
Smart-M3 CuteSIB Demo for a Wireless Router
with OpenWrt-Based Firmware

Sergey A. Marchenkov, Dmitry E. Baganov, Dmitry G. Korzun
Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia

{marchenk, baganov, dkorzun}@cs.karelia.ru

Abstract—The use of wireless technologies is now inevitable
in smart spaces development for Internet of Things. A smart
space is created by deploying a Semantic Information Broker
(SIB) on a host device. This demo studies the opportunities
of a wireless router as a SIB host device. CuteSIB is one of
SIB implementations of the Smart-M3 platform and focus is
on Qt-based devices. A cross-compiling method is used to build
CuteSIB installation packages for the routers operating with such
OpenWrt-Based firmware as DD-WRT. For the case study, we
consider the SmartRoom system—a Smart-M3-based application
that creates a virtual shared workspace in a multimedia equipped
room to support collaborative activity participants.

I. INTRODUCTION

Smart spaces are gaining relevance as promising deploy-
ment environments for novel classes of applications stemming
from the dynamic discovery and interaction between smart
objects and resources available in their physical localities.
The Internet of Things (IoT) supports ubiquitous connectivity
property for smart spaces [1], [2]. We consider smart spaces
deployed in localized resource-restricted IoT environments [3].
Such a smart space is typically associated with a physical
spatial-restricted place equipped with a variety of devices.

Smart-M3 platform provides software implementations for
such a central element of an smart space as Semantic Infor-
mation Broker (SIB) [4]. In this demo work, we study the
opportunities of a wireless router for being a SIB host device,
in contrast to more common case of server hosting. Such a
class of embedded devices can be evolved towards packaged
product composed of Smart-M3 software components (SIB and
some software agents) to advance the smart spaces deployment
in the wireless and resource-restricted settings of localized IoT
environments [5].

CuteSIB [6] is an implementation variant of Smart-M3 SIB
with the focus on a wide spectrum of Qt-based IoT devices.
Our previous work confirms that a single-board computer
(Raspberry Pi) capacity is enough to host both CuteSIB and
some search service operating with the public DBpedia service
from the Internet [7]. In this demo work, we consider a wireless
router to host CuteSIB. A wireless router is a low-capacity
device. Consequent compilation of Smart-M3 software com-
ponents is a slow process [8]. We introduce more effective way
for CuteSIB installation. The target class of wireless routers
is restricted with OpenWrt-Based firmware such as DD-WRT
using a cross-compiling method. Our solution is evaluated
based on a case study of the SmartRoom system [9].

The rest of the paper is organized as follows. Section II
describes our way for CuteSIB installation on wireless router

using a cross-compiling method. Section III discusses the
opportunities of a wireless router based on a case study the
SmartRoom system. Section IV summarizes our recent results.

II. CUTESIB FOR DD-WRT

A. Cross-compiling method

Cross-compiling of CuteSIB is performed for the ASUS
RT-N66U wireless router, which is the typical representative of
an embedded devices. The hardware specification of the router
is summarized in Table I. The router is well equipped to run
such OpenWrt-Based Firmware as DD-WRT. Mounting a USB
storage device via USB 2.0 port can solve the problem of lack
of memory providing nearly-unlimited space to install many
applications and libraries including the CuteSIB dependencies
and the application itself.

DD-WRT is a Linux based alternative OpenSource
firmware suitable for a great variety of WLAN routers and
embedded systems [10]. There is a project’s wiki page about
the ASUS RT-N66U with the firmware installation instruc-
tions [11]. It is required to choose the latest recommended
K3.X Broadcom build (at present, 26138 is a recommended
build) as USB support does not work in K2.6 builds.

The floating-point unit (FPU) emulation has been disabled
since revision 20047 of Kernel 3.x build [12], so Optware
packages from NSLU2-Linux [13] is not fully supported offi-
cially. Optware packages is currently in development for Ker-
nel 3.x builds [14]. In order to solve FRU emulation problems
OpenWrt packages for the brcm47xx platform with a MIPSel
architecture to be used [15]. Furthermore, OpenWrt packages
pre-compiled for the appropriate platform can be used for
different Openwrt-based firmwares providing portability.

