PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

A Modular Lightweight Implementation of the
Smart-M3 Semantic Information Broker

Fabio Viola, Alfredo D’Elia
ARCES - Advanced Research Center on Electronic Systems
University of Bologna
Bologna, Italy
{fabio.viola2, alfredo.delia4}@unibo.it

Abstract—Interoperability among heterogeneous devices is one
of the main topics investigated nowadays to realize the Ubiquitous
Computing vision. Smart-M3 is a software architecture born to
provide interoperability through the Semantic Web technologies
and reactivity thanks to the publish-subscribe paradigm. In this
paper we present a new implementation in Python of the central
component of the Smart-M3 architecture: the Semantic Infor-
mation Broker (SIB). The new component, named pySIB, has
been specifically designed for embedded or resource constrained
devices. pySIB represents a new open source lightweight and
portable SIB implementation, but also introduces new features
and interesting performances. JSON has been introduced as the
default information encoding notation as it offers the flexibility
of XML with minor bandwidth requirements. Memory allocation
on disk and at runtime is in the order of Kilobytes i.e. minimal, if
compared with the other reference implementations. Performance
tests on existing (SP’B) and ad-hoc benchmarks point out possible
improvements but also encouraging data such as the best insertion
time among the existing SIB implementations.

I. INTRODUCTION

The vision of Tim Berners Lee about a re-implementation
of the Web [12] brought to a plethora of new languages
for univocally identifying resources (URI), describing them
(RDF [24]), providing meaning to information (RDFS [24]
and OWL [27]) and retrieving it (SPARQL [30]). Most of
these technologies, born under the wing of the Semantic Web,
are currently used in other IT areas such as context-aware
computing and the Internet of Things.

The application to IoT scenarios of semantic technologies
for information representation provides a common vocabulary
to achieve interoperability among the interacting entities but
implies growth of bandwidth usage and verbosity. A proper
software infrastructure is then needed to face the large amount
of information shared in these contexts, to handle a high
number of heterogeneous devices and to meet the strong
requirements in terms of reliability and reactivity.

Among the proposed solutions there is Smart-M3 [17],
a simple abstract software architecture based on a central-
ized software module for information management: the SIB
(Semantic Information Broker). Different implementations of
the SIB have been designed in the recent years to solve
the new issues arisen by the incoming scenarios: RedSIB
[25] (that introduced SPARQL Updates) and the OSGI SIB
[22] (that brought portability and extensibility) are nowadays
the reference implementations of this software module while

Luca Roffia, Tullio Salmon Cinotti
DISI - Department of Computer Science and Engineering
University of Bologna
Bologna, Italy
{luca.roffia, tullio.salmoncinotti } @unibo.it

CuteSIB [14] is emerging as a novel SIB implementation
founded on RedSIB that also aims at suporting low-capacity
devices.

The Smart-M3 platform is based on the Semantic Web
technologies since the information is stored by the broker as
an RDF graph where additional semantics can be specified
using an OWL ontology. [21]. The entire framework M3 in
which pySIB is included provides high interoperability and
extensibility and it is easy to develop and operate with it, as
it can be evinced by answering the fifteen technical questions
proposed by Balandin and Waris in [10] where they highlight
the main points to consider when developing smart spaces.

In this paper is presented pySIB[S]: a novel open source in-
formation broker bringing three main contributions to its field
of research. First pySIB has been designed to be lightweight
and so ideal for running on devices with poor computational
resources or restrictive energy consumption requirements. Sec-
ond a new serialization format has been defined for all the
exchanged messages to substitute XML and contain the ver-
bosity that Semantic Web formalisms unavoidably bring with
them. Third, the performance evaluation carried out shows that,
despite being lightweight, the pySIB shows comparable or even
better performances than the state-of-the-art implementations.

This paper is organized as follows: in section II an overview
of related research projects is reported. In section III the
reference platform Smart-M3 is presented, then the archi-
tecture of the specific pySIB implementation is described.
Section IV reports about the JSON implementation of the
SSAP protocol, supported by the Python implementation of
the semantic information broker. In section V the developed
platform is evaluated against specific tests and compared with
the other main information brokers. Eventually, in section VI,
conclusions are drawn.

