
Implementation of the new REST API for open
source LBS-platform Geo2Tag

Mark Zaslavskiy

ITMO University, Fruct Ltd.

Saint-Petersburg, Russia

mark.zaslavskiy@fruct.org

Dmitry Mouromtsev

ITMO University

Saint-Petersburg, Russia

mouromtsev@mail.ifmo.ru

Abstract The article describes current state of Geo2Tag LBS

platform project and new API version implementation. The

platform was improved by following challenges: data

visualization, extended datetime processing, social network

integration and background calculations support. These

challenges were justified by review of most important tendencies

for geocontext applications and LBS platforms.

Recommendations were fully implemented in API. Also the

article contains description of new version implementation. As an

example Open Data import API and specific plugin for Open

Karelia system was implemented. This extension allowed

performing geocontext markup of complex spatiotemporal data

inside the platform.

I. INTRODUCTION

 Nowadays location-based services (LBS) and technologies
became one of the most important trends at the mobile
software development. Forecast [1] shows than total revenue
of such services industry will grow by more than twice to the
level of 2014 at 2019. The key factors according to authors are
context-awareness and the ability to provide more relevant
data to application users by taking into account their location.
At the same time market of LBS instruments also will rise.
Global LBS Platform Market 2015-2019 report [2] shows that

at 2015-2019 by more than 22 percent. These two trends
demonstrate that development of LBS technologies and tools
is important task.

Geo2Tag is an Open Source LBS platform solution. The
platform allows creating mobile, desktop and web-based geo
and geocontext applications using already implemented
backend with data storage and processing functions. Geo2Tag
was recommended by IEEE Internet of Things technical
community as a candidate platform for prototyping IoT
solutions in City tagging scenarios [3]. These scenarios
includes geocontext markup of the urban environment.

Goal of the proposed article is to define, justify and
describe Geo2Tag API changes needed to match IoT solutions
in City tagging scenarios. These changes include
implementation of complex background user-defined data
processing mechanisms, date intervals support, custom maps
interfaces and social network integration.

II. USE-CASE

Particular use-cases of Geo2Tag LBS platform services

were described in details at [15-16], [6]. The platform use-case

at [6] is described as a common backend for services includes

solution of following tasks:

 spatiotemporal data storage;

 spatiotemporal data processing;

 data isolation inside separated services;

 user management.

Modification of the API described in this article also

affects platform use-case. The most important changes are
related with background data processing interfaces. Due to end

user direct involvement into this mechanism it should be
accessible by users (for creation and control on background

computation tasks) and also by server administrators (for

configuration and maintenance. The social network integration
also changes the use-case. Much of modern web-services

provide OAuth2-based registration using existing accounts in

email services and social networks. This approach allows web-
services to avoid complex user management routine such as

user registration with email confirmation and therefore user
management in the Geo2Tag use-case can be replaced to

authorization. Also custom maps support extends available

user actions by data visualizations. New use-case is displayed
at Fig.1.

Fig.1. Use case diagram for platform

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

ISBN 978-952-68397-0-7 (paperback), ISBN 978-952-68397-1-4 (PDF)

III. LBS PLATFORMS AND GEOCONTEXT APPLICATIONS REVIEW

For justifying requirements for new Geo2tag API the

review of existing LBS platform and geocontext solutions

should be defined. Definition will be based on the definition of

is any information about location of an entity, which can

describe current state.

Review of geocontext tendencies was done in the previous
paper [6]. This article shown that one of the key trends is
support of spatiotemporal operations on a level more

sophisticated than scalar dates processing. Also the work [6]

demonstrated that creation of standalone geocontext

applications is inefficient in mobile and web cases. Instead,
applications which use separated backend can achieve more
power-saving and attract more users. The third important

conclusion covers the structure of geocontext markup. The

most effective way is to perform computations in two steps.
On the first step simple statistic processing (average, variance

etc) of the whole dataset should be done. Special geocontext

calculation may be done at the second step. Such architecture
of computations is impossible in case of frequent requests and

constantly updating data without running statistical
computations in background of backend.

For understanding existing trends in LBS platforms

functionality the review must be done. Following different

solutions were selected:

 Search and map service providers APIs:

o GoogleMaps [7],

o YandexMaps [8],
o HEREMaps [9].

 Cloud LBS platforms for geo and geocontext
application development:

o ojoo [10] ,

o shoutem [11],
o geoloqi [12].

For the comparison following criterions were chosen:

 custom web-based maps

 processed data visualisation on maps

 social network integration.

