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Abstract—This article describes a new project — sdCloud,
which was designed in purpose to create an effective cloud-based
execution environment for System Dynamics models. The article
contains overview of basic terms and conditions in System
Dynamics, description of sdCloud project and investigations of
issues, which has occurred in development process, including
integration of existing System Dynamics tools, possibilities of
optimization processes in System Dynamics modeling and its
basic approaches.

I. INTRODUCTION

Personal, portable, and mobile computers have become
very powerful, but even so don't always have enough
computational capacity for all simulation applications.
Especially for Big Data applications, researchers often need
faster execution and high bandwidth connections between the
execution engine and data, regardless of where the data
resides. It is exactly this kind of need that has given rise to
cloud computing and cloud storage paradigms.

Cloud-based execution is particularly convenient for Big
Data applications and research, as keeping both the data and
the execution engine in the cloud reduces the modeler's
involvement in data sharing and resource management. Cloud-
based engines are also an archetypical match for System
Dynamic models, allowing researchers to select the execution
engine somewhat independently of the model creation tool.
Especially in certain research domains, matching the engine
technology to the data processing context has significant
benefits. Furthermore, cloud-based executor is more accessible
to typical wusers than engines which require local
installation.

II. SYSTEM DYNAMICS BASICS

System Dynamics is a methodology and mathematical
modeling technique to frame, understand, and discuss complex
issues and problems. Originally developed in the 1950s to help
corporate managers improve their understanding of industrial
processes, System Dynamics is currently being used throughout
the public and private sector for policy analysis and design.
Through this approach, there is a possibility to create
simulations based on shrinked space and time to the target level
allowed to carry out behavior investigations. Such
investigations are useful in purpose to monitor any of the
following aspects like causal relationship, feedback loops,
delay of reactions, as well as the impact of the external
environment. System Dynamics is mainly used for the
development of long-term or strategic models.
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The simplicity of the structures used in System Dynamics to
represent the modeled systems, as well as a significant amount
of information being processed leads to the fact that the
calculation of the data amenable to automation systems. A
feature of the long-term model is that large segments of time
are used to model systems using a small step simulation. Thus,
this leads to the generation of enormous amounts of data at the
output of the modeled system. In addition to modeling just
requires significant computing power to support complex long-
term calculation model [1].

The system dynamic models are based on the stocks and
flows. Stock, in the concept of System Dynamic - it is an
element of the model, which describes the accumulated value
in the model. Flow - it's rate of stocks changing. Stocks can
have relationships between each other stocks via flows. Value
of the flow is defined by his equation that can be a constant a
function (function that does not have depend on any stocks of
the model), or a function that depends on the external values
of model. As this values for the flow equation can be used the
value of any other flows, stock or external variable that is
declared within the model. The flow can only change the value
of stocks, which connected to this flow as sources or
destinations. If stock is marked as the source for specific flow,
then value of this stock are change in the negative direction,
and for destination stock value are change in the positive
direction [2], [3].

There are several file formats to determine dynamic system
models. Most of them were specifically designed for particular
software, like VEnsim and Stella. Small differences between
realizations lead to a compatibility issue. And as a result
XMILE specification was released in 2013 (XML Modeling
Interchange LanguagE) by Steve Adler. The main feature was
the point that whole model description is provided using
XML. This format became the base one, mostly because its
independence from programming point of view.

III. PYSD LIBRARY

Despite the fact that the XMILE specification was appeared
recently, there are a lot of solutions, which executes System
Dynamics models and supports XMILE specifications. And
PySD library is one of these solutions [4].

PySD is open source Python library, which was designed by
James Houghton [5]. This library supports several model
formats, first of all — models described by XMILE. On picture
below there are five main steps, which described its operation
principle.

ISSN 2305-7254



PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Python ENV
Load C il
— oad| | PySD ompile
—
Python
Model definition </> SD Model
representation
Save Model P
execution [ Run

gl

Fig. 1. Diagram of PySD execution steps

1) Getting model description from file

2) Converting model into Python code

3) Compilation of Python code

4) Model executing

5) Saving results of execution into memory

Model execution results might be converted into any
format. This approach provides additional opportunities for
analyzing the original model.