II. RELATED WORK

Many solutions have been proposed in literature to face the
known issues of IoT scenarios among which the high number
of heterogeneous devices, the big amount of exchanged data,
the security, dependability and interpretability of information.
One of the most common approaches consists in adopting
middleware-based architectures [28], where a software layer
is delegated to solve the mentioned issues [18].

Albano et al. in [9] provide a classification between mid-
dlewares for data exchange. Among the different data manage-

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

ment approaches illustrated, the publish-subscribe paradigm is
the one that best fits not only for the smart grid scenarios on
which the article is focused on, but also for the ubiquitous
computing scenarios and IoT in general. Publish Subscribe
Message-Oriented Middlewares (PSMOM) satisfy the require-
ments of such applications in terms of scalability, dinamicity,
latency, and jitter.

One of the most common ways of granting interoperability
in middleware based solutions is to found the information
representation on standards coming from the Semantic Web.
This approach is very diffused, as demonstrated by the number
of existing past and ongoing research project using it, like
the one described by Gyrard et al. in [16], Task Computing
Environment (TCE) [23], COntext BRoker Architecture [13]
and SPITFIRE [29], just to name a few.

This article focuses on a component of one of these
middleware based solutions: Smart-M3 [17]. Smart-M3 is
a semantic interoperability platform based on the publish-
subscribe paradigm. It was conceived in 2008 during the
ARTEMIS joint undertaking European Project SOFIA (Smart
Object For Intelligent Applications) and adopted in various EU
past and ongoing projects (e.g. CHIRON, IoE, RECOCAPE,
IMPRESS, ARROWHEAD [2] and communities (i.e. FRUCT
[4]). The Python implementation described in this paper differs
from the previous implementations since it is more oriented on
portability, extensibility and optimization of resource usage.

III. SOFTWARE ARCHITECTURE
A. The reference platform

Smart-M3 is the reference platform and pySIB is a novel
implementation of the core of the platform, the Semantic
Information Broker. It enables devices to interact through an
information centric approach. Clients share semantic infor-
mation (i.e. information represented with RDF and OWL).
Kiljander et al. in [19] highlight how the main advantage of
using RDF and OWL is that they provide a common way
to describe information in generic machine-interpretable form
and thus both provide means for semantic level interoperability
and support information reusability.

Smart-M3 relies on the Explicit Context Model [28] where
a central node is responsible for the context management and
is completely application-independent and decoupled from the
entities devoted to context acquisition, context pre-processing
and context reasoning. A Smart-M3 application consists of two
kind of agents that, in the Smart-M3 nomenclature, take the
name of SIB (introduced in section I), and KPs (or Knowledge
Processors) [26]. The KPs are information producers and
consumers, constituting in their whole a smart application. KPs
are software agents sharing data through the SIB by means of
SPARQL UPDATE [15] and QUERY [30] languages.

KPs are developed to fit the application needs, using one
of the Knowledge Processor Interfaces (KPIs) available for
several programming languages (Java, Python, Ruby, C, C#,
Javascript, PHP). KPs can be classified among producers
(which only perform update of the KB), consumers (which
only retrieve data) or aggregators (entities playing both the
roles simultaneously).

371

The SIB-KPs interaction is mediated by the SSAP (Smart
Space Access Protocol) that acts as the main integration point
of the platform [17] and relies on XML (eXtensible Markup
Language) as the default encoding language.

Fig. 1 summarizes the architecture of the Smart-M3 inter-

operability platform.
she.-7

- Consumer

Producer

—» Update
----3 Query/Subscription

Aggregator

Fig. 1. Smart-M3 architecture

B. pySIB software architecture

The pySIB is a multi-threaded server whose software
architecture is represented in Fig. 2.

pySIB is an information broker that holds information in
the form of an RDF graph. Applications can store data into
the RDF graph I in accord to a locally agreed ontology O.
A smart space S = (I,0) can then be easily set up as in a
classic Smart-M3 application and KPs can exploit the KPIs or
a higher-level ontology library for the interaction [21]. Future
implementation of pySIB will provide support for handling
several RDF graphs at a time.

