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Abstract—The paper investigates the application of clustering
algorithms to data obtained by magnetometry in the places of
archaeological excavations. The goal was to enable automatic
detection in order to find possible anomalies in the data that
could indicate the presence of potential archeological sites.
Analysis of the results of following experiments with clustering
algorithms is presented: k-means, c-means and DBScan. The
algorithms were run on a number of datasets, and visual
assessment by experts confirmed the high level of accuracy of the
results.

I. INTRODUCTION

The application of geophysical methods to conducting
archaeological explorations has come to be a separate research
area where observation and data interpretation techniques are
specific to archaeological research objects. The study of such
objects involves finding, identifying and mapping remains of
ancient buildings or sites of past human activity. As a rule, such
places are hard to locate on the surface of the earth as a result
of land reclamation and other processes, whether caused by
man or nature. This leads to the expansion of a search area and
complicates planning of the archaeological excavations.

Magnetometry [3] is one of the most common non-
destructive detection methods currently used in archaeology.
The method is quite simple: with the help of a magnetometer,
the values of magnetic field are measured in a number of pre-
determined points. The obtained data is then processed
resulting in a readable map, by looking at which an expert
could easily recognize an anomaly, that is, an area or areas,
where the value of field magnitude differs from the average
value for the entire search area. Such anomalies may have
appeared in the search area for various reasons. The hidden
presence of an archaeological object of interest is only one
reason, while a frustratingly large number of anomalies is
caused by metallic debris left from agricultural activities,
military  operations or  magnetometer  measurement
error [1], [4].

Currently, there is not a single automated technique capable
of identifying such anomalies as those described above. It still
takes a human expert with extensive experience in
magnetometric detection to discover them. The present
research is an attempt at automating anomaly identification. In
order to accomplish that, we evaluate the applicability of
several clustering methods [10].

II. RELATED WORKS

Presently, archaeological research employs large amounts
of indirect digital data: a variety of space imagery, aerial
photographs and results of magnetometric surveys [1]. Remote
sensing and geophysical methods allow to obtain a large
amount of data without having to make excavations or even
going to places, and take advantage of such openly available
sources such as GoogleEarth. The question, however, is how to
find effective ways to process such large quantities of data.

Remote sensing methods [3] include deciphering aerial
photos, analyzing satellite images, cartography, view shed
analysis, point-to-point visibility analysis, photo-modelling and
laser surface scanning (light detection and raging). Remote
sensing methods allow to achieve a big overall picture of the
archaeological site or object of interest, or the area around it.
However, given the large scale, none of the above methods
ensure elaborate detail.

Geophysical methods [3], such as magnetic and electrical
explorations, as well as the use of a ground penetrating radar,
involve using relevant equipment on location. On the other
hand, these methods provide much more information about
what is located under the ground without requiring time-
consuming and costly excavations. The most versatile and
effective of them is the magnetic method that is discussed in
this article.

By far the most widely applicable methods to process the
magnetic data are based on the view of earth's magnetic field at
a specific point as the sum of three components: the regional
field caused by the impact of geologic objects, local anomalies
caused by archaeological objects, as well as noise associated
with equipment error. Such methods as filtering, averaging
observations and trend analysis [4] are used to highlight the
captured data that points out to a local anomaly. The use of all
of these methods require that researchers actively participate in
tuning parameters and analyzing results for accuracy. Many
methods do not distinguish anomalies, but merely facilitate
further "manual” analysis of data by removing noise from it,
which, ultimately, is the task of an expert with experience
handling such data.

III. METHODOLOGY

The experimental evaluation of several algorithms was
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based on real data:

e 0305 — a Bronze Age settlement on the Tarkhankut
Peninsula;

e 0510 — the outskirts of a Hellenistic settlement on the
Tarhankut Peninsula;

e 1606 — the outskirts of a Hellenistic settlement on the
Tarhankut Peninsula;

e 2405 — part of a Hellenistic vineyard at Cape Oirat,
Tarhankut Peninsula [2];

e 2904 — a Bronze Age settlement called Uschelnoe at
Lake Donuzlav;

e 3103 — a Hellenistic vineyard in the Ortli estate,
Tarhankut Peninsula [2].

The measurements of the magnetic field (the module of
magnetic induction vector, to be more precise) were taken in
the nodes of a square grid sized 50 by 50 meters, the interval
between the nodes being 0.5 meters. Anomalies caused
inherent in this method of shooting (for example, changes of
the general magnetic field of the earth) were already accounted
for and filtered out from the data.

