PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

A Multi-Agent Approach to the Monitoring of Cloud
Computing System with Dynamically Changing
Configuration

Dmitrii A. Zubok, Tatiana V. Kharchenko, Aleksandr V. Maiatin, Maksim V. Khegai
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
St. Petersburg, Russia
zubok, kharchenko@mail.ifmo.ru, mavr.mkk@gmail.com, MaxHegai@rambler.ru

Abstract—Cloud based distributed systems rely on scheduling
and resources allocation to function. In complex distributed
systems a distribution of many jobs of different types is required.
At the same time, a problem of virtual machines migration to
physical servers must be solved. Therefore, configuration of a
cloud system may be very dynamic, meaning that not only
number of existing computational servers but also their location
on physical servers might change. Optimal control strategies
aimed to solve these problems are effective only when updated
information about system's components is available. However,
gathering this information from many distributed components of
a cloud system, such as physical nodes or virtual machines may
significantly decrease overall performance. These problems can
be solved by applying different optimization techniques such as
multi-agent approach. Agents decide if the information is
outdated and needs to be updated by them. This paper describes
a cloud system architecture that uses agents of different types.
Agents' algorithms and their interaction schemes are defined.
Software implementation in form of software environment is
presented. Simulation experiments to compare performance of
the system when using default monitoring methods and a multi-
agent approach were conducted.

1. INTRODUCTION

Performance and reliability of cloud computing systems has
always been a reoccurring topic for researches. Since the first
cloud system appeared in 2000s, a lot of techniques were
implemented to ensure that downtime of a system stays as low
as possible. Lately an idea of a multi-agent approach to
monitoring appeared and was researched numerous times. Its
main goal is to help keeping information about frequently
changing (uncertain) environment up to date and respond to
these changes according to their algorithms. In [1] the approach
was used in smart grid building. Cloud architecture is used as a
base, and agents are used to check status of the system and to
coordinate the control of each node.

Work of Mauro et al [2] applies multi-agent systems to
evaluating of reliability assessment of power systems. They use
simulation to improve reliability of a system and demonstrate
the potential of multi-agent systems. However, although agents
perform evaluation and optimization, they are not applied to
mass-service systems which are the scope of this paper.

In [3] an agent is defined to have next characteristics:

e Autonomy: in the absence of external intervention,
through their knowledge or perception of the external
environment, they can independently control their own
behavior to accomplish certain tasks;

e Collaborative: different agents can collaborate together
to complete the task or the other complex problems,
provide information to other agents when needed, this
feature is especially suitable for solving of distributed
problems;

e Study: they take the initiative to learn and get
information from external environment in order to
constantly revise their own database, which makes
them more reasoning and planning.

The multi-agent system includes methods from different
disciplines, such as artificial intelligence and distributed
computing. This approach as it is, however, may lead to a
huge overload of a system and, thus, needs optimization. One
such way is, for example, decreasing polling rate and
distributing tasks between agents. Optimization is especially
important when the multi-agent approach is applied to
performance monitoring. The presented optimization method
consists of swapping polling with on-demand data updating.
That allows significant decreasing of overhead expenses,
increasing overall performance of a system.

In recent years most frequently optimization techniques
were created for cloud based computing systems. Cloud based
computing is a kind of computing where resources and data
are shared and provided on-demand. Typically a cloud is built
as a data center and has a main controlling server (master
server), a computational server and a transmission server.
During its work the cloud may have a huge overload that will
decrease its performance. In this case optimization techniques
are used which, essentially, try to minimize number of
allocated resources [4]. A simple technique involves constant
polling of all computational servers in order to get up to date
information about their performance, and alternate resources
quotas according to this information [5].

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

II. A MULTI-AGENT APPROACH

A more complex technique is scheduling that uses different
service disciplines such as conservative or threshold discipline
[6]. Those disciplines have the same base algorithm but
behave differently at the later stages. The conservative
discipline receives a job and as soon as the controlling server
finds the first free server, sends it for processing. The
threshold discipline, instead, after receiving a job adds it to a
queue of a computational server. When number of jobs in this
queue becomes higher than a threshold value, it begins to
search for a next computational server with free space in its
queue. The threshold values are calculated based on the
current performance of the system.

However, for the technique to work, additional parameters
are required. Thus, as a part of scheduling, the constant polling
is also presented. The reason is that required parameters are
non-constant. Incoming jobs stream rate changes with time
and varies randomly, with slight tendencies depending on time
of day and other factors. Time needed to process jobs is also
non-constant and can’t be acquired at the time of job
receiving. Processing of jobs with different processing time
decreases the overall performance of a computational server so
the controlling server must get information about performance
to properly distribute load. At the same time resources quotas
may change in time as well, whether because of a resource
management system or an administrator. All this leads to the
conclusion that in case of scheduling constant polling is
essential for proper functioning of the method as updated
information about resources and performance is essential.