The DD-WRT team works now to merge the code base of
DD-WRT with the OpenWRT firmware. Consequently Open-
WRT’s package management system (ipkg) is also applicable

TABLE I. ASUS RT-N66U WIRELESS ROUTER SPECIFICATION

Item Description
Platform Broadcom BCM4706

Target brcm47xx

Instruction Set MIPS32 74K series

Bootloader CFE

CPU 600 MHz

Flash memory 32 Mb

RAM 256 Mb

WLAN 2.4GHz b/g/n

WLAN 5.0GHz a/n

USB ports 2 x 2.0

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



for DD-WRT. Since ipkg is a command line program, SSH is
needed into the router to run this utility. The Journaling Flash
File System (JFFS) should be enabled. The following steps to
enable JFFS through the router web page.

1) On the router web page click on Administration.
2) Scroll down to JFFS2 Support section.
3) Click Enable JFFS2, Click Save.
4) Wait couple seconds, then click Apply.
5) Wait again. Go back to the Enable JFFS2 section,

and enable Clean JFFS2.
6) Do not click Save. Click Apply instead.
7) Wait till the process is completed, then disable Clean

JFFS again and click Save.
8) It may be wise to reboot the router, just to make sure.

JFFS is mounted on the USB drive, see DD-WRT project’s
wiki page [16]. After the preparation and partition of the drive,
USB support needs to be enabled on the router. Then the
following console commands are executed on the router to
mount the USB drive (data partition) to JFFS:

mount /dev/sda3 /mnt
mkdir /mnt/jffs
mount /mnt/jffs/ /jffs

In order to use ipkg, it is needed to create the folder
/jffs/tmp/ipkg. To assure that the install OpenWrt pack-
ages will run stable one must provide compatible OpenWrt
uClibc library. It is recommended to install the latest release
of uClibc library (version 0.9.33.2) manually.

The cross-compiling process consist of the following three
steps: (1) cross-compiling of Qt, (2) cross-compiling of de-
pendent libraries for CuteSIB, (3) cross-compiling of CuteSIB.
Cross-compiling of these program components on x86 systems
for a routers with OpenWrt-Based Firmware with building the
ipkg packages can be performed using the OpenWrt build sys-
tem, which is the part of the OpenWrt Software Development
Kit providing a set of Makefiles, utilities, and patches that
allows developers to easily generate both a cross-compiling
toolchain and a root file system for a wireless routers.

A ipkg package is built using the source code located in
the package subdirectory under the SDK directory. In order to
tell the OpenWrt build system how to build a package from the
source code, it is necessary to create a special BuildPackage
Makefile in the package directory with the source code. The
BuildPackage Makefile defines the meta information of the
package, where to download the package, how to configure,
how to compile, where to install the compiled libraries and
binaries, etc. The following command is executed in the SDK
directory to build a package example:

make package/example/compile

B. Required Qt modules

The latest release of Qt for embedded Linux can be
downloaded from the official site of the Qt project [17]. Qt
Core and Qt Network are necessary and sufficient Qt modules
for CuteSIB operation. Each module must be built as a separate
ipkg package using the OpenWrt build system. It is necessary

TABLE II. THE CUTESIB DEPENDENT LIBRARIES

Name Description Download URL
libxml2
(2.9.4)

Software C library for pars-
ing XML documents

http://xmlsoft.org/downloads.html

expat
(2.2.0)

Stream-oriented XML C
parser library

https://sourceforge.net/projects/expat

libiconv
(1.14)

Character encoding conver-
sion library

https://gnu.org/software/libiconv

python
(2.7.13)

Standard library that is dis-
tributed with Python

https://www.python.org/downloads

raptor2
(2.0.15)

