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Abstract—The fault mitigation for modern embedded systems 

developed by thin design rules (40 nm and less) is necessary 
feature due to accelerating aging and manufacturing defects, for 
which diagnosis during the chip testing at fabric is impossible. 
Different ways of spatial redundancy are used for fault mitigation 
in the SoC. They provide different achievable mean time between 
failures (MTBF). For various embedded systems a different 
lifetime is planned, therefore fault probability is required. 
Realization of these methods has different hardware cost 
(additional area on the chip). The area is one of most critical 
parameters for SoC in embedded systems and is strongly 
constrained. We propose the method for development of 
components’ spatial redundancy. Method is based on design space 
exploration (DSE). It allows to select design spatial redundancy 
with considering area constraints and fault probability 
requirements. 

I. INTRODUCTION 
Using of thin design rules for SoC allow to place a lot of 

different components on one chip. Therefore, the functionality 
of embedded systems grows dramatically. However, using of 
thin design rules is accompanied with accelerated aging and 
manufacturing defects that can not be diagnosed during the 
chip testing at the fabric [1].  Therefore manufactured by thin 
design rules SoC should include fault mitigation mechanisms 
[2, 3, 4].  

Different approaches of components spatial redundancy are 
used for SoCs [5], [6], [7], [8]. All approaches of spatial 
redundancy lead to increasing of SoC’s area. Area of spare 
components and the fault probability could be various for 
different approaches and depend on way of spare components 
placing. The required fault probability depends on planned 
embedded system lifetime. 

In many cases the smallest area overheads lead to smallest 
fault probability. However, dependency between these 
parameters is very complex. It is determined by scheme of 
spare components integration into the system, by the size (area) 
of additional multiplexers that are used. These multiplexers 
themselves do not have redundancy, fault mitigation for them is 
not implemented, thus they could decrease achievable fault 
probability. 

Therefore the operating parameters of a developed 
embedded system strongly depends on selected approach for 
spatial redundancy in it. 

To solve the problem we propose a method of spatial 
redundancy selection that is based on design space exploration 
(DSE). Based on design space exploration methods are widely 
used for modern SoC development [9], [10], [11], [12]. The 
design space exploration of NoCs is commonly formulated as a 
constrained optimization problem [13]. This approach is used 
for different tasks (such as buffer size selection, arbitration 
rules selection and many others) that have high computation 
complexity. 

The N-dimensional design space is formed in the frame of 
this approach. Number of dimensions is equal to quantity of 
system parameters, for which values should be specified or 
constraint in the system design. 

In the 2nd section we consider the approaches to spatial 
redundancy for NoC components. In the 3rd section we 
represent proposed spatial redundancy method based on design 
space exploration. In the 4th section we describe obtaining 
scheme for the coordinate of the point on the area overheads 
axis. . In the 5th section we describe obtaining scheme for the 
coordinate of the point on the AXIS of fault probability. In the 
6th section we represent the ways of component’s redundancy. 

There are various approaches of building component spatial 
redundancy. We consider two most common ways of spatial 
redundancy as use cases: the whole component redundancy and 
slicing redundancy of subcomponents [1].  

Some spare components are included into the system, when 
the main component functionality is critical for the SoC (fig. 
1). Quantity of spare components is equal to number of errors, 
against which the system should be tolerant. Using of one spare 
component when the main component is failed allows to 
support the SoC functionality without degradation. 
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Fig. 1. The example of whole redundant structure 
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This approach essentially increases the SoC hardware cost 
(area), while the strong area constraints are typical for many 
embedded systems. Therefore, it is often impossible to provide 
redundancy for many components, which functionality is 
critical for the SoC. It significantly reduces operating 
parameters of the SoC when this approach is used, and 
essentially limits its scope. 

Also we consider another way of spatial redundancy in this 
paper. Realization of this approach would require less area. It is 
based on decomposition of a basic component onto 
subcomponents that are self-similar to the basic component. 

For most components whose inputs and outputs are bit 
vectors decomposition on self-similar sub-components may be 
used. These self-similar components will can process parts of 
input/output vectors. However implementation of self-similar  
sub-components involves additional overheads (with increasing 
of area and timing constraints). In NoC can be identified quite a 
number of types of components overhead for implementation 
of which as a group of components are not big. 

For example an arithmetic logic unit (ALU) component 
operates witch N-width operands can be constructed of M ALU 
subcomponents with N/M-width operands (fig. 2). Hardware 
cost of the ALU component realized “as whole” are equal to 
hardware cost of the ALU component constructed of 
subcomponents. 