The main disadvantage of constant polling is a high load on
CPU. Continuous polling must be done from a controlling
server. While it isn't involved in computing, coordinating and
control is done there, so it is equally important as
computational servers. The on-demand data updating
completely avoids this problem by not doing anything but
simple calculations when the data doesn't need to be sent. This
is achieved by placing an agent in each computational server
and in the controlling server.

The proposed approach is based on decrease of monitored
objects' load by placing an intellectual agent in each of them.
Instead of performing a constant polling objects are monitored
by those agents that decide if the changes were big enough and
information about this should be made available for other
controlling components. The infrastructure gives ways to
subscribe new agents to information channels and information
exchange between controllers and data storage. The agents are
different for each type of system objects and have the same
basic algorithm but differ in monitor and decision making
algorithms. This way a multi-agent approach to monitoring
also provides scalability and monitoring of a constantly
changing system. The basic algorithm of a monitoring agent is
shown on Fig. 1 and is explained further.

An agent is normally in stand-by mode, waiting for a data
to be received or sent. When created, it subscribes to changes
in information it has to check. Then it receives current
threshold value for its computational server and enters the
interrogation state when it gathers information about the

411

server. At the same time it receives messages from the main
controlling server and if it gets a signal to change threshold
value does so. During the interrogation agent applies filtering
algorithms to decide if the changes in parameter were big
enough for the new value to be published. If they were, agent
publishes the information and enters the interrogation state
again. At the end of its work, agent unsubscribe from changes
in information and closes. Those tasks are simple enough to
not reduce server’s performance.

Subcribe

Receive threshold
value

Interrogate) g

Receive messages

[Parameter
[Received new has changed]

threshold value]

[No]

[Received signal
to end work]

Fig. 1. Activity diagram of the basic agents' algorithm

To test the multi-agent approach a software environment is
required. Next section describes the environment built as a
mass-service system simulator.

III. SOFTWARE ENVIRONMENT

A. Virtual machines monitor

The developed software environment is based on Xen
hypervisor — a hypervisor using a microkernel design. Xen
supports running several virtual machines at the same time as
well as sharing resources between them. Migration of virtual
machines is also possible. All that allows separating different
subsystems from each other, and quickly swapping them with
other subsystems, providing a strong base for a module based
architecture. Xen is often used in scheduling analysis and as a
virtual machines monitor for cloud based systems [7], [8].

Each subsystem is a virtual machine with its own
parameters and set of software, connected with each other
through a single virtual interface that works as a
router.

Shared resources pool ensures that the system is able to
dynamically reallocate resources between virtual machines,
providing basic means to control performance of the
environment.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

B. Communication

Communication between different subsystems is crucial for
functionality of the environment. Since virtual machines may
be located on different physical nodes, an efficient way to
exchange messages through internet connection is required.
The current architecture uses a message broker, a message-
oriented middleware as a way to exchange information
between different subsystems. A message broker is
responsible for receiving and sending messages between other
instances of itself.

In [9] middleware is defined to have next characteristics:

e Prioritization of messages;

Protection of messages from loss and reordering;
Support for large user base;

Adaptability to user changes;

Low transmission latency;

Low latency variability;

Large data throughput;

The most important characteristics for the environment are:
protection of messages from loss and reordering, aadaptability
to user changes, low transmission latency and low latency
variability. To provide them RabbitMQ was used.

RabbitMQ is an asynchronous message queuing framework
that works with many protocols and is optimized for high
performance message handling. This framework was
successfully used in [10] as a message broker. In [11] a
comparison between ActiveMQ and RabbitMQ was made and
the superiority of RabbitMQ was proven. As an exchange
protocol to communicate with every subsystem the software
environment uses Advanced Message Queuing Protocol
(AMQP) which focuses on a message-oriented communication
and encryption of messages. The current specification (AMQP
1.0) provides needed features; particularly, a real-time feed of
constantly updated information. Thus, the AMQP protocol and
RabbitMQ are appropriate for communication between agents.

C. Architecture description

Each virtual machine is limited in its resources. Maximal
CPU usage and maximal RAM amount are set during creation
of a machine and can be changed later if such a need appears.
Virtual machines may be hosted on different physical servers
but they are still in the same virtual network, having access to
each other, provided that they were allowed to interact with
other virtual machines. In general a virtual machine is a
subsystem.