TABLE I. COMPARISON OF BACKENDS FOR GEO APPLICATIONS

 Custom
web-
based
maps

Processed
data

visualization
on map

Social network
integration

GoogleMaps + + -

YandexMaps + + -

HEREMaps + + -

ojoo + + +

shoutem + + +

geoloqi + + +

The comparison results can be seen at the Table I. It shows

that the most important user features for LBS platform are a
support of custom maps and data visualization, because they

are supported by the almost all solutions and became a

standard de facto for LBS platform. Social network integration
is widely supported by specialized platforms instead of search

and map service providers and can be a competitive
advantage.

As a conclusion requirements for Geo2Tag API can be

found sufficient and corresponding to modern LBS platform

tendencies.

IV. GEO2TAG ARCHITECTURE

A. Data model

Before describing Geo2Tag architecture details its basic

conceptions should be described. The data model of the
platform is very simple - it contains only four entities. Point is
an annotated media content related to specific geographical

coordinates (latitude, longitude and altitude) and a datetime

object (exact date or a time period). Channel is a named and
annotated set of points. Service is an annotated, named and

isolated set of channels which can be treated as backend for a

single mobile or web geo application. Platform instance is a
single installation of the Geo2Tag platform containing

combination of a set of services and service-user relations
data. User is an application or a human, who performs requests

to the platform. Users can be divided into two categories:

service users (service administrators and geo application end

users) and platform instance users

Fig.2. ER diagram for platform entities

Most important relations between entities are showed at
Fig.2.

B. Internal architecture

According to use-case for end users the platform should be
able to process big number of simultaneous different requests

service-oriented architecture was chosen.

The architecture is illustrated at Fig. 3. A dashed rectangle

shows virtualization environment, which wraps transparently
the platform. Such structure is needed for a seamless
integration with cloud computing providers - Vagrant images

of Docker containers can be deployed easily in such

environment. Geo2Tag consists only of two basic parts: Query
Engine and the Core. Query Engine encapsulates REST API

queries processing and forwarding them to Core APIs. These

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 126 --

APIs stands for fundamental actions - control and management

of data access rights, interaction with database server, and
execution of third party plugins. Such division is needed for

abstraction from specific technologies. For example, query
processors, which are interacting with database do not do it

directly, instead they use core database API, hiding database-

specific realization.

Fig.3. Platform architecture schema

C. Databases

Because main goal of Geo2Tag platform development was
a creation of a simple and powerful backend for different types

of geo application Platform as a Service (PaaS) service model

was chosen as a foundation. It was implemented as a
conception of separated services, working simultaneously and

storing their data in separated databases. These databases do
not have links between each other, but the metadata about all

of them are stored at the special master database. Fig. 3. shows

relations between two database types.

Fig.4. Platform database relation diagram

Service databases store following service-specific objects -

service logs, points and channels. Master database contains of
users, services and logs collections.

Logs are stored at the service and master databases due to
MongoDb ability to organize collection as a cycled buffer and

because of high-performance search interfaces.

D. REST API

The API for platform users is implemented in a form of

REST API working over the HTTP. All REST resources

(Webs) have mandatory prefix, which is needed for

simultaneous work of several Geo2Tag instances at one
domain name.

CRUD operations for REST resources were mapped to the

HTTP methods in the following way:

 create - POST, /resource_Web/;

 read - GET, /resource_Web/specific_resource_id or
/resource_Web/ (several resources);

 update - PUT, /resource_Web/specific_resource_id;

 delete - DELETE,

 /resource_Web/specific_resource_id.
API can be divided for two parts - service API and instance

API. Service API includes resources (Webs), which allow

operating with service data (points, channels) and maintaining
service work.

TABLE II. SERVICE REST API

Resource Operations

/<instance_prefix>/service/<service_name>
/point

create,
read,

update,
delete

/<instance_prefix>/service/<service_name>
/channel

create,
read,

update,
delete

/<instance_prefix>/service/<service_name>/log read

Instance API implements services and plugins management,

instance administration.

TABLE III. INSTANCE REST API

Resource Operations

/<instance_prefix>/service create,
read,

update,
delete

/<instance_prefix>/logout read

/<instance_prefix>/plugins read

/<instance_prefix>/manage_plugins read

E. Authorization

User authorization is based on OAuth2 [13] protocol. Login

procedure implements following use-case:

 User visits /<instance_prefix>/login - web-page with

buttons leading to OAuth2 providers.

 User press to button of some provider.

 Browser redirects user to provider authorization page.

 User gives his agreement at the OAuth provider web-
page.

 OAuth provider redirects user back to Geo2Tag web-
page with user identifier.

 Platform check is user already registered.
o If user is not registered, then platform add

new document into master DB users
collection.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 127 --

 Backend stores received user identifier into cookies

as a symmetrically encrypted string.

Logout procedure implements other use case:

 User performs GET request to

/<instance_prefix>/logout.

 Backend cleans user identifier from cookies.

For the current moment there is only one GooglePlus

connected as a OAuth2 provider, but interfaces allow to add
support of any other authorization source based on social

network.

