PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

Fast Static Performance Analysis
of Parallel Program Schemes

Boris Sedov, Alexey Syschikov, Yuriy Sheynin, Vera Ivanova
Saint Petersburg State University of Aerospace Instrumentation
Saint Petersburg, Russia
{boris.sedov, alexey.syschikov, sheynin, vera.ivanova}@guap.ru

Abstract—During the embedded system development an
estimation of software performance on different hardware is
needed. Estimation of the expected acceleration of program
execution on various numbers of processors, estimation of
computation space etc. Such estimations, as other aspects of
performance analysis complex, should help with different
problems that arise at the intersection of software and
hardware parts. For example, selection of the most successful
hardware platform from available options for current
program solution or modernization of the program for better
resource use of given hardware platform and achieve best
performance. In the paper tool of static analysis is considered.
It is a part of the complex of program performance analysis in
integrated development environment VIPE for perspective
multicore embedded systems.

I. INTRODUCTION

Software developing for multicore embedded systems is
iterative process of design and programming. In each
iteration, the structure of program could be changed. For
example, detailing of wvarious program components
(lowering of the level of granularity), parallel structures,
cycles optimization etc.

For parallel software, the opportunity of early estimation
of potential parallelism and possible acceleration of the
program depending on the number of platform processors is
very important.

It gives to the developer information on how to correct
the development process direction. He can check the
required parallelism of the program, if there are unnecessary
details in the program, does the algorithm and program
correlate with hardware platform resources (memory,
communications) etc. It also allows getting information
about level of parallelism that will be required from the
hardware platform. It is especially important in hardware-
software co-design, which is typical for embedded systems
development [1, 2].

The static performance analyzer of parallel program
schemes could be such instrument. It allows approximately
estimate parallelism level and potential acceleration of the
program on various hardware configurations.

The static performance analyzer of parallel program
schemes is developed as a part of the performance analysis
complex. At the same time, this complex is a part of
technology and design tools for portable software
development for multicore embedded systems. The
technology is presented in details in [3].

II. STATIC ANALYSIS OF PARALLEL PROGRAM SCHEMES

A. Representation of parallel programs

In the technology of coarse-grained visual programming,
a program is represented as parallel scheme on the VPL
visual programming language (Fig.1). More information
about this visual programming approach could found in [4].

Find
—— Dark
Channel

DC
Image

espl

... Do J‘.Ylﬂ::r‘
DEC Iage

e inage X

Find
air Light ¥

w sl b
T L [
ﬁ v 4

Src image
. sSrcimage | “fire
cspl find § eough g Refine Refined_, Recovery
| Mg Trans Map Trans Scena
Sre image 'y T

Alr Bight

SIC Image

Fig.1. Example of the program scheme

During the scheme development, there is performed the
iterative process of scheme elements refinement. Developer
needs to estimate, either the required level of granularity and
parallelism is achieved or the scheme needs further
refinement or refactoring.

B. Estimation of the scheme parallelism

For each element of program scheme, the VIPE
development environment allows to specify an execution
time estimation in abstract units. For estimation of a
developed but no fully implemented program such values
should be sets manually. For fully implemented program
VIPE environment provides the automated mode of program
objects execution time measurement. Additionally generated
code includes simplified profiling tools that collect
performance statistics of the program execution on available

ISSN 2305-7254

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

platform. Collected statistics could be loaded and for each At the first look, it seems that first half of a program is
program scheme element execution time data would be parallel and execution of such program on two processors
filled automatically. will reduce the execution time of the program. Actually, the

estimated performance growth on two-processor system for

The static analyzer uses a simple algorithm of scheme ; ; .
this program is less than 1.5% (Fig.4).

elements allocation on processors of abstract multicore
hardware platform: ASAP [5]. Algorithm forms timeline of
scheme execution for given number of processors and
estimate the acceleration of a program (Fig.2). The Number of processors: |2
estimation measured in percentage relatively to execution on
a single processor.

@ Analyse S 1
i 98.5872628010391) 7
Number of processors: |4 [] Draw
100 ko
™.
™.
N
™
\\
© (e T
4 =
g
. . . Number of processors
Fig.2. Program performance analysis on various number of processors

Of course. it is possible to use more complex and Fig.4. Diagram of estimated performance on two-processor system
b

effective algorithms for the estimation system. But on the
level of early estimation of developing parallel algorithm
there is no information about target hardware platform,
runtime environment and allocation algorithms, which are
implemented there. Thus there is no reason to use more
complex algorithms on this level. ' window

The reason of such a small difference is the size of input
data that are given for each parallel branch of the scheme.
First branch get big picture for analysis (Fig.5), second one
—small picture to look for (Fig.6).

