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Abstract—SLAM (simultaneous localization and mapping)
problem appears in robot algorithms when it is necessary to
orient in an unknown environment without GPS or some other
world communication system. Data for considered SLAM method
is received from laser rangefinders and odometry sensors. Scan
matching is a localization step of the SLAM problem and the
main idea is to find an offset between two laser scans — sets
of points that presents a perception of environment from one
observed point. Three different scan matchers based on various
approaches are compared to determine the most accurate one.

I. INTRODUCTION

The objective of the SLAM (simultaneous localization
and mapping) is to locate in unknown world and to create
a map during this location process. This problem could be
decomposed into the following subproblems [1],[2]:

e get information about an environment with robot
scanners (data from laser rangefinders and odometry
sensors are considered);

e  determine robot position using this scan and map built
on the previous step;

e update existing map.

These steps presented on the Fig. 1.

The scan matching problem is presented on Fig. 1 and
called “matching map and observation”. It could be defined in
the following way: it is required to find a rotation angle Ay
and an offset (Ax, Ay) for two given point sets {p;} and {¢; }
to make them identical enough:

Qo) _ [cos(Ap) —sin(Ap)\ [Pz, N Az o
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The main problem is to find the robot pose delta in the world

using data from its laser scanner observed on the previous and
current steps.

There are a lot of different ways to solve this problem
in specific cases [3],[4],[5]. To the best of our knowledge,
there is no scan matcher suits for arbitrary environment when
there are no hypothesis about its structure [6]. This paper
presents different scan matchers which are applied to same
environments and provides their comparison of their accuracy.

Two different kinds of scan matchers are discussed in this
paper:
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Fig. 1. The SLAM scheme

e a point to point scan matcher works only with data
from the previous scan and the current scan;

e a map comparison scan matcher logs all scans in the
environment map and uses it to match with data from
current scan.

Three scan matchers are presented in this paper: Monte-
Carlo scan matcher [3], Olson scan matcher [4], scan matcher
based on the Hough transform [5]. The first one is a stochastic
and bases on a random choice of robot pose correction. The
second one bases on brute force search in the area that is
likely to contain actual robot pose.. Finally the third bases on
transformations in the Hough domain. The work results are
presented in quantitative terms where it is possible and there
are results of application these scan matchers in SLAM.

This paper presents first steps of algorithm research and
the main purpose is to look through mathematical parts of
considered approaches. The research area involves algorithm
description and authors implementation [9] tested with com-
puter simulation. The application in real conditions on a robot
is next step that will be considered in the future work.
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The paper is structured as follows: in Section II there is the
description of existing comparison methods and a relevance of
this paper; Section III provides a description of scan matchers
that were tested; the result of the scan matchers comparison
and usage recommendations are presented in Section IV.

II. SCAN MATCHING COMPARISON
A. Problem definition

As it was mentioned above the essence of scan matching
is to find a robot pose correction using data from sensors and
map built previously. An example of input data is shown on
Fig. 2.

Fig. 2. Laser scanner data and robot position

The base estimation of robot offset Az, Ay, Ay could be
provided to scan matcher by odometry sensors. These sensors
have uncaught noise in the output data so there is no way
to recognize whether scan matchers afford correct answer. Of
course, this noise could be reduced to the little value using
groundtruth. Unfortunately, there is no groundtruth to the best
of our knowledge for considered data sequences. So scan
matchers were tested in the real world, but the estimation of
execution was based on a visible robot trajectory and a built
map.

So the formula (1) should be updated and it becomes:

<q> _ <cos(£¢+€¢) Sin(5¢+€¢)> <p> N

y,i sin(Ap 4+ €,)  cos(Ap+£&,y) Dy,i

n <A:x + §w>
Ay + &y
where Aa — the « value from odometry sensor, &, — the noise
value of a.

A value of ¢ is supposed to be close to zero and this is an
initial value for any scan matcher to find a correction value.

There is also another characteristic of scan matchers which
ought to be considered and estimated — an execution time.
The scan matching problem i.q. the SLAM problem applies to
mobile robots that could have low performance processors, so
it is desirable to choose a scan matcher that finds a correction
as fast as possible.
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B. Work motivation

A huge amount of different SLAM algorithms produce
various approaches and implementations of scan matchers.
Thus the purpose of this work is to establish the method
of formal classification of several exciting scan matchers.
Therefore the authors implementations of three scan matchers
are considered and compared. The main goal was to determine
where the implemented scan matchers could be used on the
real sequences.