There are two types of subsystems:

¢ Controlling subsystems

e Computational subsystems

Controlling subsystems control the behavior of different
parts of the environment and each of them normally has at
least one corresponding computing subsystem. The software
environment relies on this type of subsystems to exchange
required data from one subsystem to another.

412

Computational subsystems compute data that incomes from
a corresponding subsystem and return a result. These are the
main computational subsystems and are essential to the
purpose of the environment: simulation experiments using
distributed computing.

If there is more than one physical server in the
environment, one of them takes the role of a main server,
controlling others. The main server contains one extra
controlling subsystem that distributes jobs to computational
subsystems and decides if they need to be sent to another
physical server. If there is only one physical server this server
becomes the main one.

The architecture is presented on Fig. 2.

VMM (Host 1
Controlling Subsystem

—=

Incoming jobs
type 1 stream
agent

% RDFStore
% Virtual Switch

VE 2

Jobs type 1
Queue

Jobs type 2
Queue

=
T

Incoming jobs
type 2 stream
agent

Control Service

Resources
monitoring
Agent

RabbitMQ Streamer

RabbitMQ Streamer RabbitMQ Streamer |

Performance Performance
monitoring

Agent

Application 1 Application 2
@
VMM (Host 2

Controlling Subsystem

RabbitMQ Streamer

% Virtual Switch

VE K2

VE K1

=

Fig. 2. Multi-agent system architecture

RabbitMQ Streamer RabbitMQ Streamer

Application K1 Application K2

Performance
monitoring
Agent

Performance
monitoring
Agent

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

D. Subsystems

Each controlling subsystem has an agent, a jobs queue, a
producer that sends jobs and other data to several subsystems
and a consumer that receives data from subsystems. One of the
subsystems that it sends data to is the main controller. The
main controller has a common jobs queue where jobs await for
decision, which computational subsystem a job should be sent
to, to be made. There may be more than one computational
subsystem corresponded to a controlling subsystem.

A generic computational subsystem includes an agent, a
producer that sends jobs and other data to several subsystems,
a consumer that receives data from subsystems and an
application that processes received data and returns a result. A
computational subsystem has one single corresponding
controlling subsystem.

In the software environment agents are background
processes that perform their own task. Each subsystem has its
own agent distinct by their task:

e Computational subsystems have performance
monitoring agents that evaluate performance of a

subsystem it works on.

Controlling subsystem has incoming jobs stream
monitoring agent. This agent evaluates incoming jobs
stream intensity.

The main server has a resource monitoring agent. It
gets information about resources quotas and their
changes if they were changed by an administrator.

E. Agents

This subsection describes behavior of the agents that exist
in the software environment. Every agent has the same base
for the algorithms - independent decision making. Each agent
decides for itself if information it has should be posted or
not.

1) Performance monitoring agent: The agent that monitors
the performance checks a computational server's performance
at regular intervals and decides if it should be sent to the
controlling server. The performance is evaluated by using
moving average method [12]. This method smoothens up
fluctuations and allows defining a trend in performance
changing. If the average value exceeds a threshold value the
agent send information about current performance of the
server to the controlling server. In other case it just continues
the evaluation. Fig. 3 shows the algorithm.

Using the calculated average value different parameters of a
system, such as maximal CPU time, are changed.

2) Incoming jobs stream monitoring agent: This agent
monitors rate at which jobs income to the queue. Its main goal
is to check if there is a free computational server that is able to
process the job and if there is no such server waits for its
appearance. If there is a free server, the agent begins to
evaluate incoming stream rate and if the average number of
jobs was different from the last one for a certain period of
time, sets it as a new rate. Since the agent is placed in the main

413

controller, there is no controlling agent. The agent’s algorithm
is presented at the Fig. 4.

3) Resources monitoring agent: This agent gathers the
information about current resources quotas. Those are allowed
CPU time for each computational server, memory usage and
allowed free space on hard drive. If any quota was changed it
saves this information for a future use in jobs distribution.

Each agent is also able to update their threshold values by
receiving data from the main controlling server. To provide
scalability and flexibility ontology based data storage was
implemented. ARC2 RDF system was used to create and
manage RDF triplets and the data itself is stored in a database.
Since the multi-agent approach doesn’t suggest a frequent
update of data, on-memory database will not give us any gain
in speed. Thus, a relational database will be sufficient.

