
Software-to-Hardware Tester for the STP-ISS

transport protocol verification

Valentin Olenev, Irina Lavrovskaya, Nadezhda Chumakova

Saint-Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia

{valentin.olenev, irina.lavrovskaya, nadezhda.chumakova}@guap.ru

Abstract Implementation of conformance testers for the

communication protocols is an important task, which is being

solved in the majority of industrial companies that develop the

communication equipment. Current article gives a description of

such kind of tester, which is developed to test the on-board

devices that work in conformance to the STP-ISS transport

protocol standard and SpaceWire networking standard. We give

a brief description of the possible solutions for hardware testing;

provide the description of STP-ISS protocol. Then we report on

implementation of the Software-to-Hardware STP-ISS tester and

fields of its application.

I. INTRODUCTION

Compliance or conformance testing is basically a kind of an

audit which is performed for the system to check whether all

the specified standards are met or not. To ensure that the

compliances are met, industrial companies develop special

testing equipment or software. The widely used standards such

as USB or Ethernet are developed by large organizations and

could be tested on all stages of the implementation. We do not

need a special equipment to test the hardware if we buy a USB

stick or a networking card, we can just plug it into a computer

and operation system will do it automatically. But if a company

develops a new specialized protocol and a number of devices

that should meet the requirements of a new standard, this

company should carefully test the implemented equipment

before integration and dissemination.

On-board equipment is such kind of equipment that needs

very proper and detailed testing [1]. And if a new protocol for

on-board communication is developed, then we need to be sure

that the devices work as expected, before we can integrate it

into an aircraft or a spacecraft.

We had a log-term project for the research, development

and implementation of an STP-ISS transport protocol for the

on-board communication via the SpaceWire networks. In this

project we developed two revisions of STP-ISS protocol,

simulated and investigated them. The first revision of STP-ISS

is much simpler and compact, but the second one is more

powerful. Nevertheless, the backward compatibility for these

revisions is provided. After that we got the task to implement a

tester for the STP-ISS rev.1 equipment, which could tell the

manufacturer, that STP-ISS device operates correctly. Tester

should examine the device with a set of different testing

scenarios; each scenario should test a particular STP-ISS

mechanism. So after the testing the manufacturer will know

what STP-ISS mechanism failed and it can analyse the log-files

for details.

For this reason we conducted an overview of different

approaches for the implementation of hardware conformance

testers, studied the main examples of conformance testers

represented at the market.

II. HARDWARE AND SOFTWARE CONFORMANCE TESTING

On-board equipment always needs a proper testing before

the integration into a spacecraft. Especially if we talk about

equipment, that operates according to the newly developed

communication protocol. The conformance testing should be

provided to prove that this equipment meets the requirements.

Conformance testing is such kind of testing, which gives an

ability to ensure that a hardware or software product, system or

just a medium complies with the requirements of a

specification or any other document. Various test procedures,

testing software or hardware testers have been developed either

by the standard's maintainers or external auditing organizations,

specifically for testing conformance to standards. Also service

providers, equipment manufacturers, and equipment suppliers

rely on such testing to ensure Quality of Service through this

conformance process.

Conformance testing may include some of these kinds of

tests, it has one fundamental difference the requirements or

criteria for conformance must be specified in the standard or

specification. This is usually in a conformance clause or

conformance statement, but sometimes some of the criteria can

be found in the body of the specification. Some standards have

subsequent documentation for the test methodology and

assertions to be tested. If the criteria or requirements for

conformance are not specified, there can be no conformance

testing [2].

Many companies that develop or just work with the new

equipment have such kind of conformance testers and usually

equipment testing is done by the testing organizations. But

some standards have no official testing organizations. They

rely on self-assessment by the implementer and acceptance

testing by buyers.

Depending on the available information we can elaborate

two main approaches for the conformance testing that are

widely used across the industry:

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

 Software testers;

 Hardware testers.

Software testers usually consist of a test entity (software)

that includes a number of test cases. These tests are aimed to

get the correct responses from the unit that is being tested.

Testing software is running on a PC or any portable device and

it is connected with the real hardware, that it tests.

Conformance testing software usually includes a test tool (e.g.,

tool, suite, and/or reference implementation) and procedures for

testing (test engine).