The typical message flow starts with a request sent from a
KP to the SIB that is received by the network module and for-
warded to the proper parser. A synthetic representation of the
message in the form of a python dictionary is then generated
for the processor module with access to the information store.
The processor module generates a dictionary, representing
an abstract description of the response to be forwarded to
the KP. The Message Builder processes the abstract response
description and serializes it using the encoding which best fits
the KP needs.

Message parser and Message builder are respectively the
decoder and the encoder for the chosen SIB-KP communi-
cation protocol. The Message parser decodes the received
message in order to build a python dictionary to be processed
(independently from the communication protocol adopted).
The builder is instead the encoder that takes the output of
the elaboration of the SIB in order to build a message to
forward to the KPs. The choice of the builder and of the parser
module to be used is demanded to the system administrator
who decides which protocol should be used by the SIB. The
modular structure of the SIB, in fact, allows to easily replace
the Parser and Builder modules providing support for new
formats and encoding. pySIB is provided with a parser and
a builder for the JSSAP, detailed in section IV. Thanks to
the configurability of pySIB, we can affirm that this novel
broker is multi-protocol. Support for the original SSAP can be
developed as a pluggable module and then enabled through a
simple configuration file.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Other two features potentially supported but not yet imple-
mented are the support for quads and a security mechanism
based on those. It is important to notice that, despite the impor-
tant and generally invasive nature of the security mechanisms,
thanks to the modular organization of pySIB it will be simple
to add them in the information processing flow, as shown with
the dashed lines in Fig. 2.

The security module will be designed following the ap-
proach presented in [32] that provides confidentiality and
authenticity through its central component named RIBS (RDF
Information Base Solution), a server used by KPs to store, re-
trieve, manipulate and subscribe information. This components
determines security levels for each communication session
leveraging on the data collected about methods and algorithms
used by the clients.

{ '

pySIB

Processor
—
Store

Message

Parser
RDF

= Graph 0

— Security

1]
1
1
1
1
Nekwork Manager HUE
]
'

T —
Graphi1

Message
Builder

....... RDF
Craphn

EOE

\

Fig. 2. Software architecture

IV. THE JSSAP

The default protocol used in the communication between
KPs and pySIB is the JSSAP. This protocol defines the stan-
dard format for every request and confirm message using JSON
as the data serialization format for all the primitives in the
standard SSAP specification. Remapping the SSAP protocol
to a JSON encoded version allowed to reduce the length of
the exchanged messages from 10% (for long messages) up to
40% (for short messages).

The main fields inherited from the standard SSAP protocols
are:

e node_id: identifies the KP that performs a request
(and receives the reply);

e space_id: an identifier for the smart space to which
the KP belongs to;

e transaction_id: an univoque identifier for the
request (and its reply);

e transaction_type: the transaction type identifies
the kind of the request performed by the KP. The
possible requests are detailed in subsection IV-A;

e message_type: the message type is used to mark a
message as a request, a reply or an indication. Since

372

the kind of message can be easily evinced by the
software agent, this field is now not mandatory.

Each transaction type is also characterized by specific fields
detailing the given request or the associated reply.

An example of a simple request performed by the KP to
join a specific smart space is here reported:

{
"transaction_id":"0",
"transaction_type":"JOIN",
"message_type" :"REQUEST",
"node_id":"abl2cd34",
"space_id" :"ARCES"

}

A. Primitives supported by pySIB

As documented in [17] and [20], the SSAP includes eight
primitives, all supported by the SIB implementation presented
in this paper.

Through the join and leave primitives it is possible for
a KP to respectively access or exit from an M3 smart space.

The insert and remove operations allow to modify
the information graph producing or deleting information. The
update operation performs both removals and insertions.
pySIB supports RDF-M3 as a serialization method for RDF
triples. In addition, the SPARQL UPDATE language [15] is
supported, so that more complex update operations can be
performed.

The query primitive surfs the semantic graph allowing
to explore it in detail. Even for the query two encoding are
supported: RDF-M3 and SPARQL QUERY language [30]. The
same choice is available for the subscribe primitive that
allows a KP to declare its interest on a sub-graph and to be
notified about changes on it. The unsubscribe primitive is
used to cancel an existing subscription.