Controller
agent

Performance monitoring
agent

Application

Receive a
request

[

Knowledge
base

Write
information
about new
agent

Y

Receive
information

LN

Y

Get job
processing
time

Evaluate
processing
time

[Doesn't exceed]

Check
performance
value

[Exceeds]

w | Receive a
7\ request

Write
information

Check for
exit signal

[Didn't receive]
Received]

Delete
information
about agent

Unsubscribe

« | Receive a
7\ request

Fig. 3. Performance monitoring agent's algorithm

F. Sofiware environment and algorithms description

The current software environment consists of one physical
server, one main controlling server (virtual machine), two

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

controlling servers and two corresponding computational
servers. The basic algorithm is next: the main controlling
server generates a job (in a real-life scenario it is done by a
user), then the job is added to the common jobs queue. After
that the system applies a service discipline to the queue and
according to it distributes jobs between computational servers.
As soon as a job is processed, computational servers sends an
answer to let the main controlling server know that it is
done.

The servers were sorted by performance level: highest to
lowest. Currently there is only one parameter that
characterizes this: maximal CPU usage (CPU quota).

Incoming job stream
monitoring agent

Publish

Check
applications I

‘ [Doesn't exist]

[Exists]

Start
comntroller
Evaluate
intensity

Knowledge
base

Queues
controllers

Write
information
about new
agent

Get information
about incoming job

[Not changed]

[Changed]

Set new
intensity
value

Publish

Write
7\ information

Delete
information
about agent

[Not received] [Received]

P
&

Fig. 4. Incoming jobs stream monitoring agent's algorithm

Software environment has two computational servers. Each
of them has a memory quota set to 256 mb of RAM. The CPU
time quota for the first server was set to 55% of the hardware
CPU and the second one was set to 25%. The controlling
server has a CPU quota set to 20%. In the next section the
results of experiments are presented.

414

The conducted experiments were aimed to find out which
initial parameters of a system allow increasing the
performance by using the described approach.

IV. SIMULATION EXPERIMENTS

A. Experiments description

To evaluate the performance cost of multi-agent approach
three experiments were conducted with both existing
computational servers used. Two of them use the polling
algorithm: the main controlling server constantly interrogates
every computational server and gathers required information.
Two different time intervals were selected: 1 second and 10
seconds. The third experiment used the multi-agent
approach.

In all three experiments jobs were generated by the main
control script. To simulate a real-life case, intervals between
jobs generation were randomly distributed by the Poisson’s
law based on average jobs per second value. There also were
some variations. The whole time, during which the
experiments were conducted, was separated into four periods.
Intervals during those periods were different with the highest
(and lowest jobs rate) being at the last one and the lowest (the
highest jobs rate) being at the third one.

When a job is generated and sent to a server, time when it
happened is saved. Computational servers receive jobs and run
a script that simulates load on the system. It requires a
sufficient CPU time to be processed and its processing time is
guaranteed to be at least slightly different with each run. After
the job was processed, a signal about this event is received by
the main controlling server and the finishing time is saved.
The processing time is calculated based on these
values.

Experiments were conducted 10 times each and each run
lasted for 1000 jobs. As soon as the 1000™ job was processed,
one run was stopped and the next one began.

B. Experiments results

Results of each run were saved to different text files. After
each experiment values from those files were averaged and
saved to another file. This resulted in 1000 values that
represent average processing time of each job that was sent to
a computational server in microseconds (us). Then the results
were filtered by calculating average for every three
values.

The runs using constant polling have shown that processing
time slowly but surely increase, as a run continues. This is due
to the fact that because there is a high overload on the system,
less and less jobs are actually being sent to be processed. This
concludes that high frequency polling significantly decreases
performance. The results for the first experiment are shown on
Fig. 5, where »n is a number of an experiment in a
run.

Fig. 6 shows results of the experiments with polling
frequency set to 10. As can be seen the system is stable and

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

keeps performance on a higher level than when the frequency
is set to 1.z is a number of an experiment in a run.

The last experiment was conducted using agents. Fig. 7
shows that at first there was a short increase in processing time
however it then decreased and kept being stable until the end
of'the experiment. The average processing time was also lower
than in any previous experiment which proves that the offered
approach is more effective. n is a number of an experiment in
arun.

6000000

5000000

4000000

3000000

2000000

1000000

625 3
641
657
673 =
689

Fig. 5. Processing time with polling (1 sec. interval)

6000000

5000000

4000000

3000000

2000000

1000000

689 2

Fig. 6. Processing time with polling (10 sec. interval)

Table I shows the comparison of the average processing
time in each experiment.