The software may be represented by a set of programs, a set

of instructions for manual action, or another appropriate

alternative. It is likely to be platform independent, and it should

generate repeatable results. A reference implementation is an

implementation of a standard that is by definition conformant

to that standard. Such an implementation provides a proof of

concept of the standard and also provides a tool for the

developers of the conformance software. The reference

implementation is of considerable importance on the early

stages of conformance testing.

The conformance testing procedures should be agreed and

implemented before testing begins. This would include the

implementation of different types of tests.

There are many examples of the software testers for the

compliance test software

by Tektronix. It automates a comprehensive range of tests on

conformance to HDMI 1.4a/b and HDMI 2.0 standards (see

Fig 1) [3].

Fig. 1. HDMI compliance test software by Tektronix

The other good example

 Conformance testing solution for eCall/ERA-Glonass

implemented by Rohde&Schwartz Gmbh&Co (see Fig. 2). It is

electronic safety systems for cars, developed by European

Union and the Russian Federation to have intelligent

telematics-based vehicle safety systems to speed up emergency

response times in order to save human lives. This software

tester is a solution for automated, reliable and reproducible

end-to-end conformance tests on eCall/ERA-Glonass

modules [4].

Fig. 2. Conformance testing solution for eCall/ERA-Glonass implemented by

Rohde&Schwartz Gmbh&Co

Also there are a number of good conformance testing

software implementations based on the formalized methodics

and algorithms. These examples are described in [5] and [6].

The other way of conformance testing is using of the real

hardware testers that produce the test sequences and test the

remote device. Usually it is a device operating with full respect

to the standard, which could have a different number of

parameters and settings. Configuration of this device is

performed via a special configuration software installed on PC.

There are also many examples of hardware testers for the

widely used communication standards as USB, LAN, RS232

and others (see Fig. 3).

Fig. 3. Implementations of hardware testers for different communication

standards

There is another example that is related to the on-board

equipment testing the SpaceWire Conformance Tester

implemented by Star-Dundee. It connects to a SpaceWire

device and, through the host software, executes a variety of

SpaceWire Standard. Over 55 tests can be conducted. The user

can easily select which tests they do and do not want to run.

With each test, expected and achieved results are displayed,

including a link to the appropriate clause of the SpaceWire

Standard to dramatically reduce the time spent debugging the

DUT. The SpaceWire Conformance Tester can also be used as

a high speed packet generator, and one of the SpaceWire links

can act as a data / time-code sink or loop-back [7].

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 61 --

Fig. 4. SpaceWire Conformance Tester

III. STP-ISS PROTOCOL GENERAL DESCRIPTION

The main task for our research was to decide how to test the

newly developed devices that should operate in conformance to

the STP-ISS protocol specification. So firstly, we should

describe what STP-ISS protocol is, what main mechanisms and

distinctive features it has. In this section, we consider the

second revision of the STP-ISS protocol which includes all

required functionality.

STP-ISS is a transport layer protocol that describes

informational and logic interaction between on-board devices,

networks. STP-ISS protocol corresponds to the Transport layer

and provides means for transmission of data between the nodes

of the network with the required quality of service. This

protocol gives ability for data resending in case of an error

detection in the received data.

There are three interfaces for interaction between the

STP-ISS and Applications: Data Interface, Configuration

Interface and Control Codes Interface. At the bottom STP-ISS

has two interfaces for interconnection with the SpaceWire

layers: SpaceWire packets interface and Control Codes

Interface. Through these interfaces STP-ISS provides

transmission of control commands, data packets, SpaceWire

time-codes, SpaceWire distributed interrupts and interrupt-

acknowledges. The Configuration Interface provides means for

the STP-ISS configuration parameters change, for transmission

of status information, reset commands and connection

establishment.

There are two types of application messages:

 urgent messages (higher priority);

 common messages (lower priority).

STP-ISS encapsulates applications into

SpaceWire packets. Length of each message data block should

be not less than 1 byte and should not exceed 2048 bytes for

the connectionless data transmission, and 64 Kbytes maximum

for the connection-oriented data transmission.

STP-ISS provides the reliable data transmission by using

CRC-16 for protection of payload and packet header and for

errors detection [8]. CRC-16 covers the packet starting from

the first byte of the STP-ISS packet header (excepting path

address) till the last byte of data, excluding the end of packet

symbol EOP.

The transmitter side of the protocol has separate buffers for

each priority of the transmitted data:

 control commands buffer;

 urgent messages buffer;

 common messages buffer.