PySD library allows to change default conditions set by
original model description. This functionality provides
possibility to reduce time in case to rerun model with
alternative settings because there is no need to recompile
model file.

IV. SDCLOUD PROJECT

SdCloud solution is a new open source project dedicated to
creating a cloud-based execution environment for System
Dynamics models. Its goal is to provide model sharing and
remote model execution and result generation possibilities to
modelers and researches working in area of System Dynamics.

A. Rationale

The technological layer of System Dynamics modelling
appears feature rich and mature. Commercial products (like
those from ISEE, Ventana, AnyLogic, Simulistics, and others)
provide rich modelling functionality covering most of the
common use cases. Forio-Simulate features a cloud-based
model execution and presentation environment for selected
proprietary modelling languages.

There are also open source and free projects like Minsky,
Mapsim, and Simantics SysDyn. Paralleling the migration of
applications to web-based deployments in other domains, web-
based modelling approaches have emerged, offering a kind of
fusion modelling approach. InsightMaker and Systo, for
example, allow model development in almost any Web
browser supporting JavaScript.

Despite this highly evolved modelling ecosystem, there are
some limitations. In particular, until the formalization of
XMILE, it was difficult to separate model creation and model
execution. This separation is particularly important in Big
Data work, because the data itself is often coupled to a
particular storage and processing technology. Thus the tool
which might be most effective for developing a particular
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model is often not the most effective tool for executing the
model on the relevant data store.

In discussions stimulated by System Dynamics society and
others interested in model exchange, it became clear that a
cloud-based deployment would be the most effective way to
address the Big Data needs, and that cloud-based model
translation, execution, and sharing would not only create
synergies with existing System Dynamics tools, but also be a
hospitable and open house for future development and
research.

B. Goals

As with other cloud-based solutions, an important benefit of
sdCloud is that the cloud service not only executes the model,
but also manages all resource-related issues and is easily
accessible from almost everywhere via almost any connected
device.

While the key goal of this project is to build a cloud-based
system, running on powerful, well-connected servers, other
requirements, though, seemed necessary to reap the full
benefit from a cloud modelling service. Thus, we expect
sdCloud to provide following set of features to the
end-user:

The ability to upload a System Dynamics model in any
format, including XMILE.

The ability to download a previously uploaded model
in any format, independently from the format in which
it was uploaded.

The ability to schedule model execution, track schedule
and execution progress, and browse model execution
results.

The ability to share models and model execution results
both within sdCloud and outside it.

The sdCloud project does not aim to build a complete
solution from scratch. Instead, we hope to build a management
and access layer on top of components created
by others.

C. Architecture
SdCloud project includes 4 basic components:
1) Web UI: Web Ul allows end-users accessing the

system, upload models, schedule execution and monitor
execution results.

REST API: Rest Api should provide required
functionality for Web UI and also work as an access
point to the system for 3d-products.

2)

3)

Internal core libraries: modules, which represents key
features of SdCloud solution.

Model execution components: modules, which provides
model execution functionality.

4)

SdCloud solution architecture is schematically represented
on diagram below.
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Fig. 2. SdCloud solution architecture

D. Model execution components

As a default module for executing System Dynamics
models we decided to use PySD library due to the following
list of its advantages:

e The conversion of the original System Dynamics model
description file into executable Python code and its
compilation in purpose of performance improvements

for further reruns.

The possibility to execute System Dynamics model in
the background.

The possibility to store and analyze results of model
execution.

PySD is open source project, supported by System
Dynamics community.

E. Internal core components

It was decided to use .Net platform for developing core
components for sdCloud solutions, due to its advantages in
complex solutions development. And here we faced an issue
of integration PySD library into solution developed using
other programming languages. In our case we faced the issue
to integrate PySD library into .Net solution, written by C#
language.

V. APPROACHES TO INTEGRATE PYTHON LIBRARIES INTO .NET
SOLUTION

There are two possible ways to solve the issue of
integration Python library into .Net solution — process
approach and IronPython library.

