
A Conceptual Framework for Development
of Context-aware Location-based Services

on Smart-M3 platform

Ilya Paramonov∗†, Andrey Vasilyev∗†, Eldar Mamedov†
{ilya.paramonov,andrey.vasilyev}@fruct.org, eldar.mamedov@e-werest.org

∗Petrozavodsk State University, Petrozavodsk, Russia
†P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract—The paper presents a conceptual framework for de-
velopment of context-aware location-based services. This frame-
work provides relevant objects from the database to the user
taking his/her preferences and context into account. It is based
on the framework for context-aware preference queries, which
provides a model of context- and preference-aware system based
on the database, and the open source Smart-M3 platform, which
allows to develop intelligent services using the smart space
paradigm. The main components of the proposed framework
include context-aware preference term generators that translate
context information into context-aware preference terms, and a
preference query executor that combines all preference terms
and conducts their execution using PreferenceSQL JDBC driver.
Evaluation of the proposed approach is made using the case study
of context-aware restaurant data retrieval.

I. INTRODUCTION

Location-based services (LBS) are services oriented at
mobile users that take current position of the user into account
when performing their tasks. They occupy a niche at the
intersection of geographic information systems (GIS), Internet,
and mobile devices making use of the locationing facilities of
the latter [1].

Context can be considered as “any information that can
be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and application themselves” [2].

The LBS themselves are based on taking into account a
particular part of the context, the location. But considering
other aspects of context into account can provide more relevant
information and appropriate services for customers [3]. For
example, routing for cars service benefits from access to the
traffic conditions and routing for people benefits from knowing
the public transport location [4].

Smart-M3 is an open source platform for development of
intelligent services based on the smart space paradigm [5].
In Smart-M3 different services can communicate via shared
memory and use the subscription mechanism to get notifi-
cations on data modifications. This approach allows services
to seamlessly share parts of the context or use context data
provided by other parties.

In this paper we propose a conceptual framework intended
to develop context-aware location-based services for Smart-
M3 platform. On a low level it is based on a framework for

context-aware preference queries [6], whereas on a high level
it uses openness of the Smart-M3 platform to allow online
addition or removal of context-aware generators providing
various intelligence levels for user experience and subscription
mechanism to integrate all components to the system.

The rest of the paper is structured as follows. Section II
overviews related works about relationship between context-
awareness, LBS, and smart spaces. Section III informally
presents the preference model used in this paper and describes
context-aware preference generation principles. Thereafter,
Section IV provides an architecture of the entire framework, its
data structures and describes its main components. Section V
contains a case study that allows to estimate usefulness of the
proposed framework. Conclusion summarizes the main results
of the paper.

II. RELATED WORK

There are no papers that propose a holistic framework
for development of context-aware location-based services for
Smart-M3 platform. However, the papers simultaneously cov-
ering two of these three main topics (context-awareness, LBS,
and services for Smart-M3 platform) can be of particular
interest for the purpose of our study.

Researchers from the University of Minnesota introduced
the system architecture of a Context and Preference-Aware
Location-based Database Server (CareDB) that provides per-
sonalized services to its customers based on the context [7].
CareDB allows context and preference-aware query processing
using the internal database and external services including LBS
platform. The researchers identify various types of context
and a plethora of multi-objective preference methods that are
capable to evaluate user preference constraints.

In [8] the authors present the SHERLOCK system that
processes user requests continuously to provide up-to-date an-
swers in heterogeneous and dynamic contexts. It offers a user
an access to a set of interesting LBS. When the user selects the
desired category the system automatically determines aspects
of his/her information needs via query to the local knowledge
base. This relives the user from the need to manually interact
with the plethora of location-based services.

In [9] the authors propose a model of the context-based
access control to data shared in a smart space. The model is
built on the combination of the role-based and attribute-based

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



access control models. In this model the participant’s context
is used to define the trust levels and assign a particular role.
The context includes identification attributes, location, current
date, device type, etc.

In [10] the authors present an approach for developing
context-aware intelligent applications for smart space-based
infrastructure. They propose a context reasoning to infer high
level context. The inference rules are used to form new context
related to an individual and can define how to react to different
situations. The authors defined a such rule using a 3-clauses
pattern: with-clause, when-clause, and then-clause.