Unfortunately, we were unable to obtain data that could be
mapped to the real artifacts found in various places, so the data
had to be marked manually with the help of experienced
professionals who visually evaluated eye-catching places in the
data as anomalous. Such marking does not claim to be
absolutely accurate or precise, but it can give us an idea of how
close the outcome an algorithm is to what is seen by an expert
looking at the data. Marking was performed for each dataset
twice: First, the most significant and noticeable anomalies were
marked (let us call it an in-depth version); then, the in-depth
version was complemented by marking less obvious and eye-
catching anomalies (an initial version).

In order to tell the difference between an expert opinion and
the outcome of an anomaly detection algorithm proposed in
this work, we used the MSE (mean square error) metric,
calculated by the formula:

N
MSE = Z(li— £)2/N
i=0

where N is the number of points in dataset,

l; — is the number 0 or 1, corresponding to the absence or
presence of anomalies in case of manual labeling by an expert,

fi — is the number between 0 and 1 describing the
probability of occurrence of an anomaly at a given point.

Many algorithms used in our work required defining a
similarity measure for elements. A similarity measure in our
case is based on the distance between points. Points are vectors
of characteristics

X = (X1,%Xp ., Xp)

Suppose we want to calculate the distance between points x
and y. The most common formulae for this are:

e Euclidean distance:
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p(x,y) =

i(xi - )

Squared Euclidean distance:

n

ply) = ) (xi = 9

i=1

Manhattan distance

n
p(x,y) = Z lx; — il
i=1

All the metrics presuppose that each characteristic is
normalized to a common scale, for example, all vector
components are between 0 and 1. The metric selection affects
results, so all the algorithms were tested using each of the
metrics. The dataset points are 3-demension vectors: the x and
y coordinates and the value of the magnetic field.

To detect an anomaly, we used the following algorithms:

e k-means
e (C-means
e DBScan

In general, a clustering algorithm takes a set of n-
dimensional points as input. Then, the algorithm splits the
dataset into clusters containing similar elements [5].

In this work, k-means and c-means algorithms we used in
the same manner as the generally accepted one. We expected
that the algorithms would be able to highlight abnormal areas
as clusters. Then, we intended to repeatedly run these
algorithms and calculate the probability of dataset points being
included in anomalous clusters at different values of the
algorithm parameters.

The DBScan algorithm differs from k-means and c-means
in that it can detect points not belonging to any cluster, which
makes DBScan more noise-resistant. DBScan is highly
dependent on its parameter values, but, on average, it can
steadily group areas devoid of abnormalities into clusters (for
example, flat plains). It is based on the assumption that we used
DBScan as follows:

o At the first stage, the DBScan algorithm was repeatedly
run with different input parameter values. Points, that
could not be included in any cluster, were treated as
suspicious and belonging to an anomaly, and the
probability of falling into an abnormal area was
calculated for each point. The obtained results, except
for those of unsuccessful runs, were compared with the
marked data and evaluated with the help of the MSE
metric.

e At the second stage, the points with the probabilities
obtained at the previous stage were processed by the
DBScan clustering algorithm in order to split all the
points into clusters. The resulting clusters with non-zero
probability corresponded to the areas where the
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archaeological artifacts were believed to be. Silhouette
index was used for assessing the accuracy of clustering.

IV. EXPERIMENTS. ANOMALY DETECTION

This section describes the application features and the
outcomes of the above-mentioned clustering algorithms.

Fig. 1. Initial data

;.

b) k=14, Manhattan distance

a) k=9, Euclidean distance

Fig. 2. First cluster separation

A.  K-means algorithm

The k-means algorithm splits the input set of points into
separate clusters in order to achieve maximum variability of the
average values of clusters. For the algorithm to start splitting
the points, we specify k — the predefined number of clusters
and an initial point (centroid) for every cluster. Next, all the
remaining points are assigned to the nearest clusters, and
centroids are calculated anew as the average value of each
cluster. This process repeats itself until no more points can be
assigned to a different cluster.

How can k be defined in the k-means algorithm? One way
to do it is to start with a large value for k and keep removing
centroids (that is, reducing k) until it no longer reduces the
description length. Another way is to start with one cluster,
then keep splitting clusters until the points assigned to each
cluster have a Gaussian distribution. Still another way is this:
The algorithm can be executed on the same data many times,
but with different k values; and the most suitable outcome can
then be chosen.