B. The JSSAP encoder and decoder

In order to provide an efficient support to JSSAP, the most
commonly used Python modules for dealing with JSON have
been compared. Four Python modules have been taken into
consideration and tested using three ad-hoc software agents.

The four modules analyzed are:

e json [1]: the standard JSON encoder/decoder pro-
vided with the Python interpreter;

e cjson [6]: a C implementation of a JSON en-
coder/decoder for the Python programming language;

e ujson [8]: another C implementation compatible
with both Python 3 and Python 2.5 or higher;

e simplejson [7]: a Python module with optional C
extensions.

The machine where such tests have been performed is a
Lenovo Thinkpad X220 provided with an Intel(R) Core(TM)
i5-2520M CPU 2.50GHz 4-core processor and 4 GB of RAM

running Linux Mint 17 Qiana. Every point on the charts is the
mean value of a set of twenty samples where the variance can
be neglected.

1) Encoding: The first test performed has the objective to
compare the JSON libraries in the encoding phase. The com-
parison metric is the time needed by the Semantic Information
Broker to build a reply to a SPARQL query in relation to the
number of results. The query just takes all the pySIB content:

SELECT 7?s ?p 7?0
WHERE { ?s ?p 20 }

This kind of test is pretty much effective and relevant to
characterize the encoding time, since the reply to a SPARQL
query can be very large, depending on the number of bindings
to be returned.

Time to encode the reply to a SPARQL QUERY with n bindings

cjson
M json
W ujson
simplejson 4000 - f=== === === mmmm s

time (ms)

200.0 -1

] 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

bindings (n)

Fig. 3. Time to encode the result of a SPARQL QUERY request with
a variable number of bindings

Fig. 3 summarizes the results on the chosen libraries.
Simplejson module is the slowest one with every number of
bindings. The time required by ujson to encode the results
of a SPARQL query is always around the 30% of the one
required by standard json resulting, in the worst case, in a
difference of more than 340 ms.

2) Decoding: To characterize the available libraries in
decoding phase, the time needed to decode a JSSAP request
coming from a KP has been reported. As the decoding time
depends from the JSON document tree structure, two main
relevant scenarios have been taken into consideration: RDF-M3
insert, and SPARQL UPDATE. Even if the number of triples
to insert is the same, with an RDF-M3 insert the resulting
JSON message is composed by a multitude of small fields,
while with SPARQL UPDATE the triples to be inserted are all
in the same large field.

A block of triples to be inserted with RDF-M3 is repre-
sented as:

373

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

"triples":{

"triple":{
"subJject":"http://ns#subject0",
"predicate":"http://ns#predicate0”,
"object":"http://ns#objectO"

by

"triple":{
"subJject":"http://ns#subjectl",
"predicate":"http://ns#predicatel”,
"obJject":"http://ns#objectl"

by

"triple":{
"subject":"http://ns#subjectN",
"predicate":"http://ns#predicateN”,
"object":"http://ns#objectN"

},

while the SPARQL UPDATE operation to insert N + 1
triples is:

PREFIX ns:<http://ns#>

INSERT {
ns:subject0 ns:predicatel ns:objectO
ns:subjectl ns:predicatel ns:objectl

ns:subjectN ns:predicateN ns:objectN

}

Time to parse a RDF UPDATE request with n triples to insert

cjson
M json
W ujson 9.0-q
simplejson

(ms)

time

0 200 400 600 800 1000 1200 1400 1600 1800 2000
triples (n)

Fig. 4. Time to parse an RDF UPDATE request with a variable number
of triples to insert

Fig. 4 and Fig. 5 show the results of the two tests. As
expected, whatever library is used, the time needed to decode
an RDF-M3 update is alwasys higher than the time elapsed to
parse a SPARQL update with the same number of triples since
there is a very high number of fields to be analyzed. Then,
for the sake of clarity, the two bar diagrams utilize different
scales in order to better appreciate the trend of each line. Both
the charts, however, show a linear behaviour that highlights a

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Time to parse a SPARQL UPDATE request with n triples to insert

cjson
M json
W ujson 0.9-1
simplejson

time (ms)

] 200 400 600 800 1000 1200 1400 1600 1800 2000

triples (n)

Fig. 5. Time to parse a SPARQL UPDATE request with a variable
number of triples to insert

direct dependency of the elapsed time on the number of triples.
The slope of each line strictly depends on the efficiency of the
related library.