Library that provides
parsers and serializers that
generate RDF triples

http://librdf.org/raptor

rasqal
(0.9.33)

Library that supports RDF
query languages

http://librdf.org/rasqal

redland
(1.0.17)

Library that provides the
RDF API and triple stores

http://librdf.org

to create the Qt package directory as described above with
all the required files. In order to cross-compile Qt modules
for a router with an MIPSel architecture the following way
of running the configure script at the BuildPackage created
Makefile is used:

./configure -arch mipsel -no-c++11
-xplatform linux-openwrt-g++ -no-strip
-make libs {other options}

Other options include disabling unnecessary parts of Qt
and setting the install paths of the binaries and libraries for
OpenWrt SDK. The qmake tool for Openwrt SDK requires a
specific qmake.conf and qmake.mk files located in Qt pack-
age directory. This files describe the platform configuration
variables, the qmake configure and compile options.

C. Dependencies

CuteSIB requires special libraries which are needed to
cross-compile it. The majority of dependent libraries are found
in the respective packages in the OpenWrt download area for
the appropriate release and platform, in this case, it is Attitude
Adjustment release and brcm47xx platform respectively. There
are some of the packages such as libdb, unixodbc, zlib, etc [18].
However, other dependent libraries are to be built from source
code with the OpenWrt build system. A list of these libraries
is summarized in Table II.

Each of these libraries relies on Autotools build system
which may lead to a number of problems in a cross-compiling
setting. OpenWrt SDK defines the following rules, that must
be added to the top of the library BuildPackage Makefile, to
help work around this problem:

PKG_FIXUP:=autoreconf
PKG_FIXUP:=patch-libtool
PKG_FIXUP:=gettext-version

The libraries should be compiled as a shared libraries. Code
that is built into shared libraries should normally be position-
independent code, so that the shared library can readily be
loaded at any address in router memory. The OpenWrt build
system can be instructed to generate position-independent code
using the -fPIC option in BuildPackage Makefile.

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 635 ----------------------------------------------------------------------------



TABLE III. THE CUTESIB SOFTWARE COMPONENTS

Component Description
AccessPointInterface It provides an interface for access points that is used

by CuteSIB. This interface is a factory to create access
point instances.

CuteSIB The SIB core contains some helper submodules and
implements commands processing.

DiscoveryAccessPoint This access point is used to discovery CuteSIB with
broadcast requests. UDP Discovery Protocol Handler
prepares information about CuteSIB and sends it back
for request.

HttpAccessPoint This access point handles HTTP SPARQL request
(GET/POST). With HTTP Access Point CuteSIB can
be accessed as a SPARQL-endpoint (e.g. DBPedia) with
query request support.

TcpAccessPoint This access point provides TCP access and is used as
main access point to communicate with CuteSIB.

TcpAsyncAccessPoint This access point provides TCP asynchronous access
and is used as additional access point to communicate
with CuteSIB.

D. Implementation

The CuteSIB implementation is based on the Qt frame-
work. The software components included in this Qt software
project are listed in Table III. CuteSIB have plug-ins based
architecture in order to achieve higher extensibility due to the
modular approach. All the access points are used as plug-ins.
The architecture allows inclusion/exclusion of certain plug-ins
in compilation phase or in runtime.

For cross-compiling of the CuteSIB software components
Cmake make system is used. CMake is a flexible alternative to
qmake for automating the generation of build configurations.
It controls the software compilation process by using simple
configuration files, called CMakeLists.txt files. The OpenWRT
build system provides abstraction for the suite of CMake tools
using include/cmake.mk file in the SDK root directory.

The CuteSIB project should have the BuildPackage Make-
file with cmake call in Build/Configure define section. Fur-
thermore, each CuteSIB component is to located in a separate
subcategory with the CMakeLists.txt file. The CuteSIB core is
built as an executable program using add executable cmake
command in CMakeLists.txt. The access point are built as
dynamic shared libraries using add library cmake command
with SHARED setting property.

