PROCEEDING OF THE ISMW-FRUCT 2016 CONFERENCE

PostgreSQL Service with Backup and Recovery for
Cloud Foundry

Anton Kozmirchuk, Andrey Kokorev, Vyacheslav Nesterov, Elena Mikhailova
kozmirchuk @gmail.com, a.d.kokorev@yandex.ru, vyacheslav.nesterov@emc.com, e.mikhaylova@spbu.ru
Saint Petersburg State University
St. Petersburg, Russia

Abstract—Cloud Foundry is open source PaaS project, de-
signed for the application developers to get them rid of the
problems with the hardware. Cloud Foundry provides users with
the ability to run applications in the container with different
micro-services giving access to database management systems
(DBMS), middleware software, development and testing tools.
Each DBMS needs a broker that implements the main scenario
of interaction with the applications: work with the database. This
paper presents an architecture of the service broker providing the
DBMS with the capabilities of backup and data recovery. The
broker is implemented on PostgreSQL based on the proposed
architecture. The broker gives two Kkinds of storage options: the
local (temporary) storage of data and storage in the cloud. The
designed architecture can be easily adapted to different DBMS.
The approach contains various advantages: ease of development,
a weak dependence on the internal structure of the DBMS, a
clear task distribution between the modules.

I. INTRODUCTION

Currently third platform [1] for building IT-infrastructures
becomes increasingly popular. This platform is based on dif-
ferent hardware, software and network technologies including
mobile devices, mobile internet, social networks, cloud infras-
tructures. It is being used to build all kinds of solutions for
”smart” economy.

In general, the third platform is characterized by rapid
technological development in four areas: social networks,
big data analysis, fast mobile access to internet, including
corporate infrastructures, and cloud computing and services.
Users of the growing number of mobile devices are producing
more and more content that is easy to store in the clouds.

The number of mobile devices constantly grows and in-
creases the need of cloud storage. Users are more and more
often turning to social services and it is due to growing user
activity in social networks. The content placed in the cloud
may be available to the owners of various mobile platforms
in the relevant format and can be distributed among users in
social networks.

The challenges of ”big data” require more spending on
hardware and software, and usage of cloud technologies allows
to reduce spending on IT. Cloud technologies offer a new type
of services — provision of storage and database management
in one service. Also there is a type of cloud service — Platform
as a service.

Cloud Foundry is used to build next-generation (3rd plat-
form) applications. These applications often rely on modern
data services such as No-SQL, KV stores, object stores and

Mobile Cloud
e-Business Computing Gomputing

open &loup”

FOUNDRY"

@».m—
Soaial @‘rm—

Business
@I’_

Open Cloud
Architecture

&
%
Service Oriented %
Architecture

Fig. 1. Open cloud architecture

HDFS, in addition to leveraging more traditional data services
such as SQL data bases.

Cloud Foundry supports the full lifecycle, from initial
development, through all testing stages, to deployment. Appli-
cations deployed to Cloud Foundry access external resources
via Services. In a PaaS environment, all external dependencies
such as databases, messaging systems, files systems and so on
are Services.

There are a lot of social applications that are making use
of cloud computing technologies. These applications usually
involve using the existing user management capabilities of the
social network to use cloud resources much like the content
that is already being shared by social networking users.[17]

The goal of this research is developing Cloud Foundry
additional services and services enhancements, providing high
availability (HA), data protection, snapshots, and fault toler-
ance. In particular an architecture of broker which connects
PostgreSQL and Cloud Foundry is presented. The broker pro-
vides also backup functionality for local and external storages.

II. RELATED WORK

The growing popularity of cloud computing is due to
convenient, on-demand network access to a shared pool of
configurable computing resources. A Cloud computing archi-
tecture consists of four layers: Hardware (managing the phys-
ical resources of the Cloud, including physical servers, routers
etc), Infrastructure (servers, storage, networking and virtual-
ization software that are necessary to support the computing
requirements), Platforms (operating systems and application
frameworks) and Application (usually with automatic scaling
feature to achieve better performance, availability and lower
operating cost). There are different types of Cloud Computing

ISBN 978-952-68397-6-9 (paperback), ISBN 978-952-68397-7-6 (PDF)

PROCEEDING OF THE ISMW-FRUCT 2016 CONFERENCE

services: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). SaaS (software-
as-a-Service) [13] gives an opportunity to use the provider’s
applications running on a cloud environment.