The sequences from MIT Stata Center Data Set [7] were
chosen for scan matcher testing. Moreover considered scan
matchers were used as a part of tinySLAM [8]. Using this
package the map was built for each scan matcher. So it is
possible to analyze how numeric values got from simulated
world are applied to real world.

III. SCAN MATCHERS DESCRIPTIONS
A. Monte-Carlo scan matcher

This approach and its application to a SLAM problem
were described in [3]. The main idea is based on a iterative
random search of the most suitable robot offset. This loop takes
some constant numbers of steps, for example there are 100
tries to find ”good” robot position. The value of robots” pose
goodness is estimated with a scan cost function that estimates
the similarity of scans. And if a good position is found then
a tries counter is flushed and random search loop starts again
in a narrowed area.

One approach to define the cost function bases on building
a grid of cells where each cell presents the weight of a local
area containing some points from the scan. So laser scan points
are transformed to cells of a grid. After building the map from
the first scan, the second scan is superimposed on it. So the
scan cost function is defined as the sum of all cell weights
where the points from the second scan are located.

The described approach is presented on Algorithm 1.

Algorithm 1 Monte-Carlo scan matching

pose_delta + 0;
i+ 0;
total.ount < 0;
area < U, (robot_pose)
while ¢ < 100 && total_count < 1000 do
observation < shift laser_scan by pose_delta;
scan_cost < estimate observation with map;
if scan_cost < min_cost then
min_cost < scan_cost;
out_delta < pose_delta;
area < U, (robot_pose + pose_delta);
i+ 0;
end if
pose_delta <+ random(area);
11+ 1;
total_count < total_count + 1;
end while

Finally, the algorithm complexity is required to be esti-
mated. This algorithm has a limit of step amount and for each
step there is an operation estimate that complexity equals
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O(n), where n — a range of the laser scan. So the total
algorithm complexity is estimated as O(n - Niotal_count )-

B. Olson scan matcher

In this approach it is required to find the greatest value of
p(x;|Ti—1,u, m, z) — the probability of a robot position on step
¢ using the known pose on a previous step x;_1, the motion
u, the environment model m and the observation z.

In the original paper [4] this probability is calculated in
the following way:

p($i|$i—1,U, m, Z) = p(2|$z‘7m) 'p(xi|37i—17u)
where

e p(z|z;, m) — is the observation model that shows how
likely is an observation if the previous position and
the model are known.

o p(xi|z;—1,u) — is the motion of robot that depends on
odometry of robot.

The second term could be calculated taking into account
information about typical odometry’s noise and the most
efforts are required to calculate the first term.

There are three steps of scan matching. The first step is to
build a so-called lookup table using a previous scan — a grid
map where each cell contains a probability of being occupied
by any point of scan. This is pretty similar to Monte-Carlo
approach. But a cost function is calculated as a multiplication
of probability of all suitable cells. The example of lookup table
is presented on Fig. 3

Fig. 3.

A lookup table(gray) and a new scan(black)

The second step is to superimpose a new scan on a built
lookup table and to calculate a probability of coincidence of
two scans. The greatest probability p(z|z;,m) can be found
by changing position z;.

Then it is required to repeat the previous step for different
x;, calculate p(x;|x;_1,u) for each robot pose and to find
out the greatest probability p(z;|x;—1,u, m,z) of the robot
position.
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The disadvantages of this approach arc the fixed step res-
olution and time consuming brute-force method of searching
xi, however in the paper [4] there are some advices how to
decrease the computation time including usage of GPU.