After cross-compiling of the CuteSIB and all of its depen-
dencies, the prebuilt packages are copied onto the router by
using SSH. In order to install the packages on /jffs partition,
the following console command is used:

ipkg -d root -force-depends install <ipk>

To configure access points and RDF triplestore, the Cute-
SIB config file is used. The Triplestore section of the config
file contains contains the settings for type of triplestore, name
of database, and path where storage is located. Berkeley DB
is an efficient and fast database engine, which is a good
choice for the type of triplestore on embedded devices. In
case of a router, the access points are loaded into the CuteSIB
executable program as dynamic shared libraries. For instance,
the following section of the config file sets the parameters for
dynamic TCP access point:

[AccessPoint:tcp_ap10]

name=libTcpAccessPoint
path=/jffs/usr/lib/
parameters=port:10010

This way of CuteSIB installation is applied to a wide class
of wireless routers with OpenWrt-Based firmware. The prebuilt
packages can be used directly for a router with the same CPU
architecture without additional preparation steps.

III. APPLICATION DEMO STUDY

The demo uses the SmartRoom system [9], which is a
Smart-M3 service-oriented application for assisting such col-
laboration activity as conference or meeting. The system cre-
ates a shared SmartRoom space where services are constructed
by software agents running on embedded, mobile, and remote
devices. The agents are also called knowledge processors
(KPs) to specify the Smart-M3 focus on information sharing.
The SmartRoom space is deployed within the localized IoT
environment of a multimedia equipped room. The environment
is equipped with variety of devices connected to the local area
network created by the wireless router.

In the SmartRoom case study, we deploy CuteSIB on
the wireless router to create the SmartRoom space for the
core services and their clients, as shown in Fig. 1. The core
SmartRoom services provide the basic functionality associated
with automated holding of collaborative activities. Conference-
service dynamically maintains the activity program (i.e., con-
ference section or agenda of talks). The result is visualized
by Agenda-service. Presentation-service displays multimedia
presentations and videos related to talks of the participants.
Content-service keeps multimedia content which is used in
activity and provides the shared content in the SmartRoom
space. SmartRoom participants use their personal mobile de-
vices to access services via SmartRoom clients running on the
smartphone or tablet. Admin-client is used by the chairman and

Fig. 1. SmartRoom deployment with a wireless router to host the SIB

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 636 ----------------------------------------------------------------------------



provides activity control panel (e.g., the chairman controls the
slide show and other visualization).

In the basic case, the following devices are needed: several
local computers for data processing and service construction
control, large-format displays for visual service delivery, per-
sonal mobile devices of participants, and a wireless router for
the local network. The router is both CuteSIB host device
and wireless access point for other participating devices.
Conference-service is run along with Content-service on one
local computer. This computer acts as a server performing data
processing and providing web access to multimedia content.
Presentation-service, Agenda-service, and Admin-client run on
another local computer, which also serves the three displays.

The following equipment, application software compo-
nents, and utilities are used.

1) Router ASUS RT-N66U: Wireless router (see Ta-
ble I).

2) Two local desktops (CPU Intel Core i5, 4 GB RAM,
1 TB FlashRam, 100 MBit WAN): Hosting for the
core SmartRoom services.

3) CuteSIB ver. 0.5.0 (sourceforge.net/projects/
smart-m3/): Implementation of Smart-M3 SIB.

4) Core SmartRoom services (sourceforge.net/projects/
smartroom/files/services/).

5) Mobile SmartRoom clients for Windows Phone
or Android (sourceforge.net/projects/smartroom/files/
clients/).

6) pidstat: Utility to record workload data on the SIB
host machine.

7) SibTest: Utility for testing the SIB.

We evaluate the performance of the SmartRoom system.
The simulation testbed is shown in Fig. 1). The workload is
generated by 1 ≤ n ≤ 30 virtual clients, each has update rate
1 ≤ λ ≤ 200 operations per second.