Global_ALU

ALU 0ALU 1ALU 2ALU 3

Data or
Data vector

Data or
Data vector

 

Fig. 2. The example of ALU structure 

Also, the channel switch can be realized on base of channel 
switches with less quantity of ports (fig. 3) 
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Fig. 3. The example of switch structure 

For protection the component against one failure, we don’t 
need to duplicate whole component. We can include one spare 
subcomponent. Quantity of spare subcomponents should be 
equal to quantity of mitigated failures. 

Let’s consider inclusion of spare subcomponents into the 
component. The inclusion scheme for ALU is represented on 
fig. 4. The component Global_ALU consists of four 
subcomponents – ALU0 – 3 in this example.  

If we need to mitigate one fault, we should include one spare 
subcomponent ALU S (we denote modified ALU component - 
Global_ALU_R). ALU S should be used instead any of 
subcomponents (ALU0 – 3). Therefore, the Global_ALU_R 
includes multiplexors and interconnections that allow to 
transfer input date to inputs of base ALU sub-components and 
to transfer output date from these components to the global 
output instead of any base ALU. 

Output data

ALU (part2)

Spare
component

ALU (part3) ALU (part4)ALU (part1)

Input data

 Fig. 4. The spatial redundancy scheme on subcomponent layer 

Thus the spare subcomponent ALU_S, some multiplexers 
and interconnection lines are added in the basic structure of 
Global_ALU component for realization of this spatial 
redundancy way. 

The schemes of spare subcomponents inclusion for first and 
second approach are essentially differ, they have different area 
overheads. Using of these approaches allow to realize 
components that resist to equal quantity of faults.  

The multipliers, used for including of spare components are 
bottleneck for botch schemes. The considered approaches do 
not allow to mitigate faults in these multiplexers. Quantity of 
multiplexers and its area are various for different approaches, 
therefore fault probability will be different. 

In this paper we propose the components spatial redundancy 
method based on design space exploration. This method allow 
to choose spatial redundancy way correspondingly the area 
constraints and required fault probability. 

II. THE COMPONENTS SPATIAL REDUNDANCY METHOD BASED 
ON SPACE EXPLORATION.  

The design space for our problem includes two dimensions: 
fault probability and area overheads. 

Our method includes an algorithm used for building of 
points in the design space. The algorithm includes following 
main steps: 

1) Development of the basic structure (without spare 
components) and development of the structure with spare 
components for every considered spatial redundancy way. 

______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 691 ----------------------------------------------------------------------------



 

2) Evaluation of area for every component included into the 
structure. 

3) Evaluation of the area for the basic structure 

4) Evaluation of the area for the structure with spare 
components 

5) Evaluation of the area overheads that arises due spare 
components – obtaining the coordinate of the point on the area 
overheads axis 

6) Development of the Markov net for the structure with 
spare components 

7) Evaluation of probabilities to fail for the elements of 
Markov net correspondingly its areas and types. 

8) Evaluation of fault probability - obtaining the coordinate 
of the point on the fault probability axis 

III. THE COORDINATES OF THE POINT OBTAINED VALUES ON THE 
AXIS OF AREA OVERHEADS 

We introduce following notations: 

Sb – the area of base component  

Sc – the area of one subcomponent (self-similar to base 
component) for second way of spatial redundancy  

, 

where N – quantity of subcomponents in base component. 

Sr – the area of scheme with spatial redundancy, Sr1 – the 
area when first way is used, Sr2 – the area when second way is 

used. 

where  K – redundancy multiplicity 

Sm1 – the area of multiplexers  

Sh – the area overheads, Sh1 – the area overheads when the 
first way is used, Sh2 – the area overheads when the second 

way is used 

IV. THE COORDINATES OF THE POINT OBTAINED VALUES ON THE 
AXIS OF FAULT PROBABILITY 

To calculate ALU fail probability in time Markov chain 
were constructed. In [14] was described method of calculating 
Markov chain with discrete time. This method was used to 
calculate probabilities for constructed schemes. It need to be 
noticed that all calculations are made with discrete time. 

The following symbols are used in the schemes: 

pw – transferring probability to stay in W-state (work 
without failures) 

pwn – transferring probability  to move from state W to N-
state, where N – number of the failed ALU 

pwr – transferring probability to move from state W to state 
R, where R – state of reserve element or it’s multiplexor 
failure 

pf – transferring probability  to stay in F-state (system 
failed). As F is the finish state, and there are no ways from it 
this probability is equal 1 

pnf  - transferring probability to move from N-state to F-
state 

prf  - transferring probability to move from R-state to F-state 

pn – transferring probability  to stay in N-state 

Markov chain for the device with one fully redundant ALU 
is presented on fig. 5.       

