
EventBus Module for Distributed OpenFlow
Controllers

Igor Alekseev
Director of the Internet Center

P.G. Demidov Yaroslavl State University

Yaroslavl, Russia

aiv@yars.free.net

Mikhail Nikitinskiy
System analyst, programmer

A-Real Group, Energiya-Info Inc.

Yaroslavl, Russia

man@a-real.ru

Abstract—In this article the authors examine the concept of
software defined network (SDN). In the beginning there is a
short historical background of the ”software defined network”
as the scientific and technological concept given, by whom it was
introduced and what it means. Substantial attention is paid to the
OpenFlow protocol. Further, the authors consider development
of SDN technology similarly to ideas suggested in MPLS concept,
discuss the issues of distributed controllers using ONIX, Kandoo
as examples and describe the mechanism of interaction between
applications and SDN controller, which they have devised.

I. INTRODUCTION IN SOFTWARE DEFINED NETWORK

Initially, global IP-based networks have been built around
the concept of an autonomous system (AS) [1]. This concept
allows network scaling and expansion through transmission
of packets to the next transit area. This network engineering
principle is simple and has a proven fault tolerance and
scalability. This is how Internet is constructed. The principle
of an autonomous system does not allow to move destination
points, i.e., change the topology of the network, without
changing endpoint identification as it is closely related to
the packet delivery process. Topological location of network
host, with network interfaces dictates the identification of each
interface. In addition, the use of only the basic autonomous
system makes it difficult to leverage the other qualities of
the communicating node as identification, such as logical
grouping, access control, quality of service, interconnection, or
certain other aspects that are related to the sequence of packets
that form a stream or a network session. To solve these issues
Internet Engineering Task Force (IETF) has introduced several
additional standards such as virtual LANs (VLAN) and virtual
private network (VPN), among many other standards. An
increasing number of standards leads to growing complexity
of the specification of network elements and the configuration
of network interfaces for network operators.

A. Causes for new paradigm

Explosive growth and proliferation of mobile devices and
the content for them, server virtualization and dissemination
of cloud services are the main trends in rethinking traditional
network architectures.

Details of the drivers for change in paradigm :

• Changing patterns of traffic in corporate and global
networks [2]. Unlike client-server architecture, where

the bulk of communication takes place between
clients and server, modern applications create multiple
streams of data between different computers and not
only between servers. In addition, users also changes
the traffic patterns using mobile devices and demand-
ing full access to corporate resources and applications
from anywhere at any time. Network architecture
should easily deal with various mobile devices, such
as tablet computers, smart phones, communicators and
laptops allowing for precise control, corporate data
and intellectual property protection while preserving
usage policy and data in the network.

• Cloud services development [3]. Business actively
uses public and private cloud services. Business logic
drives the need to have the access to applications,
infrastructure and other IT services on demand and
with high degree of preciseness. Additionally security
issues related to private and public clouds are very
important. The architecture must provide the possi-
bility of various changes in corporate structure both
internal and those caused by external mergers and
acquisitions. Thus, following the computing resources
network infrastructure must be able to scale elastically,
be reorganized on demand and preferably be managed
by the same instruments as data storage infrastructure
and computing resources.

• Sharp growth in data volumes. Modern applications,
like business analytics process huge data amounts
and require information exchange between multiple
servers, which can have initially random set of links
with each other. Growth in data volume on the network
and unpredictability of possible routes also places
high demand on the network, requiring it to scale
more substantially, than traditional network paradigm
allows.