The user can access the application from various client
devices through a web browser not paying attention to manage
or control the underlying cloud infrastructure: hardware or
software resources.

Platform as a service (PaaS) is a category of cloud com-
puting services that allows customers to develop, run, and
manage web applications without the complexity of creating
and maintaining the infrastructure [15]. PaaS vendors offer
a development environment to application developers. In the
PaaS models, cloud providers deliver a computing platform,
typically including operating system, programming-language
execution environment, database, and web server. Application
developers can develop and run their software solutions on a
cloud platform without the cost and complexity of buying and
managing the underlying hardware and software layers.

TaaS (Infrastructure-as-a-Service) provide resources as ser-
vices to the user -— in other words, they basically provide
enhanced virtualization capabilities. According to that, dif-
ferent resources may be provided via a service interface:
Data and Storage Clouds deal with reliable access to data
of potentially dynamic size, weighing resource usage with
access requirements and / or quality definition. Characteristics
of infrastructure as a service are mentioned in [13].

Compared with the SaaS (Software-as-Service) to end-user,
PaaS has more flexibility. Google App engine is a typical PaaS
platform, which allows developers to write and run their own
applications on the platform. It also helps developers store
data and manage the server. However, it is not convenient
for developers to write programs using java or Python API
development. LongJump, which provide a platform for quickly
building enterprise Web applications, significantly shorten the
development cycle. But it does not have good scalability and
mass data management capabilities, and can only provide
service for some developers. This paper describes the tech-
niques and frameworks used by the two platforms. And then
we bring forward an improved framework for PaaS platform
which combine with the advantages of GAE and LongJump
platform by adopting Mashup technology. Using the improved
framework, we can build the PaaS platform which is easier
and more flexible for development of web applications [11].

Some of PaaS systems are commercial, some others are
open source cloud platforms. Cloud platforms like OpenStack,
CloudStack and Eucalyptus are open source alternatives to
proprietary solutions for commercial businesses. These models
provide many similar benefits that distinguish any open source
program: community access, shared resources, rapid updates
and freedom to not be tied to the limits of the software owners.
IBM’s cloud software and services is based on open standards
(Fig.1) [14]. All platforms offer application hosting and de-
ployment environment, along with various integrated services.
Services offer varying levels of scalability and maintenance.
Developers can built an application and upload it to a PaaS that
supports their software language of choice, and the application
runs on that PaaS. PaaS offers many usefull services for
application developers. One of such services is application

24

backup and recovery.

Evolution of sphere cloud technologies is the reason of
appearance various kind of PaaS platforms for different use-
cases. Most of modern PaaS platform such as Heroku, Google
AppEngine, Amazon Elastic MapReduce, Microsoft Azure,
Cloud Foundry provide various environments for application
development. Despite similar model of environment providing,
PaaS platforms are disparate. The main differences are choice
of frameworks, programming languages, services, distribution
model.

Heroku is the proprietary platform oriented on development
of Web-application with wide range of programming languages
(JavaScript, Ruby, JVM languages, Go, PHP, Python). The
PaaS contains big amount of services and capabilities to
develop custom.

Google App Engine provides proprietary service for Web
development involving Java, Go, Python, php languages with
access to Google services such as Google Search, Security
Scanner, Google Cloud SQL. Also there is a capability of
usage NoSQL data storage and Memcache.

Yandex Cocaine - fast growing open-source Paas platform
for Web development with support of most popular program-
ming languages and containers. Also there are support various
of modules such as Elasticsearch, URL Fetcher, tools for
logging, access to storage services Elliptics and MongoDB.

Amazon Elastic MapReduce is the proprietary platform
provides environment for development application based on
MapReduce model.