A.  Process approach

This approach is relatively versatile as it does not require
additional development libraries. In this case all the commands
executed by Python are strings. If you choose this approach, it
does not matter exactly how the executable instructions are
transferred to the program - it can be a dedicated file
containing instructions or constants listed directly in the
program.
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To get started with Python we have to create a process of
«Python.exe» and specify the appropriate input parameters as
command line arguments. However, this is a separate process,
from which you can obtain the output data from the launched
Python modules, which in turn can be processed by .Net [7].

This approach has its advantages and disadvantages.
Among the advantages are the following points.

1) Independence from the version of Python: Using
processes abstracts the installed version of Python in
terms of program development for the .Net platform for
the launch «Python.exe» process only requires the use
of the correct path to the executable. This makes it
possible not to change the code in .Net if you change
Python version.

2) No need for additional .Net libraries: For the
development of this approach does not require the
presence of additional .Net libraries, since all the
necessary components for the processes inherent in

Net platform core since version 3.5.

3) Run «purey» Python scripts: This approach as a whole is
the work with Python command line in the hidden from
the external user form. Thus all the work on
encapsulation run Python console takes responsibility
main program, and the executable commands have the
same syntax as if it were run manually. This feature can
facilitate verification of correctness Python scripts in

case of errors.

On other hand, the usage of this approach has several
disadvantages.

1) Python configuration issues: The main program cannot
control the errors associated with incorrect installation
and Python settings on the host.

2) Lack of typing for input and output data: When using
the process all the work with Python modules occurs
through the transfer of string instruction and receiving
the string data from the output stream, which also
complicates the control of the progress of the program.
The main program should include mechanisms for
output treatment in the strongly typed data for further

work.

B. IronPython

IronPython is an implementation of the Python language
itself, written entirely in C # and designed for the .Net
platform. To work with modules written in Python, the code
being developed in C #, you need to connect a set of relevant
libraries [8]. In doing so, run Python modules can be both a
part of the project as a script and compiled together with the
whole project, so be it external files.

ScriptEngine and ScriptScope: Two main object provided
for interaction with the Python. The first object is responsible
for the execution of Python scripts and importing additional
Python libraries. The second, in turn, is a scope of interaction
and stores all the variables, allowing them being changed
easily [9].
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For this approach, you can also select a number of
advantages and disadvantages. Benefits include the following
points.

1) “On the fly” Python executable module: The
executable module is generated during the execution of
the main program in C # via ScriptEngine object
capabilities. In case of errors in Python script, an
exception to the detailed description of a particular
error. This feature simplifies script debugging during
development process.

2) Controlled work with Python modules arguments: All
the parameters for run-ins are stored in the object
ScriptScope, their values can be changed during the
execution of the main program, whilst settings - added

or removed.

3) Import of additional Python libraries: This feature
allows you to load additional Python libraries to run

complex scripts, and enables ScriptEngine object.

4) Python interaction with .Net: ITron Python supports
usage of .Net assemblies.

Among the disadvantages of using Iron Python are the
following:

1) Different versions of Iron Python and different versions
of .Net platform: As in Python, there are 2 supported at
the moment version of Iron Python language - 2.0 and
3.0 respectively. It is not possible to simultaneously
support startup script, written in different versions of
Python.

2) Limited functionality and possible errors in Iron Python
libraries for .Net.

C. Common approach to integrate PySD library

Two approaches described above have their advantages
and disadvantages. But both are oriented to launch Python
scripts directly from .Net runtime. So, it makes code support
more complicated. The following approach allows to separate
runtimes in order to simplify development.

This approach may be applied not only in .Net solutions
and it is also very simple in usage. It doesn’t depend on
Python support in .Net, and main feature is that Python and
Net runtimes are absolutely separated. This might be done by
creating simple REST API service, which launch PySD
library. This service is taken place as a wrapper, and it hides
all direct actions with PySD library. The Fig. 3 below shows
its architecture.
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Fig. 3. PySD wrapper architecture
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This architecture has several advantages.

1) Environment independence: Python and .Net executes
in separated runtimes. No direct calls to PySD library
from .Net runtime.

2) Extensibility: REST service for calling PySD functions
may be easily modified due to any changes in PySD. At
the same time, its API specification may not be
changed, so you don’t need to change anything in main
solution source code.