This method has several peculiarities. First, as mentioned
above, there are different ways to define the distance between
points. Second, k-means procedure works better when you
select good initial points for cluster centroids. The following
two approaches to initialization were tested in the present
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research:

e Choosing k random points as cluster centroids and
distributing all points among clusters with the closest
centroids;

e Randomly distributing points among clusters, and then
finding cluster centroids as the average value of all the
points in a cluster;

a) k=3, Euclidean distance b) k=10, Squared Euclidean distance

Fig. 3. Second cluster separation

No variety of this algorithm performed well on the available
data. Above are the initial data (Fig.1) and some results of the
partitioning into clusters (Fig.2, Fig.3). In Fig.1, points are
coloured in different shades of grey, and the larger the value of
the magnetic field at a point, the lighter is the shade of grey of
its pixel. In the figure illustrating the grouping into clusters,
each cluster is mapped to a unique shade of gray, and all the
dots in a cluster are coloured in the same way.

The image resulting from the second initialization looks
better compared to that resulting from the first initialization
since the latter adversely affects the final clusters. At the same
time, the second method causes clusters to be close to each
other in the center of the image. In addition, while the
algorithm was being tested at multiple values of k, it was seen
that one of the clusters was absorbing the others until all the
points belonged to it. The pictures show that, although the
outcome of -means does reflect an approximate shape of the
road, it is unable to extract the road as a whole into a separate
cluster. Other abnormalities, that are visible to the naked eye,
are not congregated in proper clusters either. The overall results
were so unsatisfactory that we decided not calculate the mean
square error.

B.  C-means algorithm

The c-means algorithm is a fuzzy clustering algorithm [7].
Its purpose is the same as that of the k-means algorithm:
Distributing the input points into clusters so that the midpoints
of different clusters differ as much as possible. The k-means
algorithm assigns a point to a single cluster, whereas c-means
allows one point to belong simultaneously in two or more
clusters. The belonging degree of the point i to cluster j is
characterized by the value of y;; € [0,1] . This value has the
following property for all i: Z?:o Hi; =1, where k is the
number of clusters. To store these values for all N points, we
use the matrix p with N rows and k columns. This matrix is
called a distribution matrix. Just like the previous algorithm, c-
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means requires a hypothesis about the number of clusters k.
Also, parameters € > 0 and m > 1 need to be selected. The
former parameter is necessary for stopping the algorithm as
soon as the changes of the distribution matrix between two
iterations become negligible. The latter parameter m is called a
coefficient of fuzziness and determines how fuzzy partitioning
will be. The larger the value of m is, the smaller the value of
p;;will be. If m is close to 1, partitioning becomes similar to
the outcome of the k-means algorithm. The c-means algorithm
isdescribed below:

Fig. 4. C-means results (k=8, m=1.5)

i

Fig. 5. C-means results (k=6, m=1.8)

1) Distributing point to clusters in a random way.

2) Finding centroids in each cluster by calculating the
average value of all relevant points, with each point
considered with a weight equal to its degree of belonging to
the cluster:

N m
i=o Hij Xi
N m

Hij

i=0
3) Recalculating the distribution matrix according to the
formula:

centerj =

1

k_o(p(centerj, X;) 2/(m=1)
c=0%p(centery, x;)

Uij =

4) Stopping the algorithm if the matrix distribution has
changed less than €, or, if the number of the iterations exceeds
the maximum possible number of iterations. Returning to Step
2 if none of the above conditions was satisfied.
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The outcome of the algorithm is the current partitioning of
points into clusters.

Initialization was performed by choosing random points as
cluster centers. The algorithm was run repeatedly with
different values of m (the fuzziness factor) and k (the assumed
number of clusters). Fig.4 — 7 present the results. Each figure
consists of k images, and every image represents one cluster.
Each point of the input set corresponds a pixel colored with a
shade of gray, and the lighter a pixel is, the higher the
belonging degree to the cluster is.

Fig. 7. C-means results (k=9, m=3)

This algorithm showed no satisfactory results on our data.
The k-means and c-means algorithms proved to be extremely
dependent on the k-parameter and on the initial initialization of
clusters. Also, the outcome of this algorithm was as poor
visually as that of the previous algorithm, and we decided not
to provide MSE estimates.

