
Synthesis of Neurocontroller for Multirotor
Unmanned Aerial Vehicle Based on Neuroemulator

Sergey Andropov, Alexei Guirik
ITMO University

Saint-Petersburg, Russia
Andropov.Sergey1@gmai.com, avg@corp.ifmo.ru

Line 4 - Author1, Author2@domain.edu

Mikhail Budko, Marina Budko
ITMO University

Saint-Petersburg, Russia
{mbudko, mbbudko}@corp.ifmo.ru

Author3@domain.edu

Abstract—This paper presents a method of creating a
neurocontroller based on a multilayer perceptron for an
unmanned aerial vehicle. We show how a neural network can
effectively emulate dynamic characteristics of an aerial craft.
Another network learns to control the emulator, using
backpropagation algorithm to calculate the error in its control
signal. A set of parameters is used to analyze the efficiency of the
stabilization and the weights of the neurocontroller are adjusted
accordingly. It is shown that the system meets stabilization
requirements with sufficient number of iterations. Described
method can be used to remotely control unmanned aerial vehicles
operating in changing environment.

I. INTRODUCTION

An ability to solve a wide array of tasks is one of the
distinct advantages of small scale multirotor unmanned aerial
vehicles (UAV). Applications of UAVs range from aerial
reconnaissance to warfare operations. Because of this, UAVs
have to deal with different kinds of environments and, as a
result, with unpredictable turbulences. Such conditions, even
despite the possible geometrical simplicity of the craft, make it
difficult to properly control and stabilize a flying vehicle [1],
[2].

One of the most popular ways of stabilizing a multirotor
UAV is a Proportional-Integral-Derivative (PID) controller.
However, even with proper tuning a PID controller is unable
to account for all non-linearities that influence the behavior of
the craft.

A promising way to address these problems is to use
artificial neural networks (ANN) [2], [3]. Replacing a
traditional PID controller with a neural network makes it
possible for the system to adapt to changing conditions, as
well as optimize the performance of a control scheme in a way
that is not achievable for a conventional controller.

One of the feasible applications of artificial neural
networks is using the network to tune the coefficients of a PID
controller [11]. However, such systems are inherently limited
by the abilities of the controller itself. Another downside to
this approach is the inability to change the target’s
performance parameters. For example, a quick, responsive
craft requires a different set of coefficients compared to a
more stable, but slower one. Usually, these qualities are only
empirically described.

These and other problems can be solved by using artificial
neural networks. Generally, neurocontrol is used in two
distinct ways: direct and indirect. Direct control includes
inverse neural emulators, predictive control techniques and
adaptive critics [4], [5], [6]. Indirect control involves hybrid
methods and parallel neurocontrol [7].

We propose a method of emulating the object and using it
to teach an adaptive neurocontroller, which satisfies a set of
requirements such as overshoot, settling time, steady-state
error and rise time. The results show an increase in the quality
of control and reduction of the amplitude of damped
oscillations compared to a conventional PID controller.

The remainder of this paper is structured as follows.
Section 2 describes the aerial vehicle and the control loop.
Section 3 presents the design of neuroemulator, learning
algorithm and neurocontroller application scheme. In section 4
we present the results of training experiments.

II. CONTROL LOOP AND STABILIZATION OBJECT

PID control is the most common control algorithm used in
industry. It is applicable to a wide range of operating
conditions.

A control system functions in a loop, in which it acquires
sensor data and calculates the error between current state and a
set point. Based on that error it computes control signal and
applies it to the system. This type of control system is known
as a closed-loop system, or a feedback control system. A PID
controller takes sensor data and computes the desired actuator
output by calculating proportional, integral, and derivative
responses and summing those three components to compute
the output. All computations required are linear, can be
optimized and do not take significant processing power.

We experimented with a small four rotor UAV of our own
design [1]. Its layout is shown in Fig. 1.

Fig. 1. Quadcopter layout

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

This aerial craft uses a gyroscope, accelerometer and
magnetometer to determine its position in a 3 dimensional
space. It does so by computing roll, pitch and yaw angles. The
movement of quadcopter is controlled by changing the rotation
speed of rotors.