In [11] the authors introduce the methodology and design
of the SmartRoom system that support collaboration activities
localized in a room. It simplifies the multi-party activity
organization and human participation by automating routine
functions of information acquirement, sharing, and transfor-
mation. The SmartRoom service set is developed on top of
the Smart-M3 platform. This system provides facilities to store
and use a context of users.

In [12] the authors propose an approach to create a proac-
tive location-based service upon combination of platforms for
smart space creation (Smart-M3) and geo-tagging (Geo2Tag).
The use of geographical and temporal data in the smart space
gives developers an ability to identify object’s location in the
real world and query objects based on their position.

The mobile ridesharing logistics solution using the Smart-
M3 platform is presented in [13]. The main idea of the system
is to provide models and methods that would enable configu-
ration of resources for decision support in ad-hoc sustainable
logistics. In the proposed approach the dynamic ridesharing
for passengers as well as for cargo is considered.

In [14] the authors propose an location-based application
“Tourist assistant–TAIS”. It is an intelligent mobile tourist
guide that recommends the tourist attractions near by based
on his/her preferences and context. This application has been
developed on top of the Smart-M3 platform. It consists of a
set of services that interact with each other for providing the
tourist recommendations about attraction that is better to see
around.

III. CONTEXT AWARENESS IN LOCATION-BASED
SERVICES

A. Preference model

In our research we use the preference model presented in
[15]. This preference model is used in the Preference SQL1,
which is a well-established framework to create personalized
information systems [16]. The model defines preferences in
a way that is suitable for translation into relational algebra
statements. It allows to retrieve objects in the most suitable for
the end-user order taking context information into account.

Following [15], we consider a preference as a strict partial
order on the domain values of attributes of the database rela-
tion. The result of a preference is computed by the preference
selection, which are all tuples from a database relation that are
maximal according to the preference order.

1http://preferencesql.com

To specify a preference, a number of base constructors and
two complex constructors can be used.

Base preferences are preferences defined on a single at-
tribute. There are base preference constructors for continuous,
discrete (categorical) and spatial domains. Here are examples
of base preference constructors:

• POS preference. The discrete Positive-preference POS
states that the user has a set of preferred values.

• BETWEEN preference. The continuous preference
constructor BETWEEN expresses the wish for a value
between a lower and an upper bound. If this is
infeasible, values having the smallest distance to a
lower and an upper bound are preferred.

• LESS THAN preference. The continuous preference
constructor LESS THAN expresses the wish for a
value lower than specified bound.

• LOWEST preference. The continuous preference con-
structor LOWEST expresses the wish for a lowest
value of an attribute.

In [17] there are also several constructors for spatial query
support described:

• WITHIN preference. The spatial preference construc-
tor WITHIN expresses the wish for a geographical
objects that are within or close to a region. A first
object is better than second if distance from it to the
region is less than distance from the second object to
the same region.

• NEARBY preference. The spatial preference construc-
tor NEARBY is the same as WITHIN but differs in
that NEARBY accepts a point instead of a region.

• ONROUTE preference. The spatial preference con-
structor ONROUTE is the same as WITHIN but
differs in that ONROUTE accepts a set of points that
represent a route instead of a region.

• SCORE preference. The SCORE preference is the
parent of all base preference constructors, it allows
to specify a preference using a numerical scoring
function. Basically, it is not a spatial preference, but
can be used for spatial queries when using a distance-
related scoring function.

Complex preference describes the ranking between a set of
preferences. They include:

• Pareto preference. This preference represents equal
importance between several preferences. It is denoted
by the ⊗ sign.

• Prioritization preference. This preference represents
“greater than” importance. It is denoted by the & sign.
In a Prioritization preference the importance of the
preferences decreases from left to right.

With the use of complex preferences it becomes possible
to state compound requirements on top of the data query.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 143 ----------------------------------------------------------------------------



B. Context model

In this paper, we consider context as a set of properties
related to the user and representing his/her state. A context
property is a pair of a key and an associated value. The context
representation may be complex and include several objects that
relate to each other in some way, but in current research we
intentionally use simple structure to describe the context.

There are two types of user context, namely, the static user
context and the dynamic user context.