3) Efficiency: This architecture covers no extra resource
consumption for running Python directly from .Net
environment. So, it makes this approach the fastest

one.

4)

Less limits: There are no functional limits of PySD
usage and Python functions as well.

Due to its advantages this approach is the best of all
described above.

VI. OPTIMIZATION PROCESSES IN SYSTEM
DYNAMICS

After first we had got the first working prototype of
SdCloud project, it was decided to discover possible ways of
its further optimization. In the first iteration of our investigate
we take a CPU time resource as primary criteria for
optimization process. To start with it is needed to
determine existing optimization approaches in System
Dynamics.

A. Possibilities of optimizing the process of modelling in
System Dynamics
Existing algorithms of System Dynamics models are
sequential. Because of what computing resources are not
optimally used, and as a consequence the complete simulation
time considerably higher than when using the parallel
approach.

There are basically two fundamentally different approaches
to optimize the modeling process. The first of them - is an
instrumental approach of optimization by changing the tools
and technologies used in the development of software
solutions for System Dynamics models. The second approach -
the development of specific distributed algorithm that allows
efficient use of computational resources.

B.  Instrumental approach

The first optimization approach is instrumental one. On the
basis of the above, the structure of System Dynamics models
may be considered. We have to pay attention to the definition
of a function, which defines a flow. That is to say, that the
flow function has no side effects for the entire system, which
corresponds to the pure function definition from
programmatically point of view.

Pure functions are one of the main concepts in functional
programming. Consequently, the concept of formation System
Dynamics models may be implemented using functional
programming languages. The key advantage of such languages
to procedural or object-oriented programming languages is
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that it become possible to optimize the program working
process at runtime due to different aspects, such as clean
functions. For example, pure functions may be performed
independently from each other, because of they don’t carry
side effects and cannot effect each other performance.
Functions, which require complex calculations, may be turned
into caching, thus would lead to the usage of value from the
runtime environment cache instead of full value of allocation,
while recalling the calculation. So, it is apparent that the
correct description of the structure transformation and System
Dynamics models into executable code using functional
programming language, the model execution may be
optimized by the runtime, without the development of
specialized distributed algorithm.

C. Distrubuted algorithms approach

Let’s take a look at the structure of dynamic systems
models as well as models describing XMILE format [4]. You
may notice that every equation used to calculate flow values,
is a pure function, which has no side effects to the whole
system. Such functions are one of the main concepts of
functional programming. Algorithms have been developed for
functional programming concepts can be optimized at runtime
using approaches such as parallel execution of pure functions,
caching computing for complex functions and operations.
Thus, with proper transformation of describing structure we
can achieve optimizations of process without the development
of specialized distributed algorithm, just by execution
environment.

Distributed algorithm for calculation of System Dynamics
models should provide the ability of parallel computing of
model components. This will require a more detailed look at
the structure and identify two main types of links between
components: the components without feedback and
components with feedback. Feedback - a property that defines
the dependency between components. If the two component
models (A and B) are connected by flow F, where A is the
source of F stream, and B - drain, and thus the value of the
flow F depends only on the value of the source, then it can be
assumed that the model components A and B have no
feedback. If the value of the flow depends on the drain, then -
components have feedback.

First of all, you should pay attention to the model, in which
the components have no feedback. Based on the definitions
above, we can see that the value of the flow F, as the source of
A is independent of the value that is in drain in B. If you add
extra sources in this system (Ai), which will be connected to
the same drain (B) with flows without feedback (Fi), then it
can be said that the input streams (Fi) are not dependent on
each other. Consequently, the values of these streams, as well
as the values of drains can be calculated independently from
each other in parallel. The value of the resulting drain (B) can
be calculated as the sum of pre-calculated independent streams
(Fi). The Fig. 4 below shows the model without feedback
scheme.
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Furthermore, it should pay special attention to the model
that contains the components with feedback. The problem of
distributed algorithm development for such models is that the
simulated system has a high degree of connectivity. Suppose
that there are several sources (Ai), which are connected flow
(Fi) with a drain (B). The value of each selected stream
depends on the drain current value (B). Thus, the calculation
of the flow, as well as the associated source for the next time
interval cannot be performed until a value for the drain at
current time period is calculated. If we consider that the
resulting value of the drain is the sum of all incoming flows, it
can be said that all input streams (Fi), as well as the origins of
(Ai), are dependent on other streams. Thus, an independent
flow values calculation cannot be performed. In a parallel
calculation of such flows occur competing access to the drain
value (B). The Fig.5 shows a diagram of drains connections
for model with feedback.
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Fig. 5. Diagram of drains connections for model with feedback
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In the case when computation engine use parallel methods
for calculate values in flows there is a concurrency to
accessing for values of drain B. In order for the resulting data
of the simulated system still are correct, it's required to avoid
concurrency values access. When concurrency are arrive to
computation engine of System Dynamics models and it's not
handled, then may be a situation in which two flows would
reserve the same value of the drain. This will not correct
calculated values of flows equation at this period. The
consequence of this is the waterfall effect for all of the
resulting values of the simulated system. Thus, we come to
what is the correct calculation of the parallel methods with
feedback flows is not fully possible.