The algorithm complexity could be obviously estimated as
a brute-force search complexity. So, if 7, n,, ng are amounts
of steps for corresponding variable and on every step the
current scan is required to superimpose on the look-up table
with complexity O(n) (where n — a range of the laser scan), the
total algorithm complexity is estimated as O(n-1g -1y Nineta)-

C. Hough scan matcher

This approach of localization is described in [5] and
presents a point to point type of scan matchers. Every point
from the each scan is transformed in special Hough coordinates
(0,0). These coordinates present a distance and an angle, but
they should not confused with the polar ones. For every point
in Euclidean coordinates (¢, o) there is a set of lines that
contain this point. Line coefficients presented in the (k,b)
notation from an equation yy = kzo + b are not good enough,
as there could be vertical lines like x = 2 which can not
be defined using the notation. It is more useful to store
information about each line using a distance o from the zero
point (0, 0) to this line, and an angle 6 between the OX axis
and a line that includes a normal to this line (Fig. 4).
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Fig. 4. The example of two possible lines in (o, #) notation contained a
point (zo, yo)

And it can be shown that a set of lines crossing a point
(z,y) could be built with the following rule:

o= -cos(f) +y - sin(h) @

The expression in the right part of (2) could be simplified
to o - cos(f + 0y) and it presents a shifted sine function. So
the set of points in Euclidean coordinates {(z;,y;)}7; will
be transformed in a set of sets of points {{(Qj,9j> P0j =
;- cos 0 +y; -sinf;}7, }"_ | under the Hough transform.

For example the Hough transform for one of the scans
(black) from the Fig. 2 is presented on the Fig. 5. As it was
mentioned above the Hough domain consist of a sine functions
set. The brightness of point (g,8) depends on an amount of
laser scan points are contained in the line (o, 8). For example
bright point locates at § = /3 and small o value correspond
to the right line of black scan from Fig. 2
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Fig. 5. Hough domain for the one of the scans from Fig. 2

Hough domain is built for the current scan and the previous
one. And the following equation connects this two Hough
domains with offset(Ap, Ap) between two scans:

HDprev(Qa 0) = HDcurr(lQ + Ap» 0+ ASO)

where HD; — the 2D array that presents Hough domain like
on the Fig. 5.

After the Hough domain was built the rotation angle can
be defined and then it is possible to estimate an offset. The
rotation angle could be estimated using Hough spectrum that
is built by the following rule:

HS(0) = /Oo HD?(o.0)do; 3)
JO

The formula (3) means that the Hough spectrum is defined
as a p energy for every angle 6. So if there is a small offset
error, the two Hough spectrums for the previous and current
scans will be shifted by 6 with some value Ay:

HSprev('l?) = HScurr(ﬁ + AQP) (4)

And it is possible to match this value of shift using a
correlation function.

Unfortunately, the same approach to find the offset
(Az, Ay) is not useful as it is possible to find Ap but not
separately Az or Ay. And the found angle Ay can not help
to compute it. This is not a polar angle between two scans
but an angle of robot orientation in space. So the authors
implementation has no ability to find (Az, Ay) and it should
be found using another approaches.

The algorithm complexity is defined as a sum of complex-
ities of building Hough domain, computing Hough spectrum
and computing correlation function. The Hough domain is built
using O(n) operations, where n — a range of the laser scan. The
Hough spectrum building needs every cell in Hough domain
to be executed. There are n,-ng cells in Hough domain, so the
Hough spectrum calculation complexity defines as O(n, - ng).
So the total complexity is approximated with O(n + n, - ng).
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IV. TESTING AND RESULTS

Scan matchers were tested on both simulated data and real
dataset from MIT [7]. Simulated data could be divided in two
parts: the environments that mostly consist of straight lines,
and the other. Moreover when an environment is simulated
there is an option to add some noise to odometry data to scan
matchers either with some error or without.

Testing on a real data is more complex because there is
no knowledge about accurate odometry and therefore there
is no way to determine if a scan matcher works well. Thus
all considered scan matchers were integrated in a SLAM
algorithm. For this purpose the tinySLAM [8] was chosen.
The accuracy of a scan matcher was estimated with a map and
robot trajectory that had been built during a SLAM process.
Visual comparison of built maps and trajectories is supposed
to be enough to understand whether a scan matcher works well
or not.

As it was mention above the time execution is computed
for every test too. This time depends on algorithms complexity
that were described above. All this complexities are presented
in the Table I

TABLE 1. COMPLEXITY OF SCAN MATCHING ALGORITHMS

[ Monte-Carlo | Olson [ Hough |
| Complexity [ O(n - neount) | O(n-ny -ny -ng) | On+n, -ne) |

The tests presented below were executed on In-
tel® Core™ i7-860 4x2.8GHz with DDR3 8GB, Ubuntu
Xenial x64.