The static user context contains description of the user
that rarely changes. These data are usually stays the same
throughout series of requests. For example, the static user
context may include user’s profession, age, sex, physique,
income, etc. Partially this context can be provided by the user
and can be changed whenever she wants.

The dynamic user context contains user description that fre-
quently changes. These data could be different for each request
and may change during the request processing, therefore it is
provided as a part of the request. An example of the dynamic
user context is the current user location.

C. Context-aware generators

The context properties provide facts about the user while
preference terms define order, limits, and restrictions onto the
domain of the queried objects. To fill this gap authors in [6]
present context-aware generators that can translate data about
users into domain-specific preferences. In order to do so they
must be aware of both domains and their relations.

In the simplest case the generator can take a value from
a context property and place it into the corresponding pref-
erences template. For example, if a person has children and
searches for a place to rest during holidays, then generator
can provide preferences to search for facilities that provide
special services for families. More sophisticated generators can
transform context values according to predefined rules in some
complex way or query external services to retrieve sorting
parameters. For example, if a person uses online service to
rate movies one watched and searches for a themed party to
visit, the generator can retrieve top-5 interests from the service
and form a POS preference.

IV. FRAMEWORK ARCHITECTURE

A. Smart-M3 interoperability platform

Smart-M3 is an open-source platform that provides facil-
ities for creation of the multi-agent distributed applications
with the shared view of dynamic knowledge and services
for ubiquitous computing environments [5]. It operates on
principles of transparent data exchange between services that
gives developers a way to build open systems that can be easily
extended.

The platform consists of two main components: a semantic
information broker (SIB) and a set of services called knowl-
edge processors (KPs). The SIB is the core component that
stores shared semantic data. KPs are active parts of a system,
they can provide modify and query data using the insert,
remove, update, query, and subscribe operations provided by

the SIB. The shared data describe the state of the smart space
and interests of the involved parties.

The data in the SIB is stored in the form of a Resource
Description Framework2 (RDF) graph, usually according to
some defined ontology. This framework is based on triples,
each of which consists of a subject, a predicate, and an
object. The triples usually represent different objects and their
relations between one another. The Web Ontology Language
(OWL, [18]) is commonly used to describe object classes and
meaning of the object properties.

The communication mechanism between KPs and SIB
is called the smart space access protocol (SSAP). It has
eight operations: join, leave, insert, remove, update, query,
subscribe, and unsubscribe. Subscription operation allows a KP
to persistently query a part of the common data graph. When
the tracked part of the graph changes its state, SIB sends a
corresponding notification.

Our framework is targeted at the Smart-M3 platform. All
data about the users are stored in the shared storage, all
user requests are handled using Smart-M3 mechanisms, and
the main parts of the framework are implemented as KPs
communicating via the data modification in SIB.

B. Framework overview
The purpose of the proposed framework is to provide

relevant objects from the database to client applications in
consideration with user preferences and context. The retrieved
objects not only conform to the request but have a particular
order by descending relevance. The components of the frame-
work and the data flow between them are shown in Fig. 1.

In order to facilitate the desired behavior the framework
uses Preference SQL terms during query of required objects
from the database. These terms allow to present different
complex relationship and constraints, their mathematical coun-
terparts were presented in Section III-A. They are created and
combined into resulting term from user preferences and context
according to predefined rules.

The framework considers three different kinds of input that
affect the order of retrieved objects: the request from the client
service, the corresponding user’s context, and the profile. To
generate the combined preference term the framework uses a
composition according to [6]. The parameters of the request
have the greatest influence on the result, the current context
has the next priority, and the default preferences have the
least influence on the query. The combination of inputs using
prioritization composition is the following:

<preference based query> := <client request> &
<user context> & <user profile>

The client requests objects in the form of preference
terms. The user profile is also a set of preference terms that
describe common requirements from the user for each type of
searchable objects. The client application may update last set
of terms at any time.

The user context is initially a set of properties. In order
to create a preference term from the context there are spe-
cial entities called context-aware preference term generators

2http://www.w3.org/RDF/

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 144 ----------------------------------------------------------------------------



Fig. 1. The data flow of the framework

(CAPTGenerator). They take the user static and dynamic
context properties and create preference terms from them
according to the type of searched objects. In order to function a
CAPTGenerator may rely on external services to get additional
data that describes correlation between the user and searched
objects.

