
Computer-Aided Design System for On-board
SpaceWire Networks Simulation and Design

Yuriy Sheynin, Valentin Olenev, Irina Lavrovskaya,
Ilya Korobkov

Saint-Petersburg State University of Aerospace
Instrumentation

Saint Petersburg, Russia
sheynin@aanet.ru, {valentin.olenev, irina.lavrovskaya,

ilya.korobkov}@guap.ru

Sergey Kochura, Vadim Shkolniy, Dmitry Dymov

JSC "Academician M.F. Reshetnev" Information Satellite
Systems"

Zheleznogorsk, Russia
{kochura, shkolniy}@iss-reshetnev.ru, dymovdv@mail.ru

Abstract—The paper provides an analysis of existing
simulation tools for the on-board and local area networks. We
overview the main abilities of the existing software and then
propose the computer-aided design (CAD) system for SpaceWire
onboard networks design and simulation. This CAD system will
support the full on-board network design and simulation flow,
which begins from the network topology automated generation
and finishes with getting the simulation results and
statistics.

I. INTRODUCTION
Evolution of microelectronics has led to the growth of the

on-board networks and systems sizes. Modern on-board
networks consist of a huge number of computers, telemetry,
radio-transmitting and data transmitting devices, scientific
instruments and sensors and devices for electricity, heating
control, orientation and stabilization of a spacecraft.
Interconnection of these systems is done via the on-board
network with numerous devices that work at different
frequencies and data transmission speeds, transmit different
types of data with different intensity. Each data flow has
different Quality of Service (QoS) requirements. If there are
some errors in a channel, or a device is corrupted, important
scientific information could be lost. All these situations need to
be simulated and tested on networking models before the
assembling and launching a spacecraft. In the current paper, we
will overview the existing simulation tools for the on-board and
local-area networks and propose the architecture of a new tool
for the SpaceWire on-board networks design and simulation.

II. NETWORK SIMULATION TOOLS OVERVIEW
Network simulators allow researchers to test the scenarios

that are difficult or expensive to imitate in real world. It is
particularly useful to test new communication protocols or to
change the existing protocols in a controlled and reproducible
environment. Simulators can be used to design different
network topologies using various types of nodes. There are
different types of network simulators and they can be compared
on the basis of the following features:

range – from very simple to very complex,

ability to specify nodes and links between those nodes
and the traffic between the nodes,

ability to specify everything about protocols used to
handle traffic in a network,

graphical user interface – allows users to easily
visualize operation of their simulated environment,

text-based applications – permit more advanced forms
of customization;

programming-oriented tools – providing a programming
framework that customizes to create an application that
simulates the networking environment to be tested [1].

There are different network simulators with different
features. Some of them are commercial, which means that the
source code of the software or the affiliated packages is not
provided to users. All users have to pay to get a license to use
this software or pay to order specific packages for their own
specific usage requirements. On the other hand, open source
network simulators and their interfaces are completely open for
the developers.

Currently there is a number of tools and models that give an
ability to simulate the operation of communication networks,
but mostly these tools are intended for the Ethernet and Wi-Fi
networks. Some of network simulators are overviewed in the
current paper.

A. GloMoSim
Global Mobile Information System Simulator (GloMoSim)

is a scalable simulation environment for large wireless and
wireline communication networks. GloMoSim uses a parallel
discrete-event simulation capability. It simulates networks with
up to thousand nodes linked by a heterogeneous
communications capability that includes multicast, asymmetric
communications using direct satellite broadcasts, multi-hop
wireless communications using ad-hoc networking, and
traditional Internet protocols.

The node aggregation technique is introduced into
GloMoSim to give significant benefits to the simulation
performance. Initializing each node as a separate entity
inherently limits the scalability because the memory
requirements increase dramatically for a model with large
number of nodes. With node aggregation, a single entity can

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

simulate several network nodes in the system. Node
aggregation technique implies that the number of nodes in the
system can be increased while maintaining the same number of
entities in the simulation. In GloMoSim, each entity represents
a geographical area of the simulation. Hence, the network
nodes which a particular entity represents are determined by the
physical position of the nodes [2]. The GloMoSim user
interface is shown in Fig. 1.

Fig.1. GloMoSim user interface

It is built using a layered approach that is similar to the OSI
seven layers network architecture. Standard APIs are used
between the different simulation layers, to allow integration of
models developed at different layers by different people.
GloMoSim has drifted away from creating each of the OSI
layers as a separate entity to representing each node as a single
entity, with each layer being represented only by standard APIs
to initialize, finalize etc. This not only allows sharing of
memory areas that all OSI layers need to