A. Testing in simulated straight world without an error

Firstly, all scan matchers were tested in a computer simu-
lated worlds without noise in odometry. In this test two scans
observed from two different places in the world with robot
offset (Axz, Ay, Af) are used as input to scan matchers. This
offset is provided to the scan matchers too. So these two laser
scans contain some similar points with similar coordinates. The
difference is in ranges of each scans. In fact these two scans
present data from different points in the space, so there are
points in the one scan that are not observable from the second
point of view. So sets of points {p;} and {¢;} contain subsets
of corresponding points but there definitely are points which
are contained in the one scan and are not contained in another.
So scan matchers should recognize that the error between first
scan and shifted second scan equals to zero.

Moreover, in this case scan matchers are tested in the room-
like worlds which contain many straight lines passed for long
distances. In this case scans are not very different if the offset
is small. So this kind of test could be used as a some of sanity
check.

The results of testing in this case are presented in the
Table IL

TABLE II. RESULTS OF TEST A
Scan Matcher Time Az Ay A6
Monte-Carlo 0.02 sec 0 0 0
Olson 0.3 sec 0 0 0
Hough 0.2 sec - 0
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This result shows that all scan matchers do not introduce
any error if there is no mistake in odometry. Monte-Carlo is
faster in 10 times than other.

In this table symbol ”-” in a row of Hough scan matcher
shows that author’s implementation does not allow to calculate
offset Az, Ay. Taking into account deltas, calculated by this
scan matcher, the output becomes absolutely incorrect, so this
part of Hough scan matcher should be researched with more
attention in the future.

Up to this test it seems that Monte-Carlo scan matcher is
the best.

B. Testing in simulated straight world with an error

In this test case there is some odometry error: a noise
error added to robot offset (Ax, Ay, Af). So these sets of
points have no points with equal coordinates. All coordinates
are shifted and rotated by some random values. This test is
closer to real case as there is always some odometry error
in the real data sequence. In this case scan matchers should
determine this noise. As the error was generated manually so
it is possible to estimate whether the scan matchers localize
and estimate the noise correctly.

In this test the world consists of straight lines, and it is easy
to match the error with the naked eye. The difficulties appear
in a fractal world when it is impossible to define whether there
are any rotation or not. Also tests in corridor-like world will
not define correct (£, &,) offset errors, but scan matchers have
to define correct a &y rotate error.

The result of testing in this case with odometry noise about
0.2 meters and 0.2 rad is presented in the Table III.

TABLE IIL RESULTS OF TEST B
Scan Matcher Time Ax Ay AO
Monte-Carlo 0.02 sec 0.011 0.009 0.02
Olson 0.3 sec 0.001 0.001 0.001
Hough 0.1 sec - - 0.008

In this test the Monte-Carlo scan matcher shows the best
time again, but now there is an error that is greater than the
error of other scan matchers. It can be explained again by
random behavior of Monte-Carlo scan matcher.

The error in Olson scan matcher can be explained by the
value of search step in its implementation. Decreasing this step
value makes scan matcher work more accurate, but slower.

Talking about Hough scan matcher it’s step of discretiza-
tion should be mentioned — it is an increment of Hough
spectrum i.e. the field of search. The lower this step the lower
an error of output.

C. Testing in simulated random world without an error

In this case there is one extreme condition — a random
world. This means that the input environment presents set of
linked chaotic points. These points are very close to each other
so this world is an implementation of 2D random process. So
it is impossible to align scans to each other when there is
a huge robot offset (Ax, Ay, Af). There could be extremely
different view areas from observation points of this two scans.
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So in this case the scan matchers should find the zero offset
between two scans, but it depends on the random world.

The result of testing in this case is presented in the
Table IV.

TABLE IV. RESULTS OF TEST C
Scan Matcher Time Ax Ay A6
Monte-Carlo 0.3 sec 0 0 0
Olson 2.7 sec 0 0 0
Hough 0.8 sec - - 0.008

This result demonstrate the restriction for the Hough scan
matcher - because of an absence of straight lines or appearance
of some fractal areas on scan this scan matcher may calculate
the result with some error. However this error is about a
searching delta in implementation of algorithm and it can be
reduced as it was mentioned in a previous test.

Monte-Carlo and Olson scan matchers have performed the
same result as in the test A, so they are not sensitive to the
nature of the world if there is no error in odometry.