     5.  
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Fig. 5. Markov chain for fully redundant ALU 

Calculations of fail probability for fully redundant ALU 
were made using equations that were described in [14]. 

Fig. 6 describes ALU with sliding redundancy, organized as 
combination of 2 ALU (2·8/2·16) that forms 1 ALU of 16/32 
input bit vector with 1 reserve ALU. 
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Fig. 6. Markov chain for ALU with sliding redundancy (2·8/2·16/2·32 with 
16/32/64 input bit vector) 
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Fig. 7 shows ALU with sliding redundancy, organized as 
combination of 8 ALU (8·8) that forms 1 ALU of 64 input bit 
vector with 1 reserve ALU  
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Fig. 7. Markov chain for ALU with sliding redundancy (8·8 with 64 input bit 
vector) 

Fig. 8 shows ALU with sliding redundancy, organized as 

combination of 4 ALU (4·4/4·8/4·16) that forms 1 ALU of 
16/32/64 input bit vector with 1 reserve ALU  
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Fig. 8. Markov chain for ALU with sliding redundancy (4·4/4·8/4·16 with 
16/32/64  input bit vector) 

Calculating transferring probabilities for sliding redundancy 
schemes new equations are needed.  

Probability pwn is equal ALU’s or it’s multiplexor’s 
probability to fail, or both of them.  

Probability pnf calculates as a number of combinations for 
other ALU/multiplexors to fail (5). To make equation easier 
multiplexors fails are added as logical ‘or’. From the area of 

components and sub-components point of view it’s enough to 
conclude the results of calculations for these schemes. 

where: 

 - transferring probability to move from N-state to F-
state 

 – not reserve ALU fail probability 

 – reserve ALU fail probability 

n – number of states in the scheme (excluding W  F states) 

k – minimal number of failed elements at which state 

transfers 

Probability pwf  may be calculated using equation (6) 

Since including multiplexors fail probability in reserved 
ALU it becomes different from the ALU components’ fail 
probability in case of sliding redundancy. Therefore, pwf may 
be calculated as (7) 

As a base probability to fail was used value 2·10-9 
multiplied on the total area of the ALU (or element of complex 
ALU) or multiplexor. 

V. EXAMPLE OF METHOD USING ON ALU COMPONENT 
The proposed construction of the redundancy options have 

been implemented and synthesized using Cadence RTL 
Compiler 16.1. As the result of compiler work areas of ALUs 
and multiplexors were obtained. Initially, the basic circuit 
elements were synthesized – ALU with 4/8/16/32/64 bit width 
of input/output vectors. ALU component was considered as 
“simple” (only sum operation) and “complex” (sum and 
multiplying operations) variant. Results of modeling and RTL 
Compiler work are presented in Table I. 

TABLE I SYNTHESIS OF BASE ALU COMPONENTS 

Input vector Bit 
Width Total Area for SUM Total Area for SUM 

& MULT 
4 2510 9100 
8 5600 51382 

16 11289 187211 
32 25034 633754 
64 61733 2407552 

 (5) 

 (6) 

 (7) 
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On the next step ALU were implemented as complex 
elements. Areas of complex ALU component constructed of 
2/4/8 subcomponents are presented in Tables II  III. 

TABLE II SYNTHESIS OF BASE “SIMPLE ” ALU CONSTRUCTED 
WITH SUB-COMPONENTS 

SUM
Input 

vector Bit 
Width 

Number of 
ALU 

ALU Bit 
Width Base Area Total Area 

16 4 4 2510 10040 
16 2 8 5600 11200 
32 4 8 5600 22400 
32 2 16 11289 22578 
64 8 8 5600 44800 
64 4 16 11289 45156 

TABLE III SYNTHESIS OF BASE “COMPLEX ” ALU CONSTRUCTED 
WITH SUB-COMPONENTS 

SUM & MULT 
Input 

vector Bit 
Width 

Number of 
ALU 

ALU Bit 
Width Base Area Total Area 

16 4 4 9100 36400 
16 2 8 51382 102764 
32 4 8 51382 205528 
32 2 16 187211 374422 
64 8 8 51382 411056 
64 4 16 187211 748844 

 

The charts on fig 9 shows the area ratio of ALU composed 
of a different number of ALU sub-components 

         
a) 16 bit ALU constructed with 2 8-bit ALU sub-components and 4 4-

bit sub-components 

        
b) 32-bit ALU constructed with 2 16-bit ALU sub-components and 4 

8-bit sub-components  

           

c) 64 bit ALU constructed with 8 8-bit ALU sub-components and 4 
16-bit sub-components 

Fig. 9. Difference between ALU constructed of different ALU 
sub-components with the same input vector width 

After synthesis results of base and complex ALU were 
received models of full redundancy and sliding redundancy 
were synthesized. Results of this synthesis for “simple” and 
“complex” ALU component with full redundancy are 
presented in Tables IV and V. 