It became clear at this stage that anomalies could not be
sufficiently segregated in clusters in spite of their significant
difference from points in the surrounding areas. After the
results were analyzed, it became apparent that points without
anomalies tended to group themselves into clusters, but
anomalous points moved erratically between adjacent clusters
because they were not close enough to any of those clusters. It
was such erratic points that gave us an idea of how to proceed
with our research.

C. DBScan algorithm

The DBScan algorithm is a density algorithm based on the
assumption that the density of points is approximately the same
within a cluster, but it is higher than that outside the cluster. In
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addition, if there is noise in the data, the point density in these
areas is much lower than that in any cluster. The algorithm
requires that points that have a sufficient number of neighbors
should be grouped into clusters. In the algorithm, there are two
types of points to be assigned to clusters: internal points and
boundary points [8]. The algorithm takes into account the fact
that boundary points have fewer neighbors than internal ones.
What is required to run the algorithm is to choose eps (the
radius of the neighborhood) and minPts — a minimum number
of neighbors. In order to test the algorithm on our data, we used
its implementation in the fpc library of the R language [11].

Fig. 8. Initial data

Fig. 9. DBScan results (eps = 0.5, minPts = 300)

Fig. 10. DBScan results (eps = 0.25, minPts = 50)

This implementation allows a user-defined distance metric
between points, but the default metric is Euclidean distance. It
is this metric that was used in the experiment. The algorithm
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was run many times with different values of eps and minPts.
In most cases, all points were either treated as noise, or
assigned to one large cluster. Points were treated as noise if
there were too many of them within a relatively small area
and, vice versa, points were assigned to one large cluster if
there were relatively few of them in a large area. However,
there were a few algorithm runs that produced more interesting
splitting results. These are presented below in Fig.8 — 12.
Different colors denote different clusters; boundary points and
noise are colored black.

Fig. 11. DBScan results (eps = 0.2, minPts = 460)

Fig. 12. DBScan results (eps = 0.15, minPts = 250)

The pictures show that clusters are areas with more or less
homogeneous structure, and anomalies are often marked as
boundary points and noise points. In particular, in Fig.11 and
12, we can see shapes of the road, and Fig.9 and 10 show a
large light spot of elongated shape at the bottom. Thus, by
using multiple runs of the DBScan algorithm, discarding
invalid outcomes and analyzing the best of them, we can at
least detect areas where there is likely to be some kind of an
anomaly.

Here is how the DBScan algorithm was used in our work
for finding anomalies: It was run multiple times with different
parameters eps and minPts; then, the points that were most
frequently labeled as noise were analyzed. In addition, the
results, where a large percentage of points was related to noise,
were ignored. If, for example, 40% of points were noise
(p = 0.4), the run was considered unsuccessful. It was
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noticeable that the larger the value of p was, the more sensitive
to anomalies the algorithm became. On the other hand, the
algorithm execution time increased. Fig.13 - 18 below present
the results of the algorithm on different data sets.

a) Initial data b)p =03

Fig. 13.Results for the parameters p = 0.3 and p = 0.8 on area A

a) Initial data

b)p =03 ¢)p=08

Fig. 14.Results for the parameters p = 0.3 and p = 0.8 on areca B

¥
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a) Initial data c)p =108

Fig. 18. Results for the parameters p = 0.3 and p = 0.8 on area F

From a visual analysis of the results we can make the
following conclusions about the algorithm:

e The can algorithm easily find strongly pronounced local
anomalies;

o [t detects large local anomalies only partially (for example,
as shown in the right part of Fig.16.a). The algorithm
invariably marks the border points as anomalous, but, since
the middle of the anomalous area has almost identical
values, these values group themselves into a cluster and are
not treated as noise;

e As shown in Fig.17, the algorithm does a good job of
detecting the long anomaly in the lower left corner, but it
fails to detect the less bright circle-shaped anomaly at
p = 0.3. At p = 0.8, however, at least the lower semi-arc
becomes detectable. The loss of such anomalies can be
avoided by processing the data in two stages: first, bright
anomalies should be detected and left out of the anomalous
area which is being looked at. The removal of bright
anomalies makes it possible to then detect medium bright
anomalies because they became more noticeable.

The results of the algorithm were then compared with the
hand-crafted marking. As was mentioned earlier, the marking
was presented in two versions: the in-depth version that
contained only the most visible anomalies and the initial
version where all eye-catching abnormal areas were marked.
The idea behind this comparison is to see to which extent the
opinion of an expert in the field coincides with the outcome of
the algorithm. The MSE metric was used for the comparison.
Table I shows the results of the comparison for all the datasets,
for two marking versions (the in-depth one, the initial one), at
the algorithm parameters p = 0.3 and p = 0.8.