The extraction of user context out of request and profile
allows the whole system to be flexible. The request and the
profile place restrictions to the queried objects directly, so
the requesting service is only required to operate within the
domain model of the data provider. On the other hand CAPT-
Generators may operate with data from external domains,
therefore making the system aware of the context. It also
allows to extend system behavior without the need to modify
behavior of the clients.

There are several KPs that perform particular tasks: Client
KP performs request to the system and provides some services
to the user, CAPTGenerator KP generates preference terms
based on the dynamic and static user context, Preference query
executor (PQE) KP gathers all preference terms related to the
request and provides corresponding objects from the managed
database. The rest of this section describes particular aspects
of the framework operation.

C. Framework data structures

First part of the framework classes describe preference
terms, their structure and relations are presented in Fig. 2 using
Unified Modeling Language (UML) class diagram notation.
The base class for all preference terms is an abstract class
PreferenceTerm. All other classes of preference term elements
that define base preferences and complex preferences are
inherited from this class.

For all base preferences there is a basic abstract class
AttributePreferenceTerm inherited from the PreferenceTerm
class. It has an attribute field to indicate to which attribute
of objects it is related. All classes for base preference con-
structors are inherited from the AttributePreferenceTerm class.

For example, there are BetweenPreferenceTerm, POSPref-
erenceTerm, LowestPreferenceTerm, LessThanPreferenceTerm
preference constructors classes. Each of them has fields that
are necessary to perform their designation. The BetweenPref-
erenceTerm class has a lower and higher fields, the POSPref-
erenceTerm class has a preferredSubset field and etc.

In order to create a complex preferences there are Pare-
toComposition and PrioritizedComposition classes inherited
from the PreferenceTerm class. Objects of the ParetoCompo-
sition class may contain a set of other PreferenceTerm objects
with the use of contains property. Objects of the Prioritized-
Composition class reference only two other PreferenceTerm
objects – one of them in the rightOperand, another in the
leftOperand.

The structure of classes that are used to represent client
request to the system and response is presented in Fig. 3. The
user context is modeled with the use of UserContext class that
contains a set of properties. The context in real application
should be modeled with the classes that describe corresponding
aspects of the domain model, thought we intentionally simplify
the representation of the context.

To store information about a user there is a User class
that has user static context and user profile. The UserProfile
class consists of a set of UserProfileItem objects. The User-
ProfileItem class contains a PreferenceTerm object. To identify
to which type of database objects the UserProfileItem is related
it has objectType field.

The static user context describes the user in some way and
the user profile contains preferences that were directly stated
by the user. Though the first one might be translated directly
into concrete preferences by the Client KP this is not desirable,
because this KP has limited knowledge of the domain. Another
reason for separation is that context might be provided by other
KPs and Client KP may not know the relation of these data
with the request.

Client request for data is described by the UserRequest
class. It consists of a user dynamic context and a request
limits described by the object of PreferenceTerm object. To

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 145 ----------------------------------------------------------------------------



PreferenceTermPreferenceTerm
AttributePreferenceTerm

attribute : string

ParetoCompositionParetoComposition PrioritizedCompositiontionPrioritizedComposit

BetweenPreferenceTerm

lower : number

higher : number

BetweenPreferenceTerm

wer : number

her : number

POSPreferenceTerm

preferredSubset : set

contains
rightOperand,

leftOperand

Fig. 2. Class diagram for preference terms classes

identify to which user request is related to it is linked with
a corresponding User object. To identify to which type of
database objects this request is related to it has objectType
field. Also it has a processed field to identify when user request
have been processed and result is ready. To store the result it
contains a set of ResultItem objects.

The ResultItem class directly represents the objects that
were found by the framework. The ResultItem classes reference
a searched objects with the use of consistsIn property. The
priority of extracted objects is indicated by the position field.

D. Client KP

The Client KP is not a singe KP, but a role inside the
framework, that describes steps that are necessary to retrieve
context-bound object list. In order to achieve this task Client
KP should provide a description of the user, one’s preferences
and perform an object retrieval request. This role could be
implemented by the KP that interacts directly with the user of
the system.