Microsoft Azure is the propriety platform based on .Net
framework, also support the most popular languages and
frameworks, provides environment for Web and Enterprise
development. Azure offers opportunity to pick DBMS, object
storage, archive services.

Cloud Foundry is the open source PaaS platform offers
multiple language support, different services for data storage,
data processing and etc. Cloud Foundry runs on most popular
TaaS platforms and provides service customisation.

Data storage and processing systems are an essential part
of almost any application. Relational DBMS such as Oracle,
MySQL, Microsoft SQL Server, PostgreSQL and others are
successfully used in this capacity. Additionaly, in the moment
various NoSQL solutions are gaining popularity: MongoDB,
Cassandra, Redis and others. Cloud applications, as desktop
ones, need such systems. Specific adaptations, called services,
are required in order to use theese systems in a cloud.

Modern relational DBMS, in spite of NoSQL newcomers,
not lose their relevance and occupy solid positions in a wide
range of problems. At the time of writing this paper, for
PostgreSQL (one of the most popular open-source RDBMS
[16]) exist a few services at Cloud Foundry platform. However,
from our point of view they have some disadvantages, which
are discussed later.

III. CLoUD FOUNDRY

Cloud Foundry — a PaaS platform for cloud-based systems
intended to create another abstraction layer for a virtual

PROCEEDING OF THE ISMW-FRUCT 2016 CONFERENCE

environment. Cloud Foundry provides an opportunity to run a
multi-purpose application that is independent on any specific
infrastructure. In other words Cloud Foundry operates not
machine-specific resources, such as IaaS and containers with
applications.

Cloud Foundry provides users with the ability to run
applications in the container with different micro-services such
as operating systems, database management systems, middle-
ware software, development tools and testing. The application
containers are a mean of logical isolation of application. The
operating system is virtualized in the container with all the
resources and services that can be scaled as needed.

A. Cloud Foundry Architecture

The architecture of Cloud Foundry comprises many micro-
services that interact with each other. They can be split into
logical components (Fig. 2), each of which provides running an
application in Cloud Foundry.

1) Router: routes incoming traffic to virtual machines with
applications.

2) Authentication: is required for user authentication and
logical access isolation between applications.

3) App lifecycle: components running an application, mon-
itor the state of application and manage its lifecycle.

4) App Storage & Execution: Components providing appli-
cation execution, keeping application source code, buildpacks,
droplets.

5) Services: Most applications use various external ser-
vices and API’s. Service brokers are necessary to bind services
to applications.

ROUTING

Cloud Controller Health Manager

Application Execution (DEA)

APP LIFECYCLE

& EXECUTION

[Warden

] APP STORAGE

SERVICES

Message Bus (NATS)
Metrics Collector App Log Aggregator

MESSAGING

METRICS
& LOGGING

Fig. 2. Architecture of Cloud Foundry

6) Messaging: Lightweight publish-subscribe and dis-
tributed queueing messaging system written in Ruby.

7) Cloud Foundry installation: BOSH is a system designed
for installing Cloud Foundry on top of stack of existing infras-
tructure. BOSH is able to create hundreds of virtual machines
and install necessary software. In addition BOSH performs
system monitoring, failure recovery, software updates.

25

B. Cloud Foundry services

Cloud Foundry services enable applications to use re-
sources, granted by external sources. Each service consists of
software, providing certain resources, and a service broker —
an application implementing integration of service with Cloud
Foundry. Service broker provides catalog of services and plans,
which are instances of certain services. Broker must be able to
reserve resources for applications (i.e. create service instances)
and bind applications to service instances (i.e. grant access for
an application and give necessary meta data for communication
with service).

For purpose of integration with Cloud Foundry a service
have to implement API which is used in interaction with Cloud
Foundry (Fig. 3). API composed of 5 functions: getting
offered services, service instance creation, service instance
deletion, bind service to an application, unbind service from an
application. Any valid implementation of this API is a service
broker. It can be deployed as a user application, installed on
a BOSH virtual machine, or executed remotely.