The size of these buffers should be set depending on the

message or segment size, which the node uses for the data

exchange.

If the buffer overflow occurs, the application should wait

until the free space for the message is available. For each

SpaceWire packet STP-ISS protocol has a special lifetime

timer, which counts the time, when the packet is still relevant in

the SpaceWire network. Each packet is stored in the buffer

during its lifetime.

STP-ISS has two logical buffers at the receiver side. The

first buffer is used for the connectionless data transmission, for

all types of packets (control commands, common messages and

urgent messages). The second buffer is used for the connection-

oriented data transmission only. The receiving side should

reserve required space in the buffer for each new connection. If

one of the receiving buffers is full, then STP-ISS should

indicate the Application layer about it and discard all the

packets coming from the SpaceWire.

There are two additional signals that could be passed from

the application layer to the STP-ISS through the configuration

interface: Reset and Flush. Reset corresponds to the warm

reset, and Flush is used for clearing of both transmit and

receive buffers.

The important STP-ISS feature is its configuration

flexibility. The protocol has a number of configuration

parameters, which give ability to tune the protocol depending

on the developer needs. There are some mechanisms that

should be implemented as mandatory. For example, Priority

QoS at least for one priority, Best effort QoS, transmit and

receive buffers. The other mechanisms are extensions and

could be optionally implemented in different combinations.

One of the STP-ISS benefits is the possibility to transmit

data using the following quality of service types:

 priority quality of service;

 guaranteed delivery quality of service;

 best effort quality of service;

 scheduling quality of service.

A. Priority quality of service

Priority quality of service is the main quality of service type

that should be supported by all the network end-node devices,

which communicate by means of STP-ISS. According to this

quality of service type, the data with the higher priority should

be transmitted first. STP-ISS supports 9 levels of priorities.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 62 --

B. Guaranteed delivery quality of service

Guaranteed delivery quality of service provides

confirmation for the successful packet transmission by sending

the acknowledgement packets. In addition, it resends the data

from the transmitter end-node if the acknowledgement is lost

(resending mechanism). Guaranteed delivery is provided by

resend timers and acknowledges. If a packet is passed to the

network layer with the guaranteed delivery quality of service,

STP-ISS should start the resend timer for this packet. When the

resend timer expires, the corresponding packet should be sent

to the network again.

STP-ISS protocol provides the duplicate control commands

detection in the receiver. The duplicate control command can

occur in case of the loss of acknowledgement. The receiver

should store the information on the last received control

commands.

C. Best effort quality of service

Best effort quality of service provides data transmission

without acknowledging. When an STP-ISS receiver gets a best

effort packet it checks the CRC and data length only. In case of

an error or if the packet ends with EEP, the data packet still

should be sent to the Application, but with an error indication.

D. Scheduling Quality of Service

STP-ISS assumes to have a single data transmission

schedule for the whole SpaceWire network. This schedule

gives an opportunity for the node to send data only during

particular time-slots. The schedule consists of a number of

time-slots, in turn an epoch has a constant number of time-

slots. The schedule table describes one epoch. The time-slot

timer counts duration of the current time-slot for a particular

node.

STP-ISS has the timer synchronisation mechanism.

Synchronisation is performed once in an epoch. During the

synchronisation the node should calculate a new value for the

time-slot timer. The newly calculated value will be applied for

the time-slot timer of a new epoch. The new epoch should start

when the time-code is received.

There are K time-slots in each epoch, when the time-code is

recognized as relevant. These time-slots are called Time-code

relevancy window. If a time-code is received before the last

K/2 time-slots of the epoch, or after the first K/2 time-slots of

the epoch, then this time-code is considered as irrelevant and

synchronisation should not be performed. If the time-slot timer

for a last time-slot expires simultaneously with the time-code

reception, then there is no need to correct the epoch timer

value.

Reception of three irrelevant time-codes means that we

work asynchronous to the time-master and determines the

beginning of a new epoch. The node should terminate the time-

slot timer and wait for reception of the next time-code. In this

new epoch the node should not send data until reception of the

next time-code. After reception of the time-code the node

should update the time-slot duration value and then continue

data transmission according to the schedule.

E. Connection-oriented data transmission

Connection-oriented data transmission gives an ability to

transmit large sized data with minimum overheads. Only urgent

or common messages could be transmitted over a transport

connection. Maximum number of transport connections should

not be more than 8 per one direction. Each transport connection

is unidirectional: it connects the transmitter of the initiator node

and receiver of the remote node.