B. Conflict between new requirements and traditional
paradigm

All these factors, which in fact are new functional require-
ments for the network architecture lead to a paradigm shift,
because the existing architectural principles are not able to
meet the new requirements [4]. Network technology today is
a set of protocols designed to ensure connectivity of hosts
on different types of channels in different topologies and

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



distances. These protocols have been developed in isolation
from each other (actually this isolation underlies the layered
model of network architecture, whether OSI or TCP/IP). The
result is increased network complexity. For example, to add a
new device you need to change the configuration of switches,
routers, firewalls, etc., to update the access control lists, infor-
mation about VLAN, quality of service and other mechanisms
using administration tools that are specific to a particular
equipment, and dependent on the equipment manufacturer, the
type and version of the software. Thus modern network archi-
tecture has difficulty in timely support of changing application
requirements and business logic, has insufficient scalability and
is difficult to set up and maintain, is dependent on the specific-
vendor solutions.

C. Software defined networking paradigm

Due to inability of existing network architecture to tackle
new functional tasks, which users demand from the network,
a new level of software defined network arises. Software
defined network is a new approach to network architecture
construction, where network control level and data transfer
level are separated by moving control functions to software
applications, which run on an entity called network controller.
The main idea of SDN was put forward by scientists in
Stanford and Berkeley in 2006. Their ideas found support
not only in research institutions around the world [5], but
were also welcomed by over 40 leading network equipment
manufacturers and main networking companies, which formed
Open Networking Foundation in 2011.

The high degree of interest shown by IT companies is
explained by results of practical tests in which SDN allowed
to increase the effectiveness of networking equipment in data
centers by 25%-30%, decrease network management costs by
more than 30%, make network infrastructure management in
data centers more flexible, substantially enhance the security
and begin easy development of new services with timely equip-
ment updates with new rules. Main ideas in the foundation of
SDN are:

• Separated level of data transfer and control,

• Logically centralized management functions are per-
formed by a controller with network operating system
(NOS) and a set of network applications installed on
top of NOS,

• Single, unified and vendor-independent interface be-
tween control level and data transfer level (OpenFlow
protocol).

Software defined network consists of switches involved
in data transfer (forwarding) and controller, which calculates
routes and rules of data transfer. Controller manages a set of
switches via protected channels.

According to OpenFlow specification every switch main-
tains one or more flow tables. Each table in switch contains a
set of rules guiding data transfer [6]. Each rule contains match
fields (to determine the flow of a packet), counter fields and
action fields. OpenFlow switch operates in a relatively simple
manner. Every incoming packet has its header (bit sequence of
fixed length) analyzed. This bit field is matched to flow table.
In case there is a match the packet and its header undergo

changes/actions, set in action field of the matched line in flow
table. These actions include rewriting of packets header and
its packet routing. Actions also guide the counter modification,
which can be used to gather network statistics. If header
matching is failed, that is packet cannot be related to known
flow, such packet is sent to controller, whose responsibility
is to inspect the packet and make a decision on new flow
and disseminate new flow data into controlled switches. The
controller is a physical server with installed network operating
system and a set of applications. The controller is the central
entity of software defined network, where the basic SDN
management functionality is located.

Network operating system provides access of network
applications to network management functions and monitors
network hardware configuration. Contradictory to traditional
notion of network operating system as operating system with
network protocol stack, in SDN this term is used to denote
system monitoring and controlling resources of the whole
network rather than resources of a particular node. At present
over 20 realizations of NOS for SDN are known: NOX, POX,
Beacon, Maestro, Trema, BigSwitch, FloodLight and others.

Much like traditional operating system NOS provides ap-
plication programming interface (API) for network manage-
ment applications [7]. It contains functions for controlling flow
tables in switches such as adding, deleting, modifying rules
and gathering of various statistics. Thus the actual network
management is performed by applications, which use API of
NOS. NOS API allows building applications which operate
higher level abstractions, e.g. use user name and hostname
avoiding use of lower level parameters, such as IP and MAC
addresses. Due to this abstraction level management com-
mands are always executed. Maintaining of this abstraction
level requires NOS to translate between high level abstractions
and lower level technology dependent configurations [8].

II. OPENFLOW PROTOCOL

Software defined network requires some techniques to en-
able communication between the control layer and data transfer
devices. Currently, the most popular and actively developing is
OpenFlow protocol. At the time of this writing there are two
branches of the protocol: 1.3.4 at [9] and 1.4.0 at [10].