C. Influence of factors on a program performance

Many factors influence on a program performance. For
example, the level of parallelism may change dramatically
depending from a structure of input data. For example, let’s
consider the program scheme of searching of one picture in
another using the SURF [6] algorithm in the VIPE
environment (Fig.3).

-
==t}

Fig.3. Scheme of image searching using SURF algorithm Fig.5. Analyzing image and result of the SURF program

338

Let’s analyze factors that that affects the parallelism level
of the program scheme and how presented methods of the
static analysis processes them.

Fig.6. Searching image

D. Dependence of objects execution time from data size

Coarse-grained and middle-grained scheme operators
represent data processing comparable to functions or
procedures of traditional languages. Such functions have
processing complexity dependence from processing data
size. It gives significant influence on the program
parallelism behavior. Here is an example of the simple
program scheme of matrix processing (Fig.7).

Load & > Multiply ¢ L Save

matrix1 | \ matrix " matrix
Load T > sum | » Save
matrix2 |} matrix | " matrix

Fig.7. Program scheme of matrix processing

Matrix multiplication (the most simple algorithm) has the
complexity O(n’) and matrix addition has the complexity
O(n?). It is obvious that for small matrixes, such scheme will
be executed really in parallel and for large matrixes
execution will be almost sequential.

Static scheme analyzer allows assigning the complexity
estimation of input data influence on the program objects
execution time. The mode of operation with variable
complexity of execution time allows estimating influence of
various input data size on the parallelism level.

For the analysis purpose, the user assigns minimal data
size N, base data size Ny, (for this data the execution
times of objects are assigned) and maximum data size Njy.
Static analyzer estimate performance at border points and
additionally at two intermediate points between these
borders.

Result for the scheme of matrix processing analysis
(Fig.7) for Npix=1, Npax=15 is shown on Fig.8.

The analysis results shows that a scheme parallelism
decreases very fast on matrix sizes increase. It means that
such program scheme is not suitable for parallel platform
and it needs refactoring (for example, changing of the

339

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

program structure with detailing/parallelization of the
program component — matrix multiplication).

There are difficulties with more complex dependences
from data size, such as shown in the scheme above (Fig.3).
From the static analyzer point of view, there is no any
problem. The real complexity is to provide to user friendly
and informative interface for specification of such aspects.
We are still working in this direction.

B Analyse N -
Number of processors: |2 [Draw
N min
100) b -
@ 1. ey
=
= + =
] 0
Number of processors Number of processars
N mid 2 N max
[oa55) Fm e R — (9265 R ——
= =
} B } B
0] @ 0] @
Number of processors Number of processors

Fig.8. Diagram of dependence of program performance from the number of
processors and input data size

E. Hierarchical structure of the program scheme

The program scheme in VPL could contain both terminal
operators (nodes that are indivisible from the program
scheme point of view) and complex operators (structured
nodes). Structured nodes are designed for hierarchical
structuring of the program. Structured nodes could contain
in its body terminal operators and other complex operators

(Fig.9).

=

.|

L |

\
\
Lg B |

A\

Fig.9. Hierarchical structure of the program scheme

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

The mechanism of a parallel execution of structured
constructions hardly depends from hardware platform
characteristics and used runtime. For example, OpenMP
standard [7] implementation could execute complex
structures in parallel mode and in sequentially mode,
depending on set property (omp set nested /
OMP_NESTED). Complex constructions could be allocated
on all evaluable processors or on a part of them, etc.

There are two extreme models of the complex structure
execution in the static analyzer: fully sequential and fully
parallel.

In the sequential mode, all nodes of the complex operator
body are allocated on the single processor (Fig.10).

sequential mode

[s

Fig.10. Sequential execution of the complex operator

In the parallel mode, all nodes of the complex operator
body use all available processors according to common rules
(Fig.11).

parallel mode

e pralied

N2

*

comgler N
nexde

1
1
1
1
1
1 N1
1
1
1
1
1
1

Y

Fig.11. Parallel execution of the complex operator

Execution mode of each complex operator of the program
should be specified by user with “Is parallel” property.
Complex operators are allocated to processors according to
their execution model during the scheme analysis. It will be
illustrated on the scheme presented on the Fig.12, where C1
and C2 are complex operators.

In the sequential mode, complex operator is allocated on
a single processor (Fig.13). Execution of the structured
operator could not be interrupted until the end of its
execution and any other operands could not be allocated to

340

this processor. Execution time of this complex operator is
equal to the execution time of all operators inside its body.
Other processors could be occupied by other operands of the
base scheme, including structure nodes.