An application, which needs to transmit or receive a large

portion of data, should initiate the transport connection

establishment. The maximum size of data, which could be

transmitted over the transport connection in a packet, is

64 Kbytes. The transport connection establishment is

performed by means of classical three-phase handshake

[9], [10]. During the connection establishment the application

can set different connection parameters.

For each transport connection receiver and transmitter has a

standby timer. This timer counts the time of waiting for the

next data or service packet transmitted over the connection. On

standby timer expiration the transport connection should be

closed.

 During the data transmission, STP-ISS provides the flow

control, which is performed by sending of the information

about the available free space in the receiving buffer. This

mechanism is applied only for the transport connections with

the guaranteed quality of service.

STP-ISS rev.1 protocol is described in [11] while STP-ISS

rev.2 protocol was previously described in details in [12].

IV. STP-ISS REFERENCE CODE

STP-ISS specification development was followed by a

simulation phase [13]. During this simulation stage we

precisely analysed, investigated and tested the specification. In

order to check STP-ISS protocol mechanisms we used three

different models:

 SDL model;

 SystemC network model;

 C++ reference code.

These modeling and investigation directions for STP-ISS

were described in more details in [14].

The SDL model is needed for the clear formal description

of the STP-ISS internal mechanisms and specification

analysis [15]. The SDL specification is used as a separate

document describing the specified mechanisms, and it is a

useful part for the main protocol specification document.

The SystemC model shows the STP-ISS protocol operation

over SpaceWire network, and it gives an ability to test the

network configuration and test networking features [14].

The reference code is intended to be used as the reference

for the programmers, who will implement STP-ISS in the on-

board software. The reference code is a software

implementation of the STP-ISS protocol in C++ language [16].

This implementation corresponds to the specification as

accurate as it is possible. The C++ reference code describes the

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 63 --

logical structure of the protocol, its interfaces and internal

mechanisms. All methods, which describe protocol

functionality, are provided with detailed comments for each

line. In addition, in order to check and prove the accuracy of

STP-ISS the model contains a number of test scenarios for

studying and demonstration of protocol functioning. Each

scenario launch produces detailed log files with event traces of

nodes and of a channel.

This reference code is used for studying of the protocol

functionality. Moreover, it could be translated into the other

programming languages and used for the implementation of

STP-ISS in the on-board software.

The other possible application of the reference code is an

implementation of a tester, that could be useful for testing of

the software models or hardware implementation of the

protocol. In this case, reference code is used as a black box,

which works with full conformance to the STP-ISS

specification [17]. This reference implementation of the

protocol could be placed on the one side of the connection, and

the software model or hardware protocol implementation on

the other side. That software or hardware implementation is

called Device Under Test (DUT). Reference code can generate

different types of packets and the DUT should respond to them.

Depending on the result of the data exchange we can make a

decision, if the DUT works in conformance to the specification

or not.

V. SOFTWARE-TO-HARDWARE TESTER

We used the reference code to implement a Software-to-

Hardware Tester (S2HT) for the STP-ISS protocol. This title

means that we test the real on-board hardware with the

software implementation of a protocol model (reference code).

And this is a software conformance tester, if we refer to the

overview from the chapter II.

Software part of the S2HT consists of the following parts:

 Test engine stp_testengine containing a set of testing

scenarios;

 STP-ISS reference code stp_reference

Test engine is a set of testing scenarios for checking of

correctness of the testing equipment operation. This module is

implemented in SystemC, which represents a simulation library

of C++ programming language [18]. After the start of the tester

operation the user is able to choose the number of a test

scenario and a test starts to execute. In the course of the test the

S2HT performs a fixed number of actions according to the

particular scenario, for example, protocol configuration or

transmission of different types of packets. When the test is

completed the tester displays the results. During execution of

the test, the tester gathers the information on test operation and

different events to the log files.

STP-ISS reference code part of the tester is a reference

implementation of STP-ISS protocol with some modifications

to the network level. These modifications give an ability to

work with Star-Dundee USB Brick drivers. In the tester

implementation the reference code is a separate library that is

used by the software.