Like a set of instructions for the processor, OpenFlow
defines basic primitives to help third-party application program
the logics of data transmission network devices.

The basic idea of the OpenFlow protocol is simple: most of
today’s Ethernet-switches and routers contain a table of flows
that are used to implement firewalls, NAT, QoS, and collect
statistics. At the same time, the flow tables of equipment
of different manufacturers are different. OpenFlow uses a
standard set of features and provides an open protocol for
programming flow tables on various switches and routers.

OpenFlow is implemented on both sides of the interface
between network devices and the network software controller.
OpenFlow uses the concept of flows to identify traffic based
on pre-defined rules of comparison, which are set statically
or dynamically by the network controller. Thus it is possible
to control how traffic passes through the network devices,
depending on parameters such as the specific use of the

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 4 ----------------------------------------------------------------------------



network, load, available resources of cloud and distributed
applications, available storage resources. Accordingly, the net-
work is programmed with a granularity of individual flows.

Simple OpenFlow-switch is a data element that forwards
packets between ports as defined by the remote controller at
Fig. 1.

Fig. 1. OpenFlow switch. The table streams controlled by the remote
controller through the encrypted channel

OpenFlow switch must contain at least three parts:

• Flow table. It contains data about flows and action
associated with each flow that tells the switch how to
process this flow.

• Secure channel. It is used to transmit packets and
commands between the remote controller and the
switch.

• OpenFlow protocol. Provides an open and standard
way of interaction between switch and controller.

In this representation, flows can be determined by various
features and are limited only by the implementation of flow
table. For example, a flow can be TCP session, or all packets
from specific MAC or IP addresses, or all packets with the
same VLAN tag, or all packets with the same port number on
the switch.

As a fast, but not the most effective solution, commercial
switches and routers can be modified to work with OpenFlow
protocol by adding flow table, a secure channel and Open-
Flow protocol support at [11]. Typically, the flow table may
be implemented using hardware tables, for example, TCAM
(Ternary Content Addressable Memory); secure channel and
the protocol can be ported to the operating system of the
device.

Other, more effective principles of switch and router arhi-
tecture are also often cited in the literature in relation to SDN
approach. For example, in [12] improvements are suggested
which can affect the principles of the switch hardware logic
and eliminate certain disadvantages of OpenFlow protocol.
The disadvantages of the logic of modern switches mainly
are that they allow to perform a sequence of match / action
operations only over a very limited set of fields. And the

OpenFlow protocol greatly limits the range of options for
packet processing. To change this situation the authors of
[12] propose RMT (reconfigurable lookup table) mechanism,
which will change the logic of switch ASIC, changing the
characteristics of the fields on which search is performed on
the move and offering a wider range of actions on the packets,
which matched the search criteria. Moreover, the whole system
can operate at terabit speeds without loss of performance.

III. DIRECTION OF RECENT SDN DEVELOPMENT, USING

MPLS CONCEPTS

In [13], the authors propose to return to the MPLS technol-
ogy and use it to further develop solutions SDN. Assuming that
the three most important requirements for the infrastructure of
the modern networks are: simplicity of design/logic equipment
operation, which allows to increase the processing speed,
independence of the model/brand of equipment, and readiness
for a change, instead of need to replace equipment while
developing network technology. The software component of
networks has only one required characteristic — maximum
flexibility and programmability.

We consider the network as a system of interfaces, where
interface is the point in which the control information is
transmitted between entities of the network infrastructure.
From this point of view, there are three interfaces:

• Node-network in which end data sources inform the
network about their needs.

• Operator-network, in which network operators (service
providers or administrators of corporate networks)
inform the network about their needs.

• Packet-switch, determining how the packet is identi-
fied to switch (or more generally any network device
that performs packet forwarding).