The Client KP knows the domain model of the concrete
system and provides user with appropriate tools to formulate
requirements for the system. For example, if a requested object
has a price attribute, then the KP may provide input fields to
specify minimal and maximum desired values. Then they will
be used to form corresponding preference terms for the request.

Initialization and subscriptions:

When the KP connects to the smart space it either adds or
locates an objects that describe the user: User, UserContext
and UserProfile. KP must check that the object of the class
UserProfileItem that describes preferences for particular object
type is present and contains relevant data. Client KP may
update these data if the user changes ones opinion.

When a user requests the objects from the system, the
KP forms a request by adding a UserRequest, UserContext
and PreferenceTerm objects to the SIB. Then it subscribes to
the processed property of the added UserRequest object to
detect the moment when request is processed. The subscription
pattern is the following: (UserRequest ID, ’pqe:processed’,
’true’). The subject holds the identifier of the added object.

Notification handler:

When the request is processed the KP queries results from
the SIB and displays it to the user in some way. Then it
removes subscription to the processed property and deletes all
data that correspond to this request, i.e. the object UserRequest
and all other object that directly relate to it except the User
object.

Finalization:

When the KP stops it’s work, it removes the base user
preferences towards this kind of objects (the UserProfileItem
that describes them). If there is no other preferences left, then
Client KP removes other parts of user description from the SIB
including the User object and the corresponding UserContext
object.

E. CAPTGenerator KP

The purpose of these KPs is to convert dynamic and static
user context into preference terms that affect the queries for
a certain type of objects. The concrete system may include
several preference generators even for single object type. All
generated preferences have same importance between one
another and concatenated with the Pareto preference.

Generators could be specialized and process only a subset
of data that is available during the query execution. Generators
can be shared between several object types if they share field
types and their designation. There is no guidelines on how
small or big generators can be, it is up to developer to decide
on the modularity of preference generators.

Initialization and subscriptions:

After the connection to the smart space CAPTGenerator KP
adds a ContextAwareGenerator object to the shared storage. It
indicates the presence of the particular generator and specifies
the type of object that it is capable create preferences for.
If generator can formulate preferences for a set of objects,
then for each of those objects generator must add an object of
ContextAwareGenerator class.

This KP tracks the addition of particular UserRequest
objects to the SIB. This can not be directly achieved through
triple-pattern subscription, so KP must track addition of

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 146 ----------------------------------------------------------------------------



UserContext

longitude : real

latitude : real

. . .

UserRequest

objectType : string

processed : boolean

User

PreferenceTerm

ResultItem

position : int

Context

real

eal

DBObject

UserProfile

objectType j yp

processed : 

eference

UserContext

age : int

sex : string

income : string

. . .

UserProfile Pref
UserProfileItem

objectType : string

relatesTo containsDynamicContext

consistsIn

resultsIn

consistsIn

hasProfile

hasStaticUserContext

consistsIncontains

Fig. 3. Class diagram for request presentation and processing

all requests and filter them manually. Therefore, KP sub-
scribes to the following triple pattern (ANY, ’rdfs:class’,
’pqe:UserRequest’) that allows to get an id of the added
UserRequest object.

Notification handler:

When the SIB notifies CAPTGenerator KP, the KP queries
the type of the object that was requested by the client. If it
does not match with the one processed by the generator, then
this notification is ignored. Otherwise if it matches the KP
specifications, KP reads dynamic context associated with the
request and static context bound to the user and generates
preference terms out of these data. It may access external
sources in order to perform this operation.

When the CAPTGenerator KP prepares the preference term
it adds a ProcessedRequest object into the SIB. The presence
of the object identifies that the processing is over and provides
or do not results of this processing in PreferenceTerm object
referenced with the resultsIn property.

Finalization:

When the CAPTGenerator KP disconnects it removes
corresponding ContextAwareGenerator object from the shared
storage. The generator does not need to remove products of
it’s work, because they relate to the client requests and the
client removes them after it finishes processing returned data.

F. PQE KP

This KP uses the user input, the both of user’s contexts
and user’s profile preference terms to provide relevant objects
from the database. In order to do so PQE must keep a track
of CAPTGenerator KPs for each object type it provides and
data requests form Client KPs.