Stabilizing an aerial vehicle with PID controller requires
several variables – current angle error (difference between an
actual and a desired tilt angle of UAV), angular speed and
accumulated error. Each variable is processed with its own
coefficient and has a different impact on the controller's
output. Controller that is used for stabilization by roll angle
(roll controller) is identical to pitch controller and they often
are configured simultaneously and share coefficients,
however, coefficients for yaw controller generally differ.

Tuning a PID controller involves changing coefficients of
proportional, integral and derivative parts of the controller.
There are multiple methods of tuning the PID-controller
coefficients [10]. However, a number of these requires a
precise mathematical model of the control object; methods that
do not use a model have their own disadvantages, such as still
needing a manual tuning after the algorithm adjusted the initial
values. Thus, PID tuning is often done manually by changing
the coefficient's value for each component and observing the
UAV's response to the change.

Without any external disturbance, a well tuned PID-
controller can stabilize a UAV while avoiding using excessive
resources. However, in a real world scenario the system needs
to be more agile and able to adapt to ever changing conditions.
Any change in the external (temperature, wind, atmospheric
pressure), or internal (weight, geometry) environment might
cause a set of coefficients to be sub-optimal. Additional tuning
will be required, which is difficult to do on the fly.

III. NEURAL NETWORK ARCHITECTURE

An artificial neural network is a computational system
inspired by the way biological organisms, such as the human
brain, process information. A neural network does not follow a
linear path; instead, any input data is processed in parallel
through a set of nodes. These nodes are called “neurons”.

The most important aspect of a neural network is its ability
to adjust the way it processes the information through a
learning algorithm, thus changing the output. This is achieved
through modification of “weights” (which regulate the impact
of each connection on the final result) and “biases”.

It is known that neural networks are effective in
approximating an unknown non-linear function, if some
information about the function is provided [3]. They are
capable of finding patterns and trends within complicated or
imprecise data.

There are several ways of incorporating ANNs in neural
control: linear neurocontrollers, multilayer perceptrons,
recurrent neural networks [3], [4], [7].

Their qualities make it possible to use neural networks in
different ways:

pattern recognition;

adaptive control;

object emulation;

anomaly detection;

time series prediction.

In this work we use several multilayer perceptrons for two
distinct goals:

1) Emulating the control object

2) Creating a neurocontroller

A. Basic neural network structure

Fig. 2. Neural network scheme

Neural networks used in this work are feed-forward
networks, which means the signal travels in one direction –
from input to output. The output of any layer does not affect
that same layer.

Networks consist of several layers: input, output and one or
several “hidden” layers.

The input layer represents the raw information that is fed
into the network.

Second, "hidden", layer allows network's behavior to be
non-linear. The number of neurons within that layer and the
number of hidden layers itself can be chosen with different
techniques in mind and depends on the conditions of the task,
however, for relatively simple tasks one layer is usually
enough [9]. The number of neurons can be calculated as an
average between input and output neurons, but might be
increased.

Third layer is an output layer with one or several output
neurons, as per the task upon the network.

Each neuron in the hidden layer has an activation function
for producing non-linear output and propagating it forwards
through the network. We experimented with a number of
activation functions and found most activation functions
producing similar results in the rate of convergence and
computational load with small differences in the derivative
calculation and storage.

A sigmoid function was chosen:

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 21 --

where x is a sum of inputs xi with weights i and bias b:

Fig. 3. Sigmoid function

This function is bounded, easily differentiable, monotonic,
and produces a smooth output (Fig. 2). Small changes in input
coefficients (weights and bias) result in small changes in the
output of the function. Its output lies in [0;1] range, which
makes it useful in classification cases.

Another great quality of this function is that its derivative:

can be easily computed since we can save the result of the
function while propagating the input signal through the
network. The derivative of the sigmoid function is used later in
backpropagation, and storing it reduces processing time.

For the output layer we use a linear activation function,
since the output of the network lies outside of the sigmoid’s
function range. A linear activation function is equal to its
input. As a result, it is not bound and can produce any value.