In the traditional model of the Internet network simply
moves packets from source to destination. Each router decides
independently for each packet. Therefore interfaces node-
network and a packet-switch are identical, and the operator
interface network is not formalized.

In network technology MPLS, which offers a clear dif-
ference between the boundary network and its kernel, there
is a difference between the node-network and packet-switch
interfaces. Whereas in the first case this represents an interface
IP packet header, and in the second case a special mark, which
by means of the traffic is marked on the boundary router.
However, the technology MPLS is not formalized interface
network-operator.

In the concept of SDN operator-network interface under-
went formalization, while the other two interface remained
unchanged comparing to the traditional architecture of the
network. OpenFlow protocol enables the controller to manip-
ulate the switching/routing equipment, using standard Ether-
net header components, IP, transport layer protocols, causing
sending the packet to a specific port, or modification of these
fields. That is the need to interpret packet header by network
devices remains SDN problem. This in turn does not allow to
reach high speeds of packet processing in hardware, binds the
network to specific protocol for example the transition from

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 5 ----------------------------------------------------------------------------



IPv4 to IPv6 will raise the need to consider other header fields
by network devices and, consequently, the need to replace or
upgrade network equipment.

Thus, one of the possible SDN evolution directions is
separation of node-network and packet-switch interfaces in
order to withstand the requirements of an ”ideal” network
infrastructure. For this purpose the notion of core and edge of
the network as well as with MPLS is introduced. In this case,
all three interfaces are formalized and used each in its place.
There by the devices ensure the functioning of the core and
edge devices are controlled by a protocol similar to OpenFlow,
but separately from each other, by means of separate software
controller as the core and the boundary perform different tasks.
Core of the network is responsible for transporting data (uni-
and multicast) and for intellectual queuing policy in the event
of an overload of certain directions.

The boundary of the network, and devices placed in it are
responsible for the entire spectrum of network services de-
manded by modern applications — isolation, security, quality
of service, availability of internal servers [14]. Therefore, an
edge device is also managed separately from the core and uses
core services to forward traffic.

Using sectioning in network management scheme is closely
related to building of distributed controllers. Pursuing tasks
of building robust controller researchers came to conclusion
that network view sectioning for every invocation of controller
along with means of intercontroller interaction is required.
Good examples of works in this direction are Kandoo [15]
and Onix [16].

IV. EVENT REGISTRATION MODULE EVENTBUS

We have developed a scheme of interaction between the
various modules implemented on SDN controller. This scheme
is centered around linkage module registering events from
other modules (Fig. 2). It will allow more flexibility in event
handling and interactions between modules. Each module runs
in daemon mode, that is runs in the background without direct
user interaction. EventBus module is implemented on Node.js

Fig. 2. Scheme of interaction between applications on the SDN controller

platform, this framework is very important as it provides
improved performance in socket manipulation.

All modules implemented on SDN controller, are to be
interconnected by EventBus module, allowing more flexibility

in event handling and interactions between them. Each module
connects and maintains the connection to EventBus module via
local socket (unix domain socket).

The principle of EventBus operation (Fig. 3). Each module
can send events, receive events, call the functions of another
module using remote procedure call (RPC). Each event can
also be accompanied by data. If a module wants to receive a
certain type of events, it informs EventBus, which remembers
the recipient for the specified event type. If a module wants to
inform about an event, it sends a signal to EventBus, which
in turn looks which modules are subscribed to the desired
event type and forwards information to the set of recipients.
If the module wants to call a function in another module,
it also sends a signal to EventBus and waits for a response.
EventBus at the same time invokes the corresponding function
at its destination module, receives the response and forwards
it to waiting module. Remotely callable functions must be
registered in EventBus.