It can be observed how the default json module un-
derpeforms with respect to the alternative implementations.
Differently from what happens with the encoding test, here
the differences between the performance of cjson, ujson
and simplejson are negligible, since in the worst case
the difference between the fastest and the slowest encoder is
respectively less than 0.1 ms for a SPARQL update and less
than 1.2 ms for an RDF update.

Thus, the library chosen to provide support for the JSSAP
with pySIB is ujson, mainly due to the results of the test of
the encoding.

V. EVALUATION

The SIB presented in this paper has been evaluated on
a personal computer Lenovo Thinkpad X220 with a quad-
core Intel i5-2520M (2.50GHz) and 4 GB of RAM running
Linux Mint 17 Qiana. Further tests will be performed in the
following months on single-board computers with real-life use
cases. Each test has been performed twenty times obtaining in
every case neglibile variances.

Before starting the description of the evaluation, it is worth
paying attention to the time required to perform an operation
that can be formalized as:

top =tENC_REQ + tSEND_REQ + tDEC_REQ)

+tgraB +tenc_rEP ttsEND_REP +tDEC_REP

where the first is the time elapsed by the KP to encode
the request, the second is the time needed to transfer the TCP
packet to the SIB; tgrap is the time needed by the SIB to
elaborate the request (decoded in tprc_req) and perform
the desired operation. Then a reply must be sent, so it is

374

encoded (tgnc_reP), sent (tspnp_rep) and decoded by the
KP (tpec_rEP)-

As mentioned in section I'V-B, the encoding and decoding
phases have been optimized with the choice of the best
performing Python module for JSON in order to reduce the
impact of tenc_rREQ, LDEC_REQ, tENC_REP and tppc_REP
on the total elapsed time.

In each of the following benchmarks, the Python im-
plementation of the Semantic Information Broker has been
compared with:

e RedSIB, the C implementation, running in non-
persistent way with support of hash tables;

e OSGi SIB, the SIB written exploiting the OSGi Java
framework. Also this one has been used in non-
persistent mode. Since the OSGi SIB also provides
support for the JSSAP, this bundle has been preferred
over the standard SSAP.

A. Time to insert n triples

The time required to insert a block of n triples, varying
n has been measured on the above mentioned SIBs. Results
are shown in Fig. 6. pySIB results to be the fastest among
the analyzed SIBs in the majority of the tests. The simple
regression analysis allows to predict future values with the
equation y = 7.79 + 0.06 - x where x is the number of triples
to insert and y the dependent variable representing the time
required to perform the insertion.

Time to insert n triples at a time

osgi
W redsib
M pysib

time (ms)

@ 188 200 300 406 500 GGG 706 B0 980 1088 1100 1200 1369 1400 1566 1660 1760 1888 1980 2000

triples (n)

Fig. 6. Time to insert n triples

B. Time to retrive n triples

Fig. 7 compares the time took by pySIB and its alternatives
in order to retrieve a variable number of triples with an RDF
query (the number of triples retrieved corresponds to the full
content of the SIB). The graph highlights a similar trend
for pySIB and for RedSIB that results the fastest one for a
large number of results. The effort spent in optimizing the
encoding and the decoding phases brought to encouraging
results, since the performance are comparable to the most

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

known and diffused implementations of the SIB. The trend
of the graph of pySIB is linear: the amount of time spent
depends on the amount of triples and then the amount of data
to be transferred over the TCP, but also on the efficiency of the
parsing module. The linear regression analysis on the pySIB
allow to build the following relation between the number of
triples inserted (x) and the time required to perform the action

(y):

y=-11.3540.14 2

Time to retrieve n triples at a time

0sgi
M redsib
M pysib

time (ms)

B 160 200 308 466 500 66O 706 BOO 900 1008 1100 1200 1300 1460 1506 1660 1700 1808 1900 2800

triples (n)

Fig. 7. Time to retrieve n triples

C. SP’B

The SP?B [31] is a benchmark designed to test the
performance of SPARQL endpoints. This suite provides a
data generator that creates an N3 file [11] with up to 25M
triples according to the DBLP [3] ontology. The benchmark
is composed by seventeen SPARQL queries properly designed
to test the behaviour of the semantic data stores.