On the computer with Conference-service and Content-
service a SSH connection with the router is established.
CuteSIB is launched on DD-WRT router. Utility pidstat is

Fig. 2. Testbed for experiments

Fig. 3. CPU Usage with increasing update rate λ of a virtual client

started on the router and measures the CPU Usage (%) and
Virtual Set Size (VSZ) memory (Mb).

Using utility SIBTest, n virtual clients are started to gen-
erate background read&write workload for the SIB with the
sum rate is nλ. The utility allows setting n, λ, and the number
of subscriptions.

One dedicated smartphone (Windows Phone or Android)
runs a real SmartRoom client to accesses the core SmartRoom
services. This activity goes in parallel with the background
workload generated by n virtual clients. In every demo ex-
periment, the SmartRoom client performs random user-driven
slide changing during 30 s.

The measured CPU Usage is shown in Fig. 3. With in-
creasing the number of clients, the router CPU quickly reaches
the capacity limit of 60%. The rest 40% are used by other
processes. In particular, the dropbear process is responsible
for the SSH connection (30 . . . 35%) and the DD-WRT system
processes (5 . . . 10%). This limit shows when the increasing
workload saturates the CPU capacity.

When the router has reached the 60% limit of CPU usage,
the SIB is overloaded with the stress workload. The number
of incoming requests becomes increasing faster than the SIB
can serve the requests, i.e., the SIB internal queue grows
monotonically till the exhaustion of the available memory.
Our experiments show that the CuteSIB process consumes
the available VSZ memory (300 Mb) in 8 . . . 10 minutes. The
standard RAM in router ASUS RT-N66U is 256 Mb. The
additional memory can be used from a flash card, similarly
the swap file technique in UNIX/Windows systems.

The behavior of CPU Usage in dependence on the number
of virtual clients is shown in Fig. 4. The router quickly reaches
the 60% limit, the available capacity is saturated, and the
SIB becomes overloaded. Nevertheless, the SIB still serves
the requests until the VSZ memory exhaustion. In fact, this
property confirms the high dependability level of CuteSIB,
compared with other Smart-M3 SIB implementations.

The processing time observable on the user side is shown
in Fig. 5. The real SmartRoom client is changing slides,
and the operation delay (i.e., the response time—the time to
complete a slide change) is measured (in seconds). Starting

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 637 ----------------------------------------------------------------------------



Fig. 4. CPU Usage with increasing number of virtual clients n

Fig. 5. Delay in changing slides from mobile SmartRoom client

from n ≈ 8 . . . 10 the delay becomes growing fast due to
the upcoming SIB overload. For 15 < n ≤ 30 (not shown
in Fig. 5) the delay becomes inappropriate for practical use.
Nevertheless, the case study shows that the router capacity
is enough for small collaborative activity with a dozen of
participants at most.

IV. CONCLUSION

This demo experimentally examined the opportunities of
a wireless router for being a Smart-M3 SIB host device.
First, we presented a technical solution to CuteSIB installation
on a wireless router with OpenWrt-Based firmware. Similar
solutions can be applied to install many other variants of Qt-
based middleware. Second, we experimented with a particular
case study of the SmartRoom system. Our study indicates
that router capacity is satisfactory for deployment of small
SmartRoom spaces.

ACKNOWLEDGMENT

This research is supported by the Ministry of Education
and Science of Russia within project # 2.5124.2017 of the
basic part of state research assignment for 2017–2019.

REFERENCES

[1] S. Balandin and H. Waris, “Key properties in the development of smart
spaces,” in Proc. 5th Int’l Conf. Universal Access in Human-Computer
Interaction (UAHCI ’09). Part II: Intelligent and Ubiquitous Interaction
Environments, LNCS 5615, C. Stephanidis, Ed. Springer-Verlag, Jul.
2009, pp. 3–12.

[2] L. Roffia, F. Morandi, J. Kiljander, A. D. Elia, F. Vergari, F. Viola,
L. Bononi, and T. Cinotti, “A semantic publish-subscribe architecture
for the Internet of Things,” IEEE Internet of Things Journal, vol. PP,
no. 99, 2016.