Fig. 3. Scheme of the module event registration

Since all modules are connected by means of EventBus
module, it is better to include EventBus into web-based inter-
face that allows users to manage the SDN controller. We have
developed a web interface module, which is implemented in
Python using the library gevent. Client-side executable, which
runs in browser is implemented on with ExtJS 4.1 library.
Web interface is used to display user interface in a browser.
The user interface is needed to configure and manage SDN
controller, to display statistics in a convenient form, visualize
topology of SDN. The module has two parts: a web server and
EventBus client. The web server is responsible for transferring

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 6 ----------------------------------------------------------------------------



the content to user browser and alerting the browser on new
events. During the development we used out-of-the-box web
server, which is part of gevent library.

To dynamically display data in a browser we built inter-
action scheme of the browser and the web server based on
websocket protocol. We used Python library gevent-socketio,
which provides event transfer functionality over websocket
protocol (Fig. 4).

Fig. 4. The general scheme module operation EventBus

The user interface has the following menu items:

• Users. Here, SDN users are configured. When adding
new user the following attributes are to be specified:
a unique user name used when creating reports and
statistics in the event log; IP-address; also there are
optional descriptive fields.

• Network Configuration. This menu section is used to
configure rules for OpenFlow switches (static routes,
activated ports), specify the address of the local net-
work. Local network address is configured to deter-
mine a network that will be serviced and contain
users set in the above section. Setting the rules of
an OpenFlow switch is only possible if the switch has
been detected by the system. To make the settings
you have to choose from list of available OpenFlow
switches. When configuring the OpenFlow switch in-
formation on the active / inactive ports is immediately

available. Each OpenFlow switch can be assigned a
name and description (for example, physical location).
The names of the switches are used in the event
log and statistics for better readability. If the name
is not configured, datapath id (unique identifier) of
the switch required by standard OpenFlow protocol
standard is used.

• Firewall. In this menu section packet filtering on
OpenFlow switches is configured. Filter rule may in-
clude the following parameters: incoming or outgoing
port on the switch, MAC or IP address of source or
destination address, TCP or UDP port of source or
destination. Configuration of packet filtering rules on
an OpenFlow switch is only possible if the switch has
been detected by the system. To configure choose from
the available OpenFlow switches list.

• Topology. This section of the menu provides the visual
connection diagram of OpenFlow switches. When this
menu section is opened web interface module requests
the current network topology from OFC, processes this
information and sends it to the user interface module,
which depicts the graphical view of the network. Also
this scheme reflects important events in the SDN,
for example, loss of access to one of the switches
in the SDN will be reflected in the scheme by red
highlighting of this switch. With this menu section,
you can configure the network, configure the firewall
on any available OpenFlow switch and view statistics
of any switch registered in the system. To do this, one
needs to open the menu by right-clicking on the image
of the desired switch, select the appropriate item. After
that there will be a transition to the corresponding item
in the main menu: Network Setup, Firewall, Statistics.

• Monitoring. This menu item displays graphs showing:
server CPU utilization, consumption of both virtual
and physical memory on the server, load level of the
operating system. To view statistics of a particular
OpenFlow switch choose it from the list of OpenFlow
switches detected by the system.

• Statistics. In this menu section, you can get statistics
on traffic consumed by users, on amount of traffic
which has crossed a particular switch, the number
of incoming / outgoing packets on each port of each
OpenFlow switch. The statistical data can be sorted by
time intervals of 5 minutes, 1 hour, 1 week, 1 month,
1 year. To view statistics of a particular OpenFlow
switch choose it from the list of OpenFlow switches
detected by the system. Similarly, you view statistics
for users registered in the sysytem.

• Event log. In this menu section you can view the
events that occurred in the SDN network (e.g., loss
of access to a switch, connection of a new device to a
switch port) or in the system itself (for example, lack
of disk space, events generated by system modules).
For convenience, there are two tabs, one shows events
in the SDN, another in the system.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 7 ----------------------------------------------------------------------------



V. CONCLUSION

Thus, we can say that the module EventBus is the equiv-
alent of a northbound SDN controller with a single web-
interface. Currently, there are no specifications or other doc-
uments governing the creation and principles of northbound
SDN controller. In this connection our future research will
focus on the creation of northbound, based on the principles
of work developed module EventBus, for SDN controller
FloodLight [17]. The selection of the FloodLight is explained
by the fact that it is free, undistributed and widely supported
controller. Northbound, based on the principles of operation of
the module EventBus provides any SDN controllers scalability
and distribution, which is one of the fundamental problems in
the field of software defined networks.