Given a knowledge base composed by 10k triples, and
subsequently 50k triples, the response time to the seventeen
queries has been measured. The time elapsed by pySIB is
compared with the time needed by RedSIB and the OSGi SIB
to perform the same tasks. Table I and table II report in the
first column the query identifier followed by the number of
expected results (if the query is a SELECT) or the expected
Boolean (if the query is an ASK). For every triple SIB/size of
the knowledge base/query is also reported the obtained result
if different from the expected one. Time values are expressed
in seconds.

The results show that pySIB behaves correctly with 12 of
the 17 queries (for the small dataset) and with 11 queries on
the large dataset. In these cases the response to the queries is
correct and obtained within the time limit (set to five minutes).
These results suggest the directions for a further investigation
in order to improve the response to complex SPARQL queries

TABLE 1. SP*B benchmark results with 10k triples

Query pySIB RedSIB OSGi
(Results) SIB
Q1 (1) 0.01 0.49 (0) 0.01
Q2 (147) 0.28 2.95 0.18
Q3a (846) 1.08 17.27 0.13
Q3b (9) 1.00 17.95 0.01
Q3c (0) 1.00 17.59 0.01
Q4 (23226) timeout timeout 75.44
Q5a (155) 50.90 (1) 1.16 (1) 0.61
Q5b (155) 24.25 (1) timeout 0.30
Q6 (229) 21.13 (11) | 0.24 (13) 0.73
Q7 (0) 0.27 21.86 0.19
Q8 (184) 0.05 (0) 17.92 (0) 0.05
Q9 (4) 1.00 35.00 0.02
Q10 (166) 0.28 0.07 0.08
Q11 (10) < 0.01 0.03 0.04
Q12a (True) < 0.01 < 0.01 < 0.01
QI12b (True) < 0.01 17.90 < 0.01
Q12¢ (True) < 0.01 0.07 < 0.01

TABLE II. SP’B benchmark results with 50k triples

Query pySIB RedSIB OSGi
(Results) SIB
Q1 (1) 0.15 10.78 (0) 0.03
Q2 (965) < 0.01 timeout 3.45
Q3a (3647) 4.86 timeout 1.23
Q3b (25) 4.39 649.38 0.01
Q3c (0) 4.13 timeout 0.01
Q4 (104746) timeout timeout | timeout
Q5a (1085) timeout timeout 21.78
Q5b (1085) timeout timeout 10.47
Q6 (1769) 345.53 (10) | 4.28 (17) | 21.78
Q7 (2) 1.19 (0) timeout 5.63
Q8 (264) 0.05 (0) timeout 0.30
Q9 4) 1.37 timeout 0.07
Q10 (307) 0.06 0.18 0.06
Q11 (10) 0.93 0.12 0.02
Ql12a (True) 1.94 0.11 < 0.01
QI12b (True) 0.13 timeout < 0.01
Q12c (True) 0.11 < 0.01 < 0.01

obtaining a correct reply for every of each (as with the OSGi
SIB) and in a shorter time.

375

D. Disk usage

In the current subsection, the disk space required by pySIB
is compared with the one required by RedSIB and by the OSGi
SIB. The analysis has been carried out on the operating system
GNU/Linux, distribution Mint 17 Qiana for the architecture
amd64. The disk space is reported in kilobytes and has been
calculated using the binary packages in .deb format for the
target Linux distribution. For each SIB the required disk space
has been split in:

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

TABLE III. Space occupation of the SIBs (in KiloBytes)

Disk usage pySIB | RedSIB | OSGi SIB
SIB package 25 88 13824
Dependencies 640 10832 21504
Interpreter/VM 197 0 171
Interpreter Deps | 12518 0 97224
Total | 13380 | 10920 | 137723

e disk space required by the core of the Semantic
Information Broker;

e disk space required by the dependencies of the SIB;

e amount of space required by the interpreter or virtual
machine (if any);

e amount of disk space occupied by the dependencies
of the interpreter / virtual machine.