B. Network learning algorithm

One of the most common training algorithms for artificial
neural networks is backpropagation [8]. This algorithm can
optimize weights and biases in a multilayer network.

The backpropagation algorithm uses gradient descent
method to look for the minimum of the error function. A
solution is thus the combination of weights that minimizes the
error.

First, the input information is presented to the network and
propagated forward until it reaches the output layer. Then the
desired and actual outputs are compared and the error for each
output neuron is calculated. This error is propagated backward
through the network, thus giving the error for each neuron in
all hidden layers. Using these values, a backpropagation
algorithm can update weights and biases.

In order to use this method, we need a training set
consisting of n ordered pairs of multidimensional vectors

, in other words – input and output
patterns. This dataset maps several inputs to outputs,
establishing a pattern for the neural network to learn.

Initial weights and of the network are selected at
random. When input xi is presented to the network, it is

propagated through the network, producing an output oi. The
goal of the training algorithm is to make the output oi close or
identical to the desired output ti for each input. This is done by
minimizing the error function:

First, the error signal in the output layer k is calculated:

(1)

where is a derivative of the activation function. For
the output layer this derivative equals 1.

The weights of the output layer are adjusted according to:

(2)

where is the input from a neuron in the previous layer
(i.e. the output of the relative neuron in the hidden layer), is
the learning rate. This learning rate is typically a small number
(eg. 0.004), regulating the speed at which the weights are
adjusted. Higher learning rate values may cause the network’s
outputs to oscillate around the target, thus never converging on
a solution; small values might cause the learning process to be
very slow.

It is worth noting that the gradient descend method has a
downside in that it might get “stuck” at the local minimum of
the error function. In order to get over the “small hill” and
continue moving toward a global minimum, we can modify
the equation (2) as follows:

where is a momentum factor. The introduction of the
momentum accelerates the learning process by keeping track
of the previous changes, thus allowing the algorithm to move
in larger steps. The faster movement prevents the network
from settling in a local minimum by helping it move past the
“hill”.

The error signal for the nodes in hidden layer is calculated
in a similar way to the output layer.

where is the weighted error signal. A derivative of
the activation function for the hidden layer is:

therefore

(3)

Weights of the hidden layer are updated in the same way as
the weights of the output layer:

Biases of both layers are updated in a similar way as
weights:

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 22 --

C. UAV emulation

Before training our neurocontroller, we first create a neural
network that is able to behave like the target object.

Training a neural emulator of the object involves collecting
a dataset of object’s states, inputs and corresponding outputs.
A neural network that has the same number of inputs and
outputs is created, with one hidden layer and a configurable
number of neurons. As mentioned before, the number of
hidden neurons depends on the particular task and could be
determined empirically. After experimenting with different
number of neurons we chose 11 nodes in the hidden layer, as
this particular number allowed the network to converge on the
solution relatively fast and with acceptable precision.

The network has 3 inputs – a control signal, current state,
which in our case is the tilt angle, and current speed. After
processing the inputs, the emulator returns the resulting state
and speed of the system.

An important note here is the fact that we use the same
model for roll and pitch angles, since the dynamics of these
angles in the real UAV are nearly identical and often the same
set of PID coefficients is used for controllers of both angles. A
separate model for the yaw angle should be used. The method
of training the neural network to emulate the UAV on yaw
angle is identical to the one used for roll/pitch angles,
therefore in the scope of this article we will only present
experiment results for the latter.

Training is done in the following way: we collect flight
data from the real quadcopter and separate it into the training
set and the testing set. Using backpropagation algorithm, we
train the neural network to match the outputs of the real craft.
After multiple iterations and when the squared mean error (4)
is below the acceptable threshold, the model is tested with the
values that were not present in the training set to determine
how well the emulator represents the target object.

(4)

The process is represented in Fig. 4.

Fig. 4. Neural network UAV emulation

The initial state Z0 of the UAV is passed to the neural
network along with the PID control signal. The network

produces a new state Zn, which is then compared to the actual
state Zk+1; the error is backpropagated through the network and
its weights and biases are adjusted. The process repeats until
the conditions of squared mean error being below the target
mark are met.