-
1 Cloud Foundry

i
I
+ Elastic Runtime !
51 | catalog
proviien T peision
L cloud 1 bine service * service
s -
Feree controllar T = broker back-end
dapravisicn 1| Gaprovisin
|
1
w8l VCAP_SERVICES l !
I
App enviranment i
wonr services: | (|| OPPORE-oeees t
- Inst’ ur, credentials i
I
i
I
i
i
i

App enviranment
VCAP_SERVICES:

- Ingtl: url, credentials
- Ingt1: un, credentals

3 et service
|| gp ++| o instance 1

] i
! 1
! '
']
'
|
: i
T '
T i
I '
!)
' 1
! '
S S PR "PTRPIOUTITPY. . . '
A" ! sinding . EeDiEY H
! instance 0 H
|
T '
b :
I '
! 1
']
: 1
| :

Fig. 3. Service broker interaction with Cloud Foundry

C. PostgreSQL and Cloud Foundry

Now there are a few simple ways to integrate PostgreSQL
[3] to Cloud Foundry. The first one is a manual control of the
DBMS that needs to add a separate service for each application
that provides a single database instance. Another way is to
use SaaS platform ElephantSQL [4] that allows using database
instances for applications. There are also open source project
implementations that allow you to get the database resources
for the application instances.

The first method has a disadvantage: the administrator must
manually create a database for each instance of an application
that requires resources database, and configure db for specific
needs required by the application. It’s a tedious and complex
task that requires specific knowledge of the SQL dialect used
in PostgreSQL. The advantages of this method include the
possibility to configure the database in arbitrary way according
to the requirements of an application.

The usage of SaaS platform ElephantSQL allows to for-
get about manual database configuration and supporting its
efficiency. ElephantSQL offers a wide range of tariffs, which
define the parameters of its service. In addition, the user has
the option to create a backup and to recover the application
instance. The disadvantages of this method is proprietary of
ElephantSQL, each user needs to make monthly payment for

PROCEEDING OF THE ISMW-FRUCT 2016 CONFERENCE

BOSH
Cloud Foundry 0s Broker VM
Cloud Controller Broker
module
PostgreSQL Local
| storage
Applications
PP Backup
module

S3 storage

Fig. 4. General architecture

the resource use. Therefore, the application developer has no
opportunity to tune the database specifically.

The third approach involving the use of open source
brokers is good because the developer can easily obtain the
necessary resources, and the administrator of Cloud Foundry
can add new functionality that may be needed by applica-
tions. There is no open source broker that would provide
backup/restore features.

TABLE 1. SOLUTION COMPARISON
Lo Backup&
Easy Deployment Customization Open source Restore
ElephantSQL + - - +
Manual
— + 9 —
approach
Another
+ - + -

service brokers

IV. GENERAL PROJECT ARCHITECTURE

The project consists of two fundamental parts: command
line interface plugin (CF CLI) and the broker (Fig. 4). The
plugin may be installed by any user of CF CLI. The broker is
a BOSH job (which is being deployed as a virtual machine
created by BOSH), dividing into RESTful-service, default-
configured P ostgreSQL, b ackup m odule a nd 1 ocal backup
storage. In addition the broker can access external storage
using S3-APL

A. Broker
The broker consists of the following parts:

e CF broker. Provides CF <+ Broker interaction.

e Backup module. Responds for backing up, restoring
and data transferring between DBMS and storages.

e Storage interface. Gives access to local and external
storages.
B. Backup storages

There are two options for backup files storage: local and
external storages. The broker communicate with storages using

26

AT
put v

list
_).
tgre:il(te
tl
ucke

rgmﬁve
ucket
e

Storage

~

Fig. 5. Storage API

simple API (Fig. 5). Two types of storages designed for
different purposes (compared at Table II):

Local storage is based on the file system of broker’s virtual
machine. Storage uses directory, specified in the configura-
tion file. In this directory backups from all existing service
instances are stored.