6000000

5000000

4000000

3000000

2000000

1000000

Fig. 7. Processing time with multi-agent approach

415

TABLE I. AVERAGE PROCESSING TIME OF JOBS

Experiment Average processing time (us)
Polling (1 sec. interval) 3685955.08
Polling (10 sec. interval) 1708525.6
Multi-agents approach 1429489.32

V. CONCLUSION AND FUTURE WORK

Effective control of complex cloud based distributed
systems requires an updated information about distant nodes
state. When constant polling is in action, shared resources are
used, disallowing big part of it to be used by computational
servers. The presented approach makes it possible to keep the
required information up to date while keeping overheads at
their minimum. The base of this approach is decision making
agents that evaluate different parameters and send the
information only when the changes are radical. The software
implementation provides a good flexibility and scalability of
the system.

Conducted experiments proved advantage of the offered
approach in comparison with polling of servers when the
incoming jobs stream rate is dynamic. The results characterize
a system with independent applications, processing jobs. The
proposed approach, however, has drawbacks. The first one is
detection of a failure in components functioning. Unlike when
polling is used, in case of using intellectual agents it is
impossible to detect that one of components stopped
responding. This raises the difficulty of using this approach in
case of unstable functionality of components. The solution to
this is in raising complexity of the main controller algorithm,
making it possible to detect unusual pauses during the
processing and receiving data from agents. The second
problem may occur after heavily increasing number of
components and, as a result, intensity of data streams that are
to be sent to the knowledge base. In this case using a relational
database management system may become a bottleneck. The
solution is in shifting to a database management system that
uses key-value pairs or to a distributed database. In the next
work agents’ algorithms will be improved and a possibility to
apply this approach to interacting applications will be
researched. Other service disciplines will be used and the
approach will be improved to decrease time until a system
enters the stationary state.

ACKNOWLEDGMENT

This work was partially financially supported by the
Government of Russian Federation, Grant 074-UO1. The
presented result is also a part of the research carried out within
the project funded by grant #15-07-09229 A of the Russian
Foundation for Basic Research.

REFERENCES

[11 X. Jin, Z. He, Z. Liu, “Multi-Agent-Based Cloud Architecture of
Smart Grid”, in Energy Procedia, volume 12, 2011, pp. 60-66.

M. A. da Rosa, A. M. Leite da Silvac, V. Miranda, “Multi-agent
systems applied to reliability assessment of power systems”, in
International Journal of Electrical Power & Energy Systems, volume
42, Nov. 2012, pp.367-374.

S.D.J. McArthur, EM. Davidson, V.M. Catterson, A.L. Dimeas,
N.D. Hatziargyriou, F. Ponci, T. Funabashi, “Multi-Agent Systems
for Power Engineering Applications-Part I: Concepts, Approaches,

[2]

[3]

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

[4]

(3]

(6]

(71

and Technical Challenges”, in Power Systems, volume 22, Nov. 2007,
pp. 1743 - 1752.

L. Donatiello, R. Nelson, “Performance Evaluation of Computer and
Communication Systems”, Springer-Verlag, 1993, pp. 630-650.

A. Quarati, D. D’Agostino, A. Galizia, M. Mangini, A. Clematis,
“Delivering Cloud Services with QoS Requirements: An Opportunity
for ICT SMEs”, in Economics of Grids, Clouds, Systems, and
Services, Volume 7714, 2011, pp. 197-211.

D.A. Zubok, AV. Maiatin, V.E. Kiryushkina, M.V. Khegali,
“Functional model of a software system with random time horizon”,
in Proceedings of the [7th Conference of Open Innovations
Association FRUCT, 2015, pp 259-266.

A. Nanos, N. Koziris, “Xen2MX: High-performance communication
in virtualized environments”, The Journal of Systems and Software,
2014, pp. 217-230.

416

[8]

[9

[10]

[11]

D.C. Marinescu, Cloud Computing. Elsevier, 2013, pp 131-161..
Albano, L.L. Ferreira, L.M. Pinho, AR. Alkhawaja, “Message-
oriented middleware for smart grids”, in Computer Standards &
Interfaces, 2015, pp. 133-143.

S. Satunin, E. Babkin, “A multi-agent approach to Intelligent
Transportation Systems modeling with combinatorial auctions”, in
Expert Systems with Applications, Volume 41, 2014, pp. 6622
-6623.

A. Aizstrauts, E. Ginters, M. Baltruks, M. Gusev, “Architecture for
Distributed Simulation Environment”, in Procedia Computer Science
43,2015, pp. 18-25.

K. Mivule, C. Turner: Applying Moving Average Filtering for Non-

interactive Differential Privacy Settings. In: Procedia Computer
Science, Volume 36, 2014, pp 409—415.