F2 C1

F1 F4

F3 C2

Fig.12. Execution mode illustration

F2 Cc1 F4

B3 c2

Fig.13. Allocation of complex operators in sequential mode

In the parallel mode, complex operator is allocated on all
processors of the system (Fig.14). It does not been taken
into account how many processors were actually occupied
by operators of its body. Execution of the complex operator
could not be interrupted until the end of its operation. Any
other scheme operators at this time cannot be allocated.

F2

C1 C2

F3

Fig.14. Allocation of complex operators in parallel mode

The case of multiple complex operators, the distribution
to processors is calculated starting from the lowest control
operator and up to the top-level scheme. For the scheme
from Fig.9, operators’ allocation is represented on the
Fig.15, and its performance analysis on the Fig.16.

E. Conditional and iterative loops

In addition to terminal and complex operators, any
programs could also contain conditional (while) and
iterative (for) loops. Most computations of a program is

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

presented in such loops, and they have a significant
influence on the program performance.

a .l | g 1| } d b | c

Proc 1 |

b h |) e
Proc 2

| i 1|) f
Proc 3

I I |
Proc 4

complex 2 complex 1

Fig.15. Allocation of the scheme with complex operators

&

Number of processors: |5

Analyse

@ -+
@vy

0 g

| Number of processors

Fig.16. Performance analysis of the scheme with complex operators

For the program performance analysis, the most
important loop parameters are the number of loop iterations
(its body execution) and its execution models. The
implemented method of a loop analysis combines both
methods of processing terminal operators and complex
operators.

The number of iteration can be defined by user manually
or automated by using profiling tool that was mentioned
above. The performance analysis system allows specifying
the rule of dependence between input data size and number
of iterations.

341

Calculation of the loop processing is made in the same
way as for complex operators. For each loop user should
also specify the execution model: sequential or parallel.
Allocation of the cycle on processors is performed in a
similar manner. The execution time of the loop is multiplied
by the number of iterations according to the specified
dependency rule.

Here is an example of the program with loops processing on
Fig.17 and its allocation on Fig.18.

While

F2 » F3 » F4
Fig.17. Example of the program with loops
For b | Hid
P1 i ! : | T I
o Whike
P2 [
F2 E&! ‘ F4 Pt

Fig.18. Allocation of the program with loops

1L

The static analyzer is a useful tool for quick early
estimation of program characteristics. Among them there are
performance, parallelism, maximal processors occupation,
memory occupation etc. It allows estimating on early stages
and with minimal effort the performance of program
schemes on potential hardware platforms with various
number of processors and for various input data size. At any
stage of the development of a parallel algorithm for the task,
a scheme designer has an opportunity to evaluate the
program and identify a further way of its design.

RESULTS AND PERSPECTIVES

Of course, the static analyzer is not designed for getting
accurate time measurement of the program. There are too
many factors, which depends on hardware platforms,
runtime and parallel execution models and all of them
affects the program performance. More detailed analysis can
be done by using other tools of the performance analysis
complex, for example, by using virtual simulator tool or
simulator of the coarse-grained model of hardware platform.

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation under agreement n°14.575.21.0021, identifier
RFMEFI57514X0021.

REFERENCES
[11 Bertels, K. L. M. Hardware/Sofiware Co-design for
Heterogeneous — Multi-core Platforms. Springer, Drodrecht

Heidelberg London New York, 2012.

[2] Teich, Jiirgen, “Hardware/software codesign: The past, the
present, and predicting the future”, Proceedings of the IEEE 100.
Special Centennial Issuel, 2012, pp. 1411-1430.

[3] Boris Sedov, Alexey Syschikov, Vera Ivanova, “Technology

342

[4]

[3]
(6]

(7]

and Design Tools for Portable Software Development for
Embedded Systems”. Proceedings of the 16th Conference of
Open Innovations Association FRUCT printed by “University
Telecommunications” Company, 2014, pp. 86-93.

Vera Ivanova, Boris Sedov, Yuriy Sheynin, Alexey Syschikov,
“Domain-Specific Languages for Embedded Systems Portable
Software Development”, Proceedings of the 16th Conference of
Open Innovations Association FRUCT printed by “University
Telecommunications” Company, 2014, pp. 24-30.

Baruch, Zoltan, “Scheduling algorithms for high-level synthesis”,
ACAM Scientific Journal 5.1-2, 1996, pp. 48-57.

Juan, Luo, and Oubong Gwun. "A comparison of sift, pca-sift and
surf." International Journal of Image Processing (1JIP) 3.4 (2009):
143-152.

Broquedis, Frangois, “Structuring the execution of OpenMP
applications for multicore architectures”, Parallel & Distributed
Processing (IPDPS), 2010.