Error generation module is implemented for testing of the

non-nominal cases in the communication process. Similarly the

Test Engine module it is implemented in SystemC. This

module gets data from the STP-ISS and can inject errors into a

valid packet depending on a testing scenario. Error generation

module is able to:

 Distort the transmitting data;

 Delete the service packets;

 Delete the EOP/EEP symbols;

 etc.

The general architecture of the implemented Software-to-

Hardware tester is shown in Fig. 6.

Fig. 5. Software-to-Hardware tester architecture

This software part of the tester should be installed on the

PC. Current version of S2HT operates under the Ubuntu

operation system.

PC should be connected to the DUT via the SpaceWire

cable. The Star-Dundee SpaceWire Brick Mk2 is used to

connect the PC to the SpaceWire device [19]. SpaceWire Brick

Mk2 provides a special driver (HW Driver in Fig. 5) with an

API for sending and receiving SpaceWire packets and time-

codes.

The SpaceWire Brick Mk2 is an interface device that

provides the essential capabilities now demanded of SpaceWire

test and development equipment. The SpaceWire Brick Mk2

allows the user to easily connect their PC to a SpaceWire

device or network through a USB port. It provides two

SpaceWire interfaces, the ability to act as a time-code master,

support for high speed data transfer, the capability to inject

various types of errors on demand, and comes complete with

highly optimised host software support for low latency

transmission of SpaceWire packets directly to and from the

host PC.

The other side of the connection is the DUT. This device

should have the SpaceWire port and should satisfy the

following general requirements:

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 64 --

 implementation of STP-ISS at least rev. 1;

 SpaceWire packets sending and receiving functionality;

 indication of data packet or command reception;

 implementation of a SpaceWire link interface.

The DUT can be represented by the following devices:

 real on-board equipment -

sense that we do not have a model of it, thus, can rely

only on its observable input/output behavior;

 PC with the SpaceWire interface (including a special

SpaceWire networking board).

If we use an other PC as the DUT, we have some additional

abilities for testing and verification. We can set up the

reference code of STP-ISS to DUT and observe, how both

sides of the connection communicate with each other via the

SpaceWire link. The other beneficial option is to test the real

VHDL implementation of STP-ISS IP Core [20], but for this

purpose we should implement a special test environment.

Fig. 7 shows the Software-to-Hardware tester that is

implemented in our laboratory. This tester consists of a laptop

with a pre-installed Ubuntu OS and Test Software. This laptop

is connected to a SpaceWire Brick Mk2 via USB cable. The

DUT is connected to the Brick via SpaceWire cable.

Fig. 6. SUAI Software-to-Hardware tester for STP-ISS

VI. APPLICATION OF SOFTWARE-TO-HARDWARE TESTER

Current version of the Software-to-Hardware tester is able

to test the following mechanisms of STP-ISS:

 assembling and disassembling of STP-ISS user data

packets and service packets;

 data transmission mechanisms;

 best-effort quality of service;

 guaranteed quality of service;

 SpaceWire time-codes transmission and reception.

Testing should focus not only on normal protocol operation

checking, but also on operation in exceptional and critical

situations.

There is a number of STP-ISS mechanisms the Software-to-

Hardware tester is not able to test:

 Receiving and Transmitting of SpaceWire distributed

interrupts and interrupt acknowledges, which are not

supported by a SpaceWire Brick Mk2;

 Settings of configuration parameters for DUT;

 Any problems in SpaceWire link-level functionality and

other SpaceWire equipment errors (e.g. SpaceWire

cable and Brick Mk2), because it is out of S2HT scope.

Fig. 5 shows a terminal window of launched S2HT software

with a selected test scenario #1.

Fig. 7. Execution of the test scenario #1

Test scenario #1 is intended to check assembling and

disassembling of STP-ISS user data packets and service

packets mechanisms of the DUT. The tester sends a guaranteed

packet to the DUT and waits for an acknowledgement. If a

correct acknowledgement is received, then this mechanism is

correctly implemented inside the DUT.

During the S2HT exploitation the user should be always

sure that all the equipment is correctly connected and set.

Moreover, if DUT is not able to send data, thus some of the test

scenarios could not be executed successfully, because the tester

needs a response form the remote side of the connection.

VII. CONCLUSION

The implemented Software-to-Hardware tester is a

promising tool that could help the developers to ensure that

STP-ISS equipment operates correctly. The implemented list of

testing scenarios should give the full test coverage for the

testing devices, so the result of the tester exploitation should be

simple true or false. That means, did the DUT successfully

passed all the tests or not. If there are any faults in particular

test scenarios, then the developer could analyse log-files and

find out, which mechanism is implemented incorrectly.