TABLE IV FULL REDUNDANCY ALU SYNTHESIS OF “SIMPLE” ALU 

SUM 
Input 

vector Bit 
Width 

Total Area 
for SUM 

Number of  
MUX 

MUX 
Area 

Total Area 
with 

reserv 
4 2510 

1

1300 6320 
8 5600 2600 13800 
16 11289 5200 27778 
32 25034 10400 60468 
64 61733 20800 144266 

 

TABLE V FULL REDUNDANCY ALU SYNTHESIS OF “COMPLEX” 
ALU 

SUM & MULT 
Input 

vector Bit 
Width 

Total Area 
for SUM 
& MULT 

Number of 
MUX 

MUX 
Area 

Total Area 
with reserv 

4 9100 

1

1300 19500 
8 51382 2600 105364 
16 187211 5200 379622 
32 633754 10400 1277908 
64 2407552 20800 4835904 

 

Once redundant variant of full redundancy ALU was 
implemented. For this variant, it need one multiplexor in the 
scheme that is written in column Number of MUX. 

Results of sliding redundancy ALU synthesis for simple 
and complex ALU are presented in Tables VI and VII. Sliding 
redundancy needs one multiplexor for each ALU sub-
component. Therefore, column Number of ALU shows also 
number of used multiplexors. 

 

16 SUM

4*4 2*8

16 SUM & MULT

4*4 2*8

32 SUM

4*8 2*16

32 SUM & MULT

4*8 2*16

64 SUM

8*8 4*16

64  SUM & 
MULT

8*8 4*16
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TABLE VI SLIDING REDUNDANCY ALU SYNTHESIS OF “SIMPLE” 
ALU 

SUM 
Input 
vector 

Bit 
Width 

Number 
of ALU 

ALU 
Bit 

Width 

Base 
Area 

MUX 
Area Total Area 

16 5 4 2510 1820 21650 
16 3 8 5600 2490 24270 
32 5 8 5600 3400 45000 
32 3 16 11289 4950 48717 
64 9 8 5600 4100 87300 
64 5 16 11289 6200 87445 

TABLE VII SLIDING REDUNDANCY ALU SYNTHESIS OF 
“COMPLEX” ALU 

SUM & MULT 
Input 
vector 

Bit 
Width 

Number 
of ALU 

ALU 
Bit 

Width 

Base 
Area 

MUX 
Area Total Area 

16 5 4 9100 1817 54585 
16 3 8 51382 2255 160911 
32 5 8 51382 2880 271310 
32 3 16 187211 5148 577077 
64 9 8 51382 4393 501975 
64 5 16 187211 4529 958700 
 

Based on the results of the synthesis charts were made that 
shows difference between area of full and slide redundancy for 
different width of input bits. 

 
Fig. 10. Dependence of used area by ALU with sum operation constructed 
with different number of ALU sub-components 

 
Fig. 11. Dependence of used area by ALU with sum and multiply operation 
constructed with different number of ALU sub-components 

Dependence between overhead and ALU component 
constructed with different number of sub-components is 
presented on a chart in fig. 8 and 9 for the slide redundancy 
ALU. 

  
Fig. 12. Dependence of overhead used area constructing ALU with sum 
operation and different number of ALU sub-components 

  
Fig. 13. Dependence of overhead used area constructing ALU with sum and 
multiply operation and different number of ALU sub-components 

The results of Markov chain calculations are presented on 
charts in fig. 13 and fig. 14 

Fig. 14. Dependence of Steps to fail from combination of ALU component 
construction (for “simple” ALU) 
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Fig. 15. Dependence of Steps to fail from combination of ALU component 
construction (for “complex” ALU) 

Charts shows dependence of the failure from the ALU area. 
Calculations were made until the value to stay in F-state will 
rich 0.1 value. This value was chosen for the convenience of 
calculations, but it’s enough to make conclusions of the  
method. 

CONCLUSION 
Selecting the NoC components redundancy scheme method 

based on design space exploration is proposed in this paper. 
Application of method in two types of redundancy is 
presented. We considered ALU component as the use case of 
our method. The proposed method may be used in other 
variants of components redundancy. It can be also applied for 
redundancy of different components’ types (that are 
combinational schemes). 

Our directions for further work are: 

Constructing mathematical models for evaluation 
of the system with 2 and more redundancy sub-
components with different variants of  
redundancy; 

Research and evaluation of redundancy schemes at 
the level of topological design. 
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