D. Testing in simulated random world with an error

This case is the closest to real world. There is a random
environment and some odometry error. That means that the
input scans are so different that it is impossible to compare
each point of one scan to each point of another. Moreover,
the odometry error is added and two input scans become
absolutely different. Because of this difference a little error
in scan matcher’s output may be presented. It is impossible to
get rid of this error but the focus is to minimize it.

The result of testing in this case is presented in the Table V.

TABLE V. RESULTS OF TEST D
Scan Matcher Time Ax Ay AO
Monte-Carlo 0.3 sec 0.08 0.09 0.05
Olson 2.7 sec 0.0005 0.0004 0.001
Hough 0.8 sec - - 0.016

This result shows the main difference between random
search of Monte-Carlo, brute force of Olson and searching
in another space of Hough scan matchers. If the amount of
steps in Monte-Carlo is not enough, the best position will not
probably be found.

In this test the best result is performed by Olson scan
matcher, but the cost of this profit is considerable. In SLAM
algorithm it is undesirable to spend so much time on localiza-
tion, despite the fact that the accuracy is very high.

E. Testing on real datasets

There is no opportunity to get quality estimation of scan
matching performance, as there is no information about error
(€2,&y,&0)- So there is a test on a real data sequence got
from [7]. And as the result of scan matcher work there are
the map built in SLAM task. If a map has the sharp bound, it
means that the scan matcher completed its execution correctly
without mistakes. The more blur is visible on a picture the
more mistakes have been done by scan matcher.

There are four maps below. On Fig. 6a you can see the
result of building map during tinySLAM performance without
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(a) The map built using only odometry data

(b) The map built using Hough scan matcher

(c) The map built using Olson scan matcher

Fig. 6. Maps built with different scan matchers

any scan matcher. That means that instead of localization the
robot pose was calculated using only odometry. As you can see
a map is pretty well, so the odometry has not many mistakes.
But in the top of a picture there is a split of lines, that appeared
falsely.

On Fig 6b there is a map built after including the Hough
scan matcher in SLAM process. Mistakes in building this
map can be explained by appearance of oscillation in angle
correction during scan matching. It is hard to explain or to
predict this oscillation.

The map that was build after including Olson scan matcher
in SLAM process is presented on a Fig. 6¢c. As the scan
matching takes a lot of time in this case, the solution to
decrease the quality was taken. This helped to finish a process
in the appropriate time.

Finally on a Fig 6d there is the map built using Monte-
Carlo scan matcher. The result of this SLAM is the most
accurate and it can be explained by the fact that the odometry
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(d) The map built using Monte-Carlo scan matcher

error was little. That is the reason why SLAM with Mote-Carlo
scan matcher completed both fast and accurate.

On Fig. 7 - 9 the robot trajectories are presented depending
on the used scan matcher. Every trajectory was superimposed
on the odometry, so the differences could be matched. Monte-
Carlo scan matcher shows the best result, because on a Fig 9
it is shown that the begging and the ending of robot moving
coincide.

V. CONCLUSION

Scan matching is an important part of Simultaneous Lo-
calization and Mapping process and a choice of scan matcher
should be very elaborate. In case of real time performance the
step of localization have to proceed quickly and accurate. And
there is a classic discussion between a high speed of taking a
decision and an absence of errors.

In this paper three scan matchers are considered from both
of these points of views. The result of this researched shows
that the choice of scan matcher depends in conditions of usage.
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Fig. 7. Groundtruth built by odometry or with usage Hough scan matcher
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Fig. 8. Groundtruth built by odometry or with usage Olson scan matcher

For example if it is known that the world consists of long
straight lines the best idea is to choose Hough scan matcher.
If nothing is known about the world and a lidar scan except of
an approximate value of an error, it is possible to use Olson
scan matcher.

But it would be honest to admit that Monte-Carlo scan
matcher shows the best result when it is included in SLAM.
That means that on real data where an error of lidar scan
or odomerty is unknown, Monte-Carlo is the most preferred
among tested scan matchers. However the gotten results de-
pends on MIT datasets and some other datasets may be not
such accurate. For these cases the only opportunity to get a
correct result is to choose another scan matcher and spend
more time on localization.
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Fig. 9. Groundtruth built by odometry or with usage Monte-Carlo
scan matcher
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