Approach described below have several significant pros. At

first it simplifies registration process for new users, allowing

using existing accounts. At second, this approach does not
require usage of complex user verifying schemas, as email or
SMS verification and thou approach simplifies platform

architecture and maintenance.

F. Data visualization

Modern geo application cannot be interesting to users

without proper visualization. Therefore geo data visualization
API was implemented inside Geo2Tag. Because the most
popular form of geo data view is a map, the following

architecture was chosen.

Fig. 5 Visualization web-service architecture

The visualization API was implemented in a form of a

web-service available at the /<instance_prefix>/map resource.
The service receives the same arguments as

/<instance_prefix>/service/<service_name>/point and returns
web-page, where the

/<instance_prefix>/service/<service_name>/point request

results are displayed. Visualization contains of custom map

widget, based on leaflet.js library and several map
backgrounds, which can be changed in real time by user.
Displayed points are grouped into clusters by their proximity

using MarkerCluster plugin for Leaflet.js. Number of

displayed points and clusters is adjusted according to the map
scale. Such approach was chosen because displaying big

amounts of geo data without reduction of number of visible
objects is very memory-intensive.

Each point displayed on a map of the web-server includes pop-

up window with short description of related content. Fig.6

illustrates how geo objects are displayed at the map.

G. Platform deployment

Because main target platform of Geo2Tag will be different
cloud services, platform deployment process should be unified

to different operation systems. Due to diversity of used Linux

distributives and their package maintenance of all
existing package types is difficult task. Therefore installation

process should not depend from the target system and thus
virtualization was selected as a deployment instrument.

Vagrant configurations were created for platform installations

on end users and developers servers. Docker files were written
for automated testing of Geo2Tag during development.

H. Plugin system architecture

Main goal of Geo2Tag platform is to provide very simple

and effective API for building applications. But at the same

time geo services are development is affected with constantly
changing preferences of users. In such situation standard API

may not satisfy application requirements. For this purpose the
plugin system was implemented inside the platform.

Fig.6. Platform database relation diagram

In term of the Geo2Tag platform plugin is a python
package, which extends REST API with new resources. Due to

security issues all new requests are isolated inside

/<instance_prefix>/plugins/ resource. Plugins are installed by

copying their sources in separate directories to the plugins/ dir
at the platform path. After this procedure plugins can be
managed with following REST requests:

 /<instance_prefix>/plugins - receive list of installed

plugins and their statuses (enabled/disabled),

 /<instance_prefix>/manage_plugins?<plugin_name>
=<status> - change plugin status.

I. Open Data import plugins

For making Geo2Tag an instrument for processing of Open

Data the API for building import plugins was developed. Let
us define basic requirements for such plugin. Because lots of

Open Data sources can be related to the Big Data plugin

should allow importing single data elements from external
sources into specific service database with keeping Web to the

origin and without copying all original content. Import
extension must provide procedure for translation of data

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 128 --

elements format to Geo2Tag format with extraction of

location and time information because it will allow processing
imported data with standard platform API. Due to versioning

of imported points plugin also should keep information about
import date of a data element.

The API provides general import algorithm, abstract

classes for implementing source-specific solutions and

common REST interfaces for controlling import procedure as
a building blocks for import plugin.

Import algorithm use following input data: channel where
points will be saved later, link to the Open Data source and

name of a service. The algorithm includes four stages:

1) Data acquiring. At this stage steps for data
downloading are performed including authorization and

connection setup to the Open Data source.

2) Data array splitting into single elements. This stage

includes initial parsing of received data array and
conversion it to the python list of single serialized

elements.

3) Translation of each element into point. On translation

stage elements are parsed and converted into points. All

mandatory fields as location, altitude, date and channel
identifier. This stage also includes saving the import

information (Open Data Web and datetime, when

import was performed) inside point.

4) Points saving to service database.

Classes included into the API contain logic for each step of

algorithm and templates for REST interfaces implementation:

1) Job - basic abstract class with common interfaces for
import jobs running in parallel;

2) JobListResourceFactory - factory method for
generating job list resource request processors;

3) JobManager - class which controls execution of jobs

and provides statistics;

4) JobResource - job resource request processor;

5) OpenDataToPointsLoader - class for saving points list

6) OpenDataToPointTranslator - basic class for translation
between Open Data element format and Geo2Tag point

format;

7) OpenDataObjectsLoader - basic abstract class for

loading data elements array from Open Data source;

8) OpenDataObjectsParser - basic abstract class for

splitting Open Data into separate elements.

Plugins developed with the API have standardized REST

interfaces for import job management:

 /<instance_prefix>/plugin/<plugin_name>/service/<ser

vice_name>/job - allows to add new job by POST
requests and view status of existing ones by GET;

 /<instance_prefix>/plugin/<plugin_name>/service/<ser
vice_name>/job/<job_id> - allows viewing status of

specific job by GET request and stopping it by

DELETE.

