, M.Sneps-Sneppe, On IoT Programming International
Journal of Open Information Technologies, vol.2, no.10, 2014,
pp.25-28.

[27] Scouts Alarm http://techcrunch.com/2015/02/24/scouts-diy-home-
alarm-gets-so-so-much-smarter-with-an-ifttt-channel/ Retrieved: Sep,
2015

[28] D.E.Namiot, Twitter kak transport v informacionnyh sistemah
International Journal of Open Information Technologies, vol. 2, no.1,

2014, pp.42-46.
[29] T411 http://t411.linkstore.ru Retrieved: Sep, 2015
[30] S. P. T.,Krishnan, J. Gonzalez, "Google App Engine." Building Your

Next Big Thing with Google Cloud Platform. Apress, 2015, pp. 83-
122.

[31] J.Goodwill, Mastering JSP Custom Tags and Tag Libraries John

Wiley & Sons, Inc., 2002
[32] D.Namiot, M.Sneps-Sneppe, On micro-services architecture

International Journal of Open Information Technologies, vol. 2(, no,

9, 2014, pp.24-27.
[33] B.A.Shawar, E.Atwell, A comparison between ALICE and

Elizabeth chatbot systems .
[34] B.A.Shawar, E.Atwell, Chatbots: are they really useful? LDV

Forum, vol. 22, No. 1, 2007, pp. 29-49.
[35] Twitter limits https://support.twitter.com/articles/15364 Retrieved:

Oct, 2015.

[36] Twitter performance https://dev.twitter.com/overview/status Retrieved:
Oct, 2015.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 51 --