In a real system it’s very rare to find when the model is the
components that are connected to each other only by streams
without feedback. Naturally, there are components in the
models as with feedback, and without it. Thus, it is the task of
analyzing the components within an existing communications
models. You can imagine the whole system as a unidirectional
graph, where edges indicate the direction of streams and thus
the connection between the components for this task. This
point, which depends on the maximum number of components
is strongly coupled system, removing that can obtain two
independent systems are called sections or cut point. To find
this point, you can use the algorithm for finding the minimum
cut graph Stoer-Wagner algorithm. By applying this algorithm
to the model’s graph may be obtained independent parts of the
system, which can be calculated in parallel.

D. Problems of disturbed algorithms development

As previously mentioned, the System Dynamics model is
performed on large segments of the duration of time with a
small step towards the whole area of the simulated time.
Existing modeling algorithms use a sequential approach with
the simulation time intervals with a fixed step. This approach
does not allow to process model independently. But this
approach can be adjusted that will allow without any
interference with the basic algorithm to model the system at
different time intervals in parallel. Assume that the System
Dynamics model to be processed in the time interval tl - t2
with step dt. Then, increasing the simulation step up to 4dt,
you can get a boundary point of the simulated system on the
whole required length of time. For these boundary points will
be obtained data on the values of each drain and the stream
used in the model. Using them we can model the system on
each time interval obtained from the already predetermined
step. Because the initial condition is known for each period of
time, then we can assume that each of these periods of time are
not dependent on each other, hence each received time period
can be simulated in parallel.

VIL

In a way to optimize our solution we decided to investigate
disturbed algorithms approach in relation to the sdCloud
project. So, we started to develop our own model execution
component, written in Erlang. While Python has the advantage
of being familiar to researchers in many areas, allowing them
to directly modify the generated code if necessary, Erlang

ERLSD COMPUTATION CORE
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promises efficiency benefits for computationally intensive
simulations.

Erlang execution environment provides the next key-
features:

e Not require for manual handling of system resource
allocation and management (allocate new threads,

processes), this operation takes a lot of time.

All Erlang processes executes in virtual machine, that
provides a simple way for manage using resources.

Erlang has integrated functionality for design and
developing distributed applications.

Hot code upgrade provide possibility for quick
changing the model compiled representation without
any downtime on environment.

The following diagram shows the difference in average
execution time depending on same number of operations.
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Fig. 6. Time dependency graph

According to diagram from above, it can be stated, that
usage of Erlang might increase performance for models, which
requires big number of operations.

Also, models expressed in Erlang should be able to easily
exploit Erlang’s advanced optimization and parallelization
features.

This module is still under development now, but we expect
that models expressed in Erlang will be more naturally able to
exploit the cloud’s flexible resources allocation. Therefore,
SdCloud solution will use both model execution components —
PySD and ErlSD, depending on model specification and
complexity.

VIII. CONCLUSION

Summing up, the sdCloud project is an answer to the big
data processing and data access challenges facing the System
Dynamics community. A high performance cloud-based
environment can make working with system dynamics easier,
faster and closer to the model's users. At the same time,
sdCloud project is in the process of constant work on
improvements in order to optimize execution process of
System Dynamics models.
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