This work was performed in the Yaroslavl State University
with support of the Ministry of Education and Science of
the Russian Federation in the framework of the Subsidy
Agreement (ID RFMEFI57414X0036).

REFERENCES

[1] K. Hafner, M. Lyon, “Casting the Net”, The Sciences, vol. 36, issue 5,
Sep.-Oct. 1996, pp. 32-36.

[2] M. A. Nikitinskiy, D. Ju.Chalyy, “Performance analysis of trickles
and TCP transport protocols under high-load network conditions”,
Automatic Control and Computer Sciences, vol. 47, issue 7, Dec. 2013,
pp. 359-365.

[3] B. Furht and A. Escalante, Handbook of cloud computing. Springer,
Sep. 2010, p. 634.

[4] V. Sokolov, I. Alekseev, M. Nikitinskiy, D. Mazilov, “A network
analytics system in the SDN”, SDN&NFV: The Next Generation of
Computational Infrastructure: 2014 International Science and Tech-
nology Conference Modern Networking Technologies (MoNeTec), Oct.
2014, pp. 160-162.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks”, ACM SIGCOMM Computer Communication
Review, vol. 38, number 2, Apr. 2008, pp. 69-74.

[6] P. Kazemian, G. Varghese, N. McKeown, “Header Space Analysis:
Static Checking For Networks”, NSDI’12 Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementation,
Apr. 2012, pp. 113-126.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford, “A NICE
Way to Test OpenFlow Applications”, NSDI’12 Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation,
Apr. 2012, pp. 127-140.

[8] A. Khurshid, W. Zhou, M. Caesar, P. B. Godfrey, “ VeriFlow: verifying
network-wide invariants in real time”, HotSDN ’12 Proceedings of the
first workshop on Hot topics in software defined networks, Aug. 2012,
pp. 49-54.

[9] OpenFlow Switch Specification, Version 1.3.4, Web:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf.

[10] OpenFlow Switch Specification, Version 1.4.0, Web:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf.

[11] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A. W. Moore, PAM’12
Proceedings of the 13th international conference on Passive and Active
Measurement , Mar. 2012, pp. 85-95.

[12] P. Bosshart, G. Gibb, Hun-Seok Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN”, ACM
SIGCOMM Computer Communication Review, vol. 43, issue 4, Oct.
2013, pp. 99-110.

[13] M. Casado, T. Koponen, S. Shenker, A. Tootoonchian, “Fabric: a
retrospective on evolving SDN”, HotSDN ’12 Proceedings of the first
workshop on Hot topics in software defined networks, Aug. 2012, pp.
85-90.

[14] M. Nikitinskiy, I. Alekseev, “A stateless transport protocol in software
defined networks”, SDN&NFV: The Next Generation of Computational
Infrastructure: 2014 International Science and Technology Conference
Modern Networking Technologies (MoNeTec), Oct. 2014, pp. 108-113.

[15] S. Yeganeh, Y. Ganjali, “Kandoo: a framework for efficient and scalable
offloading of control applications”, HotSDN ’12 Proceedings of the first
workshop on Hot topics in software defined networks, Aug. 2012, pp.
19-24.

[16] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H.Inoue, T. Hama, S. Shenker, “Onix: A
Distributed Control Platform for Large-scale Production Networks”,
OSDI’10 Proceedings of the 9th USENIX conference on Operating
systems design and implementation, Oct. 2010, pp. 351-364.

[17] Floodlight SDN OpenFlow Controller, Web:
https://github.com/floodlight/floodlight

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 8 ----------------------------------------------------------------------------