Local storage intended to be used for temporal backup
storing. One of the use cases may be following: in situation,
when newly made backup have to be downloaded and moved
somewhere from the cloud, it is very inefficient trying to
upload backup into external storage and then download from
there, as backup file can have significant size. Same for the
opposite, when you need to restore from backup, which is not
stored in cloud.

We should notice that this storage is not designed for long-
term storing and doesn’t guarantee data safety. For example in
case of BOSH-job restart all data will be lost.

External (supporting S3-API) storage designed for reliable
data storing. The broker uses login credentials to access
storage. Backup is being stored directly, avoiding long-storing
in the local storage. This option implies requirement of high
connection quality to external storage.

The implementation is based on AWS SDK for S3 storages.
Firstly, the backup is being saved to the local storage. Then the
bytes stream from the backup is being redirected to the socket
that is connected to remote storage. This approach implies
repeated uploading in case of failure. In case of succesfull
upload the local copy of the backup will be deleted. This
approach avoids recreation of the backup if the backup process
fails.

The choice of the S3 storage is not accidental. This
interface is very popular for long-term storage facilities. In
addition to the well-known “Amazon S3”, there are many
storage systems, implementing S3 intterface. As a result, the
service can be integrated with a variety of different data
warehousing systems.

TABLE IIL LOCAL AND EXTERNAL STORAGES COMPARISON
Local External
Backup&restore time fixed dep;nds on
connection quality
Reliability unreliable reliable
Accessibility always depends on outer world
Disk space limited Py platform, limited by extc;rnal storage plan,
small potentially large

PROCEEDING OF THE ISMW-FRUCT 2016 CONFERENCE

C. Backup module

Backing up and data restoration are being performed us-
ing standard utilities distributed with PostgreSQL: pg_dump,
pg_restore. This approach allows to preserve all the guarantees
given by them (such as data consistency and non-blocking
execution). Furthermore, processes of backup and recovery
remain transparent for the experienced users.

When request for data backup is received, backup is being
created by pg_dump tool and saved directly to chosen storage.
In case of success the user receives meta data including name
and creation time for further use. Otherwise backup module
resends an error message received from backup tool or one of
storages (for example in case of inaccessibility or insufficient
disk space). Similar process is performed when request for
data recovery is received.

D. CF broker

The CF broker module is a RESTful service implementing
CF broker APIL it services catalog, provision, deprovision,
bind and unbind requests. Each instance (in terms of Cloud
Foundry) maps to database in PostgreSQL.

For requests sent by CF cloud controller broker performs
the following actions:

1) catalog: specified meta data is returned

2) provision: broker creates new database (cloud con-
troller creates new service instance)

3) bind: broker creates the database user in the already
created database (provision request) and returns jdbc
url, containing necessary data, which an application
uses to connect to the database

4) unbind: user is removed, now database is unavailable
for the application.

5) deprovision: database and all users are removed

(cloud controller deletes this service instance)

For purpose of backup and restore a special API allowing
performing different actions is designed:

1) /backup_instance/<instance_id>?
storage=<storage_type>

Create backup in specified storage and get backup file
name

/restore_instance/<instance_id>/
<backup_name>?storage=<storage_type>
Restore data from specified backup file in chosen
storage

/upload_backup/<instance_id>/
<backup_name>?storage=<storage_type>
Upload backup file into specified storage
/download_backup/<instance_id>/
<backup_name>?storage=<storage_type>
Download specified backup file
/backups/<instance_id>

Get list of available backups

2)

3)

4)

5)

Requests arguments are the following:

1) instance_id
Unique identifier provided by cloud controller for

each instance

27

2) backup_name
Name of backup file stored in of storages
3) storage_type
Storage name, optional. Available values: ’local’, ’s3’.
Default is local storage.
E. Plugin

The plugin for the CF CLI is executed on the user’s
computer and has access to the same API as the user. This
allows users to automate some sequences of actions. In this
work plugin is used to simplify human interaction with broker.
Plugin provides special commands corresponding commands
to all API calls.