The results of this comparison, visible in Table III, show
that pySIB requires a quantity of disk space comparable with
the one of the RedSIB and is, by far, more suitable than the
OSGi SIB to run on constrained devices.

E. Memory Usage

The implementation presented in this paper has been com-
pared with the other two main SIBs of the Smart-M3 inter-
operability platform, even in terms of memory requirements.
The SP?B has been used to load 50k triples into each broker.
The Resident Set Size (RSS) for every SIB has been calculated
after the start-up and then after each insertion of 5k triples in
order to trace the memory usage of the analyzed brokers.

Fig. 8 shows that pySIB requires less than half the memory
used by the OSGi implementation of the SIB. On the other
hand, pySIB underpeforms if compared with RedSIB requiring
approximatively 1.7 times its amount of RSS.

The evident difference between the memory usage and disk
space occupation of pySIB and OSGi SIB is justified by the
different targets of the two implementations: the first is ori-
ented to support small devices with low computational power
(e.g. System on Chips, also known as SoC, like Raspberry
or Hummingboard), while the second is designed to run on
gateways.

Despite the higher resource usage of pySIB, if compared
with RedSIB, our broker can be still considered a valid
solution for resource-constrained devices (i.e. like System on
Chip microcomputers) due to the internal modular software
architecture. Advantages, however, will be appreciable only
when new features will be necessary because the development
of such functionalities will be easier with respect to the
monolithic software architecture.

VI. CONCLUSION AND FUTURE WORK

In this article a novel modular implementation of the
SIB for the Smart-M3 framework has been presented. In
cases where a lightweight solution, characterized by good
performance is needed (e.g. on SoC microcomputers) pySIB
reveals to be a valid choice. In fact, section V highlights a good

376

Resident Set Size with n stored triples

osgi 176000
M redsib
M pysib

160000

LSRO0E R e S e e e R e B R D R R

140000

S

120000

110880 -

106008 - ---f-c-o-o-oooooooo-

9e808 -

80000

70000 -4

60000 -

Resident Set Size (kB)

seses -
- PR .. S
30000

20008 - 4

10800

a 5008 10089 15060 20000 25080 30868 35000 40800 45880 50800

triples (n)

Fig. 8. Memory usage varying the size of the knowledge base

behaviour of pySIB, but at the same time reveals the direction
for future improvements (i.e. in terms of memory and disk
space requirements, as detailed in subsections V-E and V-D).

Unexpectedly pySIB performs updates of the knowledge
base faster than the other considered implementations of the
SIB. Even retrieving data with RDF queries reveals high
performance of this new software component. However, the
SP?B benchmark revealed the existence of particular SPARQL
queries that hinder the SIB from providing a correct reply.
Further investigations will be performed in order to enhance
the SIB.

pySIB currently does not provide support for data persis-
tency. This is planned to be introduced in the next release and
with minor effort thanks to the modular structure of the broker.
The next release, as mentioned in section III-B, will also
include a security module through which it will be possible
to protect data with SPARQL rules.

REFERENCES

[1] 18.2. json json encoder and decoder.

https://docs.python.org/2/library/json.html.
[2] Arrowhead ahead of the future. http://www.arrowhead.eu/.
[3] dblp: computer science bibliography. http://dblp.uni-trier.de/.
framework

[4] Fruct - open innovations

http://www.fruct.org/.

program fruct.

[5] pysib github repository. https://github.com/desmovalvo/pysib.
[6] python-cjson 1.1.0. https://pypi.python.org/pypi/python-cjson.
[71 simplejson 3.8.1. https://pypi.python.org/pypi/simplejson/.
[8] wujson 1.35. https://pypi.python.org/pypi/ujson.

[91 M. Albano, L. L. Ferreira, L. M. Pinho, and A. R. Alkhawaja. Message-
oriented middleware for smart grids. Computer Standards & Interfaces,
38:133 — 143, 2015.

[10] S. Balandin and H. Waris. Key properties in the development of smart
spaces. In Universal Access in Human-Computer Interaction. Intelligent
and Ubiquitous Interaction Environments, pages 3—12. Springer, 2009.

[11] T. Berners-Lee. Notation 3 (n3): An readable language for data on the
web, 2005.