D. Neurocontroller initial training

The goal of this work is to create a controller capable of
adapting to the changing conditions, that satisfies a set of
requirements. Using a neural network makes adjusting the
neurocontroller attitude possible; this controller is also not
bound by the limitations of the PID algorithm.

In order to achieve a better stabilization response, we
increase the number of inputs that the controller takes. Aside
from the normal three inputs (current error of the angle,
angular speed and accumulated error), the neurocontroller also
takes acceleration and the desired rise time as input. The
output of the controller is the same output a PID algorithm
gives.

Having a neural emulator of the target object means we can
train the network without the risk of breaking the actual
vehicle. The learning process always starts with the object
being in a state z0; the goal of the controller is to drive the
vehicle to the desired state zd. While training, we set the initial
tilt angle of the model to 30 degrees on one of the axis with 0
angular speed. The desired state is set to 0 degrees and 0
angular speed. This means that after a period of t the controller
needs to drive the model to the desired state and stop there.
Any difference in the angle or the speed contributes to the total
error of the controller.

A controller stays the same within one stabilization cycle
for a period of t. Since initially it does not possess any
knowledge about how to control the model, we use a
conventional PID controller data to quickly train the
neurocontroller to stabilize the model just like PID algorithm
would. Thus, our neurocontroller training is done in two
phases. In the first phase it learns to behave identically to a
PID controller. Inputs not supported by PID algorithm are set
to zero in this phase.

z

up

un

PID

eNN

Learning
algorithm

Fig. 5. Neurocontroller initial training

A learning scheme is presented in Fig. 5. Since the PID
function has linear relation to its arguments, the network
converges on the solution relatively fast. After a number of
iterations the neurocontroller is capable of stabilizing the craft
on a level of a well tuned PID controller and is now ready to
be improved.

uk

zk+1

zn

Error

UAV

Neuroemulator

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 23 --

E. Neurocontroller tuning

A trained controller can be tuned further, using the
neuroemulator to test its performance. This is the second phase
of controller training.

Our goal is to modify the weights and biases according to
the final state of the model. To train the controller, we need to
know the error of the control signal; unfortunately, the only
available error is the difference between final state and the
desired state. However, since the vehicle model is a neural
network, we can backpropagate the error of the output layer all
the way back to the input layer, which means the controller’s
error can be acquired. The real vehicle cannot be used in this
way, because there is no data on the relation between its inputs
and outputs.

Using the equations (1) and (3), we translate the final state
error to the neurocontroller output error. Figure 6 represents
the training process. This method was suggested by Derrick H.
and Bernard W. [3] and is a very effective tool to bypass the
usual limitation of the backpropagation algorithm – obtaining
a proper labeled dataset. Since normally there is no particular
data on how exactly the object should be moving at each point
in time, training the neurocontroller is difficult as we do not
have the information required to compute the error signal for
all layers. However, with this approach a controller will learn
the optimal way to get to the target by itself, using the data
from the emulated vehicle to acquire its own error.

Fig. 6. Neurocontroller training with neuroemulator

IV. RESULTS

Neurocontroller showed promising results in learning to
control the emulated model of quadcopter. As mentioned
earlier, the training was done in two phases: first, we created
functional PID analog; second, using algorithm described in
section 3, we tuned the neurocontroller further. A set of
requirements was chosen for the network to meet: overshoot
less than 10% of the initial angle, rise time of 1 second,
settling time of 1.5 seconds and the steady-state error of 0.1%.
Final test involved stabilization in changing external
conditions, which were generated artificially by applying a
random changing force to the craft model.

After the first phase, the neurocontroller behaved nearly
identically to conventional PID, which is shown in Fig. 7.

In the second phase the network started to receive the
error, propagated backwards through the neuroemulator, and
adjusts its weights accordingly. Initially after 1000 iterations
the network appeared to give worse results (Fig. 8), however

after 100000 and 200000 of iterations it showed visible
improvement (Fig. 9 and 10).