Current implementation of a tester is able to test the equipment

that operates in conformance with STP-ISS protocol

specification rev.1. So the work that is still need to be done in

this field is updating the tester to the 2nd STP-ISS revision

conformance.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 65 --

VIII. ACKNOWLEDGEMENT

The research leading to these results has received funding

from the Ministry of Education and Science of the Russian

Federation under the contract RFMEFI57814X0022.

REFERENCES

[1] P. Marwedel, , Springer, 2006.

241 p.
[2] Martha Gray, Alan Goldfine, Lynne Rosenthal, Lisa Carnahan.

Conformance Testing National Institute of Standards and
Technology, Gaithersburg, USA, 2010.

[3] Tektronix official website, HDMI compliance test software, Web:
http://www.tek.com/datasheet/product-software/options-hdm-hdm-
ds-hdm-dsm-ht3-and-ht3-ds-datasheet-1.

[4] Rohde&Schwartz official website, - Conformance
testing solution for eCall/ERA-Glonass, Web: https://www.rohde-
schwarz.com/en/applications/r-s-cmw-conformance-testing-solution-
for-ecall-era-glonass-application-card_56279-106883.html.

[5]
 in Proc. Design, Automation & Test in

Europe Conference & Exhibition (DATE), Paderborn University / C-
LAB, Paderborn, Germany, 2010, pp. 323 326.

[6] H. Kahlouche, C. Viho, M.
,

TACAS/ETAPS'99, LNCS 1579, Springer-Verlag, Berlin Heidelberg,

1999, pp. 315-329.
[7] Star-Dundee website, SpaceWire Conformance Tester, Web:

https://www.star-dundee.com/products/spacewire-conformance-

tester.
[8] redundancy code (CRC)

of the 2004 International Conference on Dependable Systems and

Networks, IEEE Computer Society, 2004. pp. 145-154.
[9] Tanenbaum, A. S., Computer Networks, Fifth Edition; Prentice Hall,

2011. 962.

[10] Proceedings of the
ACM SIGCOMM/SIGOPS Interprocess Communication Workshop,
and ACM Operating Systems Review, Vol. 9, No. 3, July 1975,

Association for Computing Machinery, New York, 1975.
[11] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, D. Dymov

-ISS Transport Protocol for Spacecraft On-

Proceedings of 6th International Conference SpaceWire 2014
Program, Athens, Greece, 2014, pp. 26-31.

[12] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, S. Kochura, S.
-ISS Transport

Protocol for On- Proceedings of 17th

Conference of Open Innovations Association FRUCT. Yaroslavl:
Russia, 2015. pp.192-200.

[13] D. Dietterle, cient Protocol Design Flow for Embedded

, PhD thesis in Computer Science. Cottbus, 2009.
[14] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, S. Kochura, S.

-ISS n Protocol Overview nd

ng Proceedings of 16th Conference of Open Innovations
Association Finnish-Russian University Cooperation in
Telecommunications (FRUCT) Program. Oulu: University of Oulu,
2014. pp.185-191.

[15] P. Morozkin, I. Lavrovskaya, V. Olenev, K. Nedovodeev,
Integration of SDL Models into a SystemC Project for Network

Simulation n F. Khendek et al. (Eds.), SDL 2013: Model-Driven

Dependability Engineering, Lecture Notes in Computer Science,
Volume 7916 (pp. 275-290). Berlin: Springer Berlin Heidelberg,
2013.

[16] B. Stroustrup, The C++ Programming Language, 4th Edition. USA:
Addison-Wesley, 2013.

[17] M. Krichen, S. Tripakis, Black-Box Conformance Testing for Real-
Time Systems , 11th international SPIN workshop on model
checking of software (SPIN'04). LNCS, vol. 2989. Springer, Berlin.

[18] D. Black, J. Donovan, B. Bunton, A. Keist,
, NY: Springer, 2010.

[19] Star-Dundee website, SpaceWire-USB Brick Mk2, Web:

https://www.star-dundee.com/products/spacewire-usb-brick-mk2.
[20] A. Ben Abdallah, -Chip: Practical

, Second Edition. Atlantic Press, 2013.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 66 --