[12] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web.
Scientific american, 284(5):28-37, 2001.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

H. Chen, T. Finin, and A. Joshi. Semantic web in the context broker
architecture. Technical report, DTIC Document, 2005.

I. V. Galov, A. A. Lomov, and D. G. Korzun. Design of semantic
information broker for localized computing environments in the internet
of things. pages 36—43. IEEE, Apr. 2015.

P. Gearon, A. Passant, and A. Polleres. Sparql 1.1 update. Working
draft WD-spargll1-update-20110512, W3C (May 2011), 2012.

A. Gyrard, S. Datta, C. Bonnet, and K. Boudaoud. A semantic engine
for internet of things: Cloud, mobile devices and gateways. pages 336—
341, July 2015.

J. Honkola, H. Laine, R. Brown, and O. Tyrkko. Smart-m3 information
sharing platform. In The IEEE symposium on Computers and Commu-
nications, pages 1041-1046. IEEE, 2010.

V. Issarny, M. Caporuscio, and N. Georgantas. A perspective on the
future of middleware-based software engineering. In 2007 Future of
Software Engineering, pages 244-258. IEEE Computer Society, 2007.
J. Kiljander, A. D’elia, F Morandi, P. Hyttinen, J. Takalo-Mattila,
A. Ylisaukko-Oja, J.-P. Soininen, and T. S. Cinotti. Semantic inter-
operability architecture for pervasive computing and internet of things.
2:856-873.

D. G. Korzun. Service formalism and architectural abstractions for
smart space applications. In Proceedings of the 10th Central and
Eastern European Software Engineering Conference in Russia, CEE-
SECR ’14, pages 19:1-19:7, New York, NY, USA, 2014. ACM.

D. G. Korzun, S. I. Balandin, and A. V. Gurtov. Deployment of smart
spaces in internet of things: Overview of the design challenges. In
Internet of Things, Smart Spaces, and Next Generation Networking,
pages 48-59. Springer, 2013.

D. Manzaroli, L. Roffia, T. S. Cinotti, P. Azzoni, E. Ovaska, V. Nannini,
and S. Mattarozzi. Smart-m3 and osgi: The interoperability platform.
In Computers and Communications (ISCC), 2010 IEEE Symposium on,
pages 1053-1058. IEEE, 2010.

377

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Masuoka, B. Parsia, and Y. Labrou. Task computing—the semantic
web meets pervasive computing. In The Semantic Web-ISWC 2003,
pages 866-881. Springer, 2003.

B. McBride. The resource description framework (rdf) and its vocab-
ulary description language rdfs. In S. Staab and R. Studer, editors,
Handbook on Ontologies, International Handbooks on Information
Systems, pages 51-65. Springer Berlin Heidelberg, 2004.

F. Morandi, L. Roffia, A. DElia, F. Vergari, and T. S. Cinotti. Redsib:
a smart-m3 semantic information broker implementation. In Proc. 12th

Conf. of Open Innovations Association FRUCT and Seminar on e-
Tourism, pages 86-98. SUAI, 2012.

M. Palviainen, J. Kuusijrvi, and E. Ovaska. A semi-automatic end-
user programming approach for smart space application development.
Pervasive and Mobile Computing, 12:17-36, June 2014.

P. F. Patel-Schneider, P. Hayes, I. Horrocks, et al. Owl web ontology
language semantics and abstract syntax. W3C recommendation, 10,
2004.

C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context
aware computing for the internet of things: A survey. Communications
Surveys & Tutorials, IEEE, 16(1):414-454, 2014.

D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kroller, M. Pagel, M. Hauswirth, et al. Spitfire:
toward a semantic web of things. Communications Magazine, IEEE,
49(11):40-48, 2011.

E. PrudHommeaux, A. Seaborne, et al. Sparql query language for rdf.
W3C recommendation, 15, 2008.

M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp” 2bench: a
sparql performance benchmark. In Data Engineering, 2009. ICDE’09.
IEEE 25th International Conference on, pages 222-233. IEEE, 2009.
J. Suomalainen, P. Hyttinen, and P. Tarvainen.
sharing between heterogeneous embedded devices.
Press.

Secure information
page 205. ACM