Fig. 7. PID and neurocontroller comparison

Fig. 8. Neurocontroller stabilization after 1000 learning iterations

Fig. 9. Neurocontroller stabilization after 100000 and 200000 learning
iterations

It is apparent that introduction of new inputs throws the
neurocontroller off initially. Nonetheless, with small learning
rates the neural network is capable of adapting to the new
conditions.

It is important to note that, while the number of iterations
required for the training process may seem large, the actual
computational load in flight is significantly lower, since the

Z0
U0 U1Z1 Zn

Zd
En

Zn-1
Un-1

N NN

Error

O OO

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 24 --

controller is already tuned and only needs minute adjustments.
Most of the initial training for the neurocontroller can be done
on the emulated object, and the emulation training process
only requires flight data from the real UAV.

Flight tests were done using the ARM32 Cortex-M3
80Mhz processor. It proved more than capable of handling 2
neural networks (for yaw and pitch/roll stabilization), as well
as other functions required for remote control.

It can therefore be concluded that the presented method of
using a neurocontroller based on a multilayer perceptron is an
effective way to build a flight controller for a multirotor UAV.

Future work will be focused on the optimization of the
learning algorithm and reduction of time required for network
training.

V. CONCLUSIONS

Mechanical simplicity of UAVs comes at a cost of
increased controller complexity. Quadrotors, unlike certain
other aircrafts, are inherently unstable and highly sensitive to
small changes in rotor speeds. In this paper, we presented a
controller based on artificial neural networks. Initially the
neurocontroller learns to control the aircraft similarly to PID
algorithm. The neuroemulator is used to further tune the
controller, thus achieving better results, especially in the
presence of external turbulences.

ACKNOWLEDGMENTS

This work was supported by RSF grant 16-11-00049.

REFERENCES

[1] Belyaev S.S., Budko M.B., Budko M.Y., Guirik A.V., Zhigulin G.P.
"Functional design of flight and navigation controller unit for
multirotor unmanned aerial vehicle", Radio Industry, vol. 4, 2015,
pp. 77 – 87.

[2] Bobtsov A.A., Guirik A.V., Budko M.Yu., Budko M.B. "Hybrid
Parallel Neuro-controller for Multirotor Unmanned Aerial Vehicle",
Proceedings of 8th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT),
2016 – pp. 32-35.

[3] Derrick H. N., Bernard W. "Neural Networks for Self-Learning
Control Systems", IEEE Control Systems Magazine, Apr. 1990.

[4] Lendaris G.G. "A Retrospective on Adaptive Dynamic Programming
for Control", Proceedings of International Joint Conference on
Neural Networks, Atlanta, USA, June 14-19, 2009, pp. 1750 – 1757.

[5] Narendra K.S., Parthasarathy K.K. "Identification and control of
dynamical systems using neural networks", IEEE Transactions on
Neural Networks, 1990, vol. 1, pp. 4 – 27.

[6] Borisov O.I., Gromov V.S., Pyrkin A.A., Bobtsov A.A., Nikolaev
N.A."Output Robust Control with Anti-Windup Compensation for
Quadcopters", IFAC-PapersOnLine, vol. 49, Issue 13, pp. 287–292.

[7] Hagan M.T., Demuth H.B. "Neural networks for control",
Proceedings of the American Control Conference, San Diego, USA,
1999, vol. 3, pp. 1642 – 1656.

[8] Rojas R. Neural Networks. A Systematic Introduction. Berlin:
Springer-Verlag, 1996.

[9] Karsoliya S. "Approximating number of hidden layer neurons in
multiple hidden layer BPNN architecture", International Journal
of Engineering Trends and Technology, 2012, vol. 31, N6., pp. 714–
717.Rojas R. Neural Networks. A Systematic Introduction. Berlin:
Springer-Verlag, 1996.

[10] Ziegler J.G., Nichols N.B. "Optimum settings for automatic
controllers", Trans. ASME, 1942, vol. 64, pp. 759 – 768

[11] Evgenov A.A. "Neuro-controller of quadcopter control system",
Modern Problems of Science and Education, 2013, no. 5, p. 61.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 25 --