However, this approach in the context of developing a
broker has a significant drawback: capabilities are limited by
user access rights. This means that in most cases the plugin
could not locate the broker virtual machine which is needed
for using backup/restore APIL

Our solution to this issue at the moment is to fix broker vm
address in the infrastructure. As a result, the plugin performs
queries on a pre-known IP address, bypassing the stage of
search for a broker vm. This approach lacks flexibility and
can lead to significant costs in case of the need to change the
IP address of the broker.

Another solution is to have a proxy application which
would resend all requests from plugin to the broker. In that
case there is no need in special address for the broker, but now
there is another need in special application name. Also this
application should be installed by each plugin user. In other
words this solution replaces one dependency with another and
makes usage more complicated.

V. RESULTS AND PROSPECTS

In this paper we discuss problem of data preservation in
cloud applications with backups in DBMS. Many modern
cloud platforms use service brokers model in purpose of pro-
viding DBMS for applications. We use open source platform
Cloud Foundry in our research. We developed PostgreSQL
service broker with backup and data recovery capabilities.

The developed broker architecture can be easily adapted
to different DBMS. There are several advantages of our
approach: ease of further development, limited dependency
on the DBMS structure, clear distribution between modules.
Minor drawbacks of the architecture result from limitations of
the Cloud Foundry platform which can be overcome in the
future.

REFERENCES
[11 E Gens, The 3rd Platform: Enabling Digital Transformation,
Web: http://www.tcs.com/SiteCollectionDocuments/White-Papers/

3rd-Platform-Enabling- Digital-Transformation.pdf
[2]
[3]
[4]

Cloud Foundry Documentation, Web: http://docs.cloudfoundry.org/
PostgreSQL Documentation, Web: http://www.postgresql.org/docs/

ElephantSQL Documentation, Web: https://www.elephantsql.com/docs/
index.html

[51
[6]

AWS Documentation, Web: https://aws.amazon.com/documentation/

Microsoft Azure Documentation, Web: https://azure.microsoft.com/
en-us/documentation/

PROCEEDING OF THE ISMW-FRUCT 2016 CONFERENCE

[71 Product Documentation for OpenShift Enterprise, Web: https://access.
redhat.com/documentation/en/openshift-enterprise/

[8] IBM Bluemix Documentation, Web: https://www.ng.bluemix.net/docs/

[9] Salesforce Developers Documentation, Web:https://developer.salesforce.
com/docs/

[10] T. Cordeiro, D. Damalio, N. Pereira, P. Endo, A. Palhares, G. Gongalves,
D. Sadok, J. Kelner, B. Melander, V. Souza, J.-E. Mangs, Open Source
Cloud Computing Platforms, 2010 Ninth International Conference on
Grid and Cloud Computing. IEEE, 2010. XCP, Eucalyptus and Open
Nebula.

[11] Z. Shu-Qing, X. Jie-Bin, The Improvement of PaaS Platform, First
International Conference on Networking and Distributed Computing,
IEEE, 2010.

[12] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin, X. Yang,
Z. Zlatev, S. V. Gogouvitis, G. Katsaros, K. Konstanteli, G. Kousiouris,
A. Menychtas, and D. Kyriazis, Platform-as-a-Service Architecture for

28

Real-Time Quality of Service Management in Clouds, Proceedings of the
2010 Fifth International Conference on Internet and Web Applications
and Services, Washington, DC, USA, 2010, pp. 155-160.

[13] N. K Salih, T. Zang, Variable service process for SaaS Application,

Research Journal of Applied Sciences, Engineering and Technology,
2012.

[14] D. Krook, OpenStack and Cloud Foundry — Pair the leading open
source laaS and PaaS, Web: http://www.slideshare.net/DanielKrook/
joint-open-stackcloudfoundrymeetup

[15] gdllg)urht and A. Escalante, Handbook of Cloud Computing, Springer,

[16] DB-Engines Ranking — popularity ranking of database management
systems, March 24, 2016, Web: http://db-engines.com/en/ranking/

[17] Sanjay P. Ahuja and Bryan Moore, A Survey of Cloud Computing and
Social Networks, Network and Communication Technologies, Vol. 2, No.
2, pp. 11-16, 2013.