V. EVALUATION

As an implementation of Open Data import API Open

Karelia [14] import plugin for Geo2Tag platform was created.
Open Karelia was chosen for implementation because it stores
spatiotemporal data, supports bc dates and interval dates. The

plugin was developed to match format of Get Nearest Objects

web-service at the mobile frontend. This web-service collects

all Open Karelia objects with valid information about location
and which are not far from given geographical coordinates

more than one kilometer.

The plugin extended basic API in two ways. At first, all

objects imported from Open Karelia in a format of Geo2Tag

points store information about source object name, brief

description, image and data interval. These attributes are
stored at json field of the Geo2Tag point. At second, import
jobs were implemented using python threads. This solution has

low performance due to Global Interpreter Lock (GIL)

restrictions in Python, but it is acceptable for proof of concept
implementation.

Fig.7. Imported object view

OpenKarelia plugin was included into the platform source
code as an example of import plugin and deployed to the
demoserver (example on Fig. 7) where it can be viewed using

the map web-service. The page shows all available points,

including ones which were imported with the plugin. Each

point is displayed as a marker with a popup, where
information is shown.

VI. CONCLUSION

In this paper reasons for creating a new version of Geo2tag

REST API are revealed and the changes in architecture were

described. These reasons are related to challenges connected
with prototyping of IoT solutions in City tagging scenarios:

complex background processing of geo data, support of the
different types of datetime data, support custom data

visualization and social network integration.

New version of the Geo2tag REST API contains operation

on all basic entities, which were partly renamed, and several
new requests. The plugin system inside the platform allowed

background. Also, the API for Open Data import was

implemented as a part of the system. For evaluation purpose of

such extension were developed for Open Karelia system

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 129 --

Data visualization were implemented as a web-service

using leaflet.js and MarkerCluster libraries combined with
maps of most popular map providers Google, Yandex and

OSM.

The authorization were reimplemented using OAuth2

protocol allowing usage of existing accounts from social

networks or other authorization providers.

ACKNOWLEDGMENT

Authors would like to thank Finnish-Russian University

Cooperation in Telecommunications Program (FRUCT,
fruct.org) for provided support. This work was partially

financially supported by Government of Russian Federation,

Grant 074-U01.

REFERENCES

[1] Location based services market to reach $43.3bn by 2019, driven by
context aware mobile services. Web:
http://www.juniperresearch.com/press-release/context-and-location-
based-services-pr2.

[2] Global LBS Platform Market 2015-2019 - Increased Demand for
Location-based Services. Web: http://www.prnewswire.com/news-
releases/global-lbs-platform-market-2015-2019---increased-demand-
for-location-based-services-300142322.html.

[3] IEEE IoT. IoT Scenario & Use Cases: City Tagging. WEB:
http://iot.ieee.org/images/files/pdf/scenarios/IEEE_IoT_Service_Use
Cases_CityTagging_clean.pdf.

[4] Personal and
Ubiquitous Computing, v.5 n.1, February 2001, pp.4-7.

[5] A. Schmidt, M. Beigl, H.W. Gellersen, There is more to context
than location , Computers & Graphics, v.23 n.6, 1999, pp 893-901.

[6] M. Zaslavskiy, D. Mouromtsev, Geocontext extraction methods
analysis for determining the new approach to automatic semantic

in Proceedings of the 14th Conference of
FRUCT Association, 2014, pp. 137-142.

[7] Google Maps API, Google Developers. Web:
https://developers.google.com/maps/?hl=ru.

[8] Yandex maps API, Yandex. Web: https://tech.yandex.ru/maps/.

[9] Build applications with HERE Maps API and SDK Platform, HERE
developer. Web: https://developer.here.com/.

[10] Create and play location-based apps for iOS & Android, Ojoo. Web:
http://ojoo.com/.

[11] Create a Location Based App - Daily Deal Apps, ShoutEm. Web:
http://www.shoutem.com/local.

[12] A powerful location-based API for application development //
Geoloqi Developers. Web: https://developers.geoloqi.com.

[13] OAuth2.0. WEB: http://oauth.net/2/.

[14] Open Karelia. WEB: http://openkarelia.org/about.

[15] E. Ba
in Proc. of the 17th IEEE

Conference on Business Informatics (CBI 2015), Lisbon, Portugal,
July 13-16, 2015.

[16] E. Balandina, S. Balandin, Y. Koucheryavy, and D. Mouromtsev,
-

submitted to the 11th International Conference on Signal Image
Technology & Internet Systems (SITIS 2015), Bangkok, Thailand,
Nov. 23-27, 2015.

__PROCEEDING OF THE AINL-ISMW FRUCT CONFERENCE

-- 130 --