Initialization and subscriptions:

The PQE KP does not provide it’s description into the smart
space, but only tracks changes in it. Firstly, it subscribes for
addition and removal of objects of the ContextAwareGenerator
class. It can be achieved with the subscription to the following
template (ANY, ’rdfs:class’, ContextAwareGenerator).

Secondly, the PQE KP subscribes to addition of objects of
the UserRequest class and ProcessedRequest class. The first
is tracked with the subscription (ANY, ’rdfs:class’, UserRe-
quest). The latter is tracked with the subscription to (ANY,
’pqe:generates’, ANY). The last subscription allows to detect
the CAPTGenerator KP that added this preference.

Notification handler:

When the PQE KP receives a notification about addition of
ContextAwareGenerator class object it queries full description
of the generator and adds it to the list that correspond to par-
ticular object type. When the removal notification is received
then the description is removed from the list.

When the PQE KP gets notification from one of two last
subscriptions it firstly check the number of ProcessedRequest
class objects related to the particular request object of the
UserRequest class. If this number is less than the number
of generators that correspond to this type of queried objects
then this notification is neglected. Otherwise it combines the
user input, preferences generated from the context and profile
preference terms together by previously stated prioritization
order and executes this query on the object database.

When the database query has finished, the PQE KP adds
those objects to the corresponding UserRequest object in the
form of ResultItem objects. Also KP assigns “true” to the value
of the processed property of the UserRequest object. As the

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 147 ----------------------------------------------------------------------------



ContextAwareGenerator

objectType = "restaurant"

ProcessedRequestProcessedRequest ProcessedRequest

UserRequest

processed = true

UserRequest

processed = true

PreferenceTerm

ResultItem

position = 0

ResultItem

position = 1

em

1

ResultItem

position = 2

Re

po

esultIte

osition = 

Restaurant

Restaurantestaurant Restaurant

generates generates

isAssociatedWith resultsIn

resultsIn

resultsIn resultsInconsistsIn

consistsIn consistsIn

Fig. 4. Data structures of executive mechanisms

last step the KP removes data provided by the generators to
this query from the SIB.

The data structures produced by CAPTGenerator KP and
PQE KP are illustrated in Fig. 4

V. CASE STUDY: CONTEXT-AWARE RESTAURANT DATA
RETRIEVAL

In this section we consider an example of how the proposed
framework can be used to build a location-based service that
provides information about restaurants. This service allows a
user to search for nearby restaurants that are most relevant
according to his/her request, context, and profile.

In order to create this type of service on top of the frame-
work developers should implement several CAPTGenerator
KPs and a PQE KP. The CAPTGenerator KPs generate a series
of preferences for a “restaurant” domain taking into account
the location of the user, and the PQE KP has access to database
that describe objects of interest. The end-user should interact
with the system with the use of mobile application that acts
as the Client KP. The following scenario shows how these
components interact with each other to provide a satisfactory
result to the user.

Suppose that a user wants to find a restaurant nearby
his current location to have a meal. The user is male and
vegetarian. These data are entered by the user into the client
application on first start, they describe static context. Also
the user specifies that he does not want to spend more than

40 dollars for the lunch and likes Italian cuisine. These rules
form the user preferences for the “restaurant” domain.

The Client KP processes these data and describes them
inside the shared storage in the form of data structures de-
scribed in Section IV-C. The diagram of objects added to the
SIB is presented in Fig. 5. The KP adds the object of the User
class, places context data (sex, food choice) into the object
of the UserContext class. The preferences are represented by
the object of the UserProfileItem class with the objectType
property holding the value of “restaurant”. This object points
to object of the ParetoComposition class that combines the
object of the PosPreferenceTerm for specifying the cuisine with
the object of the LessThanPreferenceTerm class for the lunch
price. The formal representation of the base preferences is the
following:

<user profile> := POS(cuisine, ’italian’) ⊗
LESS THAN(lunch price, 40)

The user wants to find a restaurant with the rating between
2 and 4 starts with the cheapest menu and specifies that price
requirement is the most important at the moment. The Client
KP translates this request into a set of preferences and adds
the object of the UserRequest class to the SIB. This object
refers to the previously added object of the User class. Also
this object references new object of the UserContext that
contains current location of the user and represents dynamic
context. Generated preferences are presented by the object of
the PrioritizedComposition class that places the object of the
LowestPreferenceTerm class for the price to be more important
than the overall rating of the restaurant that is represented by
the object of the BetweenPreferenceTerm class. The formal
representation of the client query is the following:

<client request> := BETWEEN(rating, 2, 4) &
LOWEST(lunch price)

When the UserRequest object is added into the shared
storage the CAPTGenerator KPs start to process the context
of the request. When they finish, each of them places data
structures to represent the preferences query in accordance
with the format described in Section IV-E. The first generator is
capable to convert user’s food preferences into the availability
of special kinds of food in the menu. The formal representation
of preferences generated out of the static user context can be
represented as the following:

<user context> := POS(vegetarian menu, true)

Another CAPTGenerator KP is capable to create preference
term based on the location of the user provided inside the dy-
namic context. This KP is not tied to the restaurant domain, but
only to the location part of the service. It generates a preference
term to search for object near by the specified location. The
formal representation of preference is the following:

<user context> := NEARBY(latitude, longitude)

When these generators have formulated preferences and
added corresponding objects of the ProcessedRequest and
PreferenceTerm classes to the SIB the PQE KP starts to query
data from the database. It combines preference terms received
from the client request, preferences generated from the context
and profile preferences and formulates the following result
preference term:

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 148 ----------------------------------------------------------------------------



UserRequest

objectType = "restaurant"

UserPrioretizedComposition

BetweenPreferenceTerm

property: "rating"

lower: 2

upper: 4

BetweenPref

property: "ratin

lower: 2

upper: 4

LowestPreferenceTerm

property: "lunch_price"

j yp

PrioretizedC
UserContext

latitude = …

longitude = …

mferenceTerm

ng"

UserContext

sex = "MALE"

age = 35

vegetarian = true

User UserProfileItem

objectType = "restaurant"

UserProfileItemU

taurant"tType = "restctc

UserProfileItem

objectType = "hotel"

UserProfileItem

objectType = "hotel"

UserProfileItem

objectType = "museum"

PosPreferenceTerm

property = "cuisine"

value = "italian"

mPosPreferenceTerm

property = "cuisine"

value = "italian"

LessThanPreferenceTerm

property = "lunch_price"

value = 40

UserProfile

UserContext

sex = "MALE"

age = 35

vegetarian = trueg

ParetoComposition

relatesToconsistsIn

leftOperand
rightOperand

containsDynamicContext

hasStaticUserContext

hasProfile
contains contains contains

consistsIn

contains contains

Fig. 5. Object diagram for restaurant finding example

<preference term> := BETWEEN(rating, 2, 4) &
LOWEST(lunch price) & NEARBY(latitude, longitude) ⊗
POS(vegetarian menu, true) & POS(cuisine, ’italian’) ⊗

LESS THAN(lunch price, 40)

Thereafter, the PQE KP executes the query on top of the
database, takes the resulting list of objects and binds it to the
object of the UserRequest class. Also it sets “true” as the value
of the processed property of that object.

When the Client KP receives notification about the last
change it determines that the processing of the request is over
and the result is ready. Then the KP queries resulted data
from the shared storage and displays it to the user. When the
query is no longer needed by the user, the Client KP removes
corresponding data from the SIB.

VI. CONCLUSION

In the paper we presented a conceptual framework for de-
velopment of context-aware location-based services for Smart-
M3 platform. It is based on a similar framework described in
[6] with a proper adaptation for architecture of services on
Smart-M3 platform.

The main components of the framework include context-
aware preference term generators (CAPTGenerators) that
translate context information into context-aware preference
terms and preference query executor (PQE) that combines all
preference terms and conducts their execution using Preference
SQL JDBC driver.

The paper describes behavior of all the framework compo-
nents. Evaluation of the proposed approach is made using the
case study of context-aware restaurant data retrieval.

The directions for the future work include the development
of architectural approach to define non-functional preferences,
i.e., support several providers that can rank objects based on

some compound logic. This feature would allow to extract GIS
components into a separate entity out of the execution core,
add alternative rank provider, and therefore increase flexibility
of the framework.

ACKNOWLEDGMENT

This research is financially supported by the Ministry of
Education and Science of the Russian Federation within project
#14.574.21.0060 (RFMEFI57414X0060) of Federal Target
Program “Research and development on priority directions of
scientific-technological complex of Russia for 2014–2020”.

REFERENCES

[1] A. Zipf et al., “Location-based services,” in Springer Handbook of
Geographic Information. Springer, 2012, pp. 417–421.

[2] A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4–7, 2001.

[3] E. Kaasinen, “User needs for location-aware mobile services,” Personal
and ubiquitous computing, vol. 7, no. 1, pp. 70–79, 2003.

[4] B. Sadoun and O. Al-Bayari, “LBS and GIS technology combination
and applications,” in International Conference on Computer Systems
and Applications. IEEE, 2007, pp. 578–583.

[5] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in IEEE Symposium on Computers and Communica-
tions (ISCC). IEEE, 2010, pp. 1041–1046.

[6] P. Roocks, M. Endres, H. Alfons, W. Kießling, and S. Mandl, “De-
sign and implementation of a framework for context-aware preference
queries,” Journal of Computing Science and Engineering, vol. 6, no. 4,
pp. 243–256, 2012.

[7] J. J. Levandoski, M. E. Khalefa, and M. F. Mokbel, “An overview of
the CareDB context and preference-aware database system,” IEEE Data
Eng. Bull., vol. 34, no. 2, pp. 41–46, 2011.

[8] R. Yus, E. Mena, S. Ilarri, and A. Illarramendi, “SHERLOCK: Seman-
tic management of location-based services in wireless environments,”
Pervasive and Mobile Computing, vol. 15, pp. 87–99, 2014.

[9] A. Smirnov, A. Kashevnik, N. Shilov, and N. Teslya, “Context-based
access control model for smart space,” in 5th International Conference
on Cyber Conflict (CyCon). IEEE, 2013, pp. 1–15.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 149 ----------------------------------------------------------------------------



[10] M. Saleemi, N. Rodriguez, J. Lilius, and I. Porres, “A framework for
context-aware applications for smart spaces,” Smart Spaces and Next
Generation Wired/Wireless Networking, pp. 14–25, 2011.

[11] D. Korzun, I. Galov, and S. Balandin, “Development of smart room
services on top of Smart-M3,” in Proceeding of the 14th Conference of
FRUCT Association. IEEE, 2013, pp. 37–44.

[12] K. Krinkin and K. Yudenok, “Geo-coding in smart environment: Inte-
gration principles of Smart-M3 and Geo2Tag,” in Internet of Things,
Smart Spaces, and Next Generation Networking. Springer, 2013, pp.
107–116.

[13] A. Smirnov, A. Kashevnik, N. Shilov, H. Paloheimo, H. Waris, and
S. Balandin, “Development of broker logic for ridesharing system on top
of Smart-M3,” in Baltic Congress on Future Internet Communications
(BCFIC Riga), Riga, Latvia, 2011, pp. 190–197.

[14] A. Smirnov, A. Kashevnik, N. Shilov, N. Teslya, and A. Shabaev,
“Mobile application for guiding tourist activities: Tourist assistant—
TAIS,” in Proceedings of the 16th Conference of Open Innovations
Association FRUCT. IEEE, 2014, pp. 95–100.

[15] W. Kießling, “Preference queries with SV-semantics.” in COMAD,
vol. 5, 2005, pp. 15–26.

[16] W. Kießling, M. Endres, and F. Wenzel, “The Preference SQL system—
an overview.” IEEE Data Eng. Bull., vol. 34, no. 2, pp. 11–18, 2011.

[17] F. Wenzel, D. Köppl, and W. Kießling, “Interactive toolbox for spatial-
textual preference queries,” in Advances in Spatial and Temporal
Databases. Springer, 2013, pp. 462–466.

[18] M. Schneider, J. Carroll, J. Herman, and P. Patel-Schneider. OWL
2 web ontology language RDF-based semantics (second edition).
[Online]. Available: http://www.w3.org/TR/2012/REC-owl2-rdf-based-
semantics-20121211/

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 150 ----------------------------------------------------------------------------