TABLE I. THE RESULTS OF THE METRICS MSE

MSE 0305 0510 1606 2405 2904 3103
In-depth & p=0.3 | 0.0635 | 0.0610 [ 0.0481 | 0.1188 | 0.0455 | 0.0325
Initial & p=0.3 0.1205 | 0.0706 [ 0.0578 | 0.1167 | 0.0765 | 0.0560
In-depth & p=0.8 | 0.0706 | 0.0701 [ 0.0593 | 0.1387 | 0.0797 | 0.0405
Initial & p=0.8 0.1115 | 0.0773 | 0.0670 | 0.1298 | 0.0961 | 0.0591

a) Initial data

b)p=03 c)p =08

Fig. 17. Results for the parameters p = 0.3 andp = 0.8 on areaE
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At the previous stage, the probability of the presence of an
anomaly was calculated for each point in the studied area. In
order to extract individual anomalies from the dataset, it made
sense to use the clustering algorithms to separate the abnormal
areas from each other. In other words, the task was to cluster a
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set of points, each of which is described by three values: x, y
are coordinates, and freq is the probability of an anomaly.
Since anomalies often have a complex shape, the DBScan
algorithm was utilized again. Earlier in this work, we were
interested in points outside clusters; this time, the algorithm is
going to be used for clustering anomalous points themselves.
What was chosen as the initial data was those points that
tended to be treated as noise (freq > 0.4). It remains to
understand how to set the values of eps and minPts
coefficients used in the algorithm. Fig.19 shows some
examples of running the algorithm.

a) anomaly probability minPts

b) eps =3, minPts =9

c)eps =4,
=12

Fig. 19. Example of running DB Scan for the final anomaly detection

dea,
-

Etimated nw
e _1W-r
35 m

a) silhouette=0.542

b) silhouette=0.603

c) silhouette=0.623

Fig. 20.The best running examples

It is obvious that different values of the parameters will
lead to different algorithm outcomes, and not all of them will
be of satisfactory quality. For instance, it can be seen in
Fig.19.c that most anomalies grouped themselves into one
large cluster on the left. The work [9] lists 11 indices that it
can be utilized to evaluate the quality of clustering in terms of
compactness and distribution of clusters. The index selected
for the case at hand is the silhouette index that is based on the
information about the average distance between points within
a cluster and between clusters. The shorter the average
distance between points in a cluster is, and the longer the
distance between clusters themselves is, the closer the index is
to 1. If the quality of splitting is low, the value of the index
will be negative and close to —1. Look at Fig.20 below for the
best examples of algorithm runs in this respect.

As shown the examples in Fig.20, the use of the silhouette
index for optimization causes only small-size and compact
anomalies to merge into clusters, with a significant proportion
of points being treated as noise. The latter factor can also be
taken into account with the help of the following formula:

noisepoints

)

Unfortunately, we have no marked data, that is,
information about the location of real anomalies, and this
makes it hard to find a good detection algorithm for anomalies,
as it is difficult to evaluate obtained various results. If such

sil_part = silhouette - (1 — prT——
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marked data was available, it would be possible to estimate
various outcomes by using such numerical characteristics as
precision and completeness. What we would have to do would
be to run algorithms on marked data and assess the outcome in
terms of precision and completeness.

VII. CONCLUSION

In this work, we have made an empirical attempt at
understanding how clustering algorithms can be used in
magnetometric analysis. This paper looks at the applicability
of three algorithms: k-means, c-means, and DBScan. The first
two algorithms did not demonstrate convincing results, while
the results of applying the DBScan algorithm were quite
interesting.

When applied for the first time, the DBScan algorithm
detected some points that were outside any of the clusters.
These points were considered to be of interest because of the
assumption: The higher the probability of the presence of an
anomaly at a point is, the more often the algorithm will treat
this point as noise. Then, the DBScan algorithm was reapplied
to points that, with high probability, were part of noise, with
the view to obtaining clusters consisting of such abnormal
points. Since we are not in possession of marked data, we
cannot calculate the quality of anomaly detection; however,
the algorithm was run on many datasets, and a visual
assessment by experts confirmed a sufficient level of accuracy.
As an application for the future, this approach can be used to
split anomalies into types (e.g., metal objects, walls of
buildings, etc.) and focus on a particular type of them.
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