[3] D. Korzun, A. Kashevnik, S. Balandin, and A. Smirnov, “The Smart-
M3 platform: Experience of smart space application development for
Internet of Things,” in Internet of Things, Smart Spaces, and Next Gen-
eration Networks and Systems. Proc. 15th Int’l Conf. Next Generation
Wired/Wireless Networking and 8th Conf. on Internet of Things and
Smart Spaces (NEW2AN/ruSMART 2015), LNCS 9247, S. Balandin,
S. Andreev, and Y. Koucheryavy, Eds. Springer, Aug. 2015, pp. 56–
67.

[4] F. Viola, A. D’Elia, D. Korzun, I. Galov, A. Kashevnik, and S. Ba-
landin, “The M3 architecture for smart spaces: Overview of semantic
information broker implementations,” in Proc. of the 19th Conference
of Open Innovations Association FRUCT, S. Balandin and T. Tyutina,
Eds. FRUCT Oy, Helsinki, Finland, Nov. 2016, pp. 264–272.

[5] D. G. Korzun, I. V. Galov, and A. A. Lomov, “Smart space deployment
in wireless and mobile settings of the Internet of Things,” in Proc. IEEE
3rd International Symposium on Wireless Systems IDAACS:SWS, 2016,
pp. 86–91.

[6] I. Galov, A. Lomov, and D. Korzun, “Design of semantic information
broker for localized computing environments in the Internet of Things,”
in Proc. 17th Conf. of Open Innovations Association FRUCT. ITMO
University, IEEE, Apr. 2015, pp. 36–43.

[7] S. Marchenkov, A. Borodulin, D. Baranov, and D. Korzun, “CuteSIB
demo for Raspberry Pi,” in Proc. 18th Conf. Open Innovations Frame-
work Program FRUCT. ITMO Univeristy, Apr. 2016, pp. 545–545.

[8] S. Mikhailov, “Smart-M3 platform installation to DD-WRT-based Wi-
Fi router,” in Proc. 18th Conf. of Open Innovations Association FRUCT,
S. Balandin, T. Tyutina, and A. Levina, Eds. ITMO University, Apr.
2016, pp. 564–566.

[9] D. Korzun, I. Galov, A. Kashevnik, and S. Balandin, “Virtual shared
workspace for smart spaces and M3-based case study,” in Proc. 15th
Conf. of Open Innovations Association FRUCT, S. Balandin and U. Tri-
fonova, Eds. ITMO University, Apr. 2014, pp. 60–68.

[10] About DD-WRT. [Online]. Available: https://www.dd-wrt.com/site/
content/about

[11] (2016, Feb.) Asus RT-N66U. [Online]. Available: http://www.dd-wrt.
com/wiki/index.php/Asus{\ }RT-N66U

[12] (2012, Sep.) Trac: Changeset 20047. [Online]. Available: http:
//svn.dd-wrt.com/changeset/20047

[13] (2009, Oct.) NSLU2-Linux. [Online]. Available: http://www.
nslu2-linux.org/

[14] (2015, Dec.) OTRW2 (Optware The Right Way Take 2).
[Online]. Available: http://www.dd-wrt.com/wiki/index.php/OTRW2\
(Optware\ the\ right\ way\ Take\ 2)

[15] (2013, Jun.) Trac: Changeset 21807. [Online]. Available: http:
//svn.dd-wrt.com/changeset/21807

[16] (2015, Feb.) USB Storage. [Online]. Available: http://www.dd-wrt.
com/wiki/index.php/USB\ storage

[17] Qt Downloads. [Online]. Available: https://download.qt.io

[18] (2014, Jul.) OpenWrt: Wireless Freedom. [Online]. Available:
https://downloads.openwrt.org/attitude\ adjustment/12.09/brcm47xx

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 638 ----------------------------------------------------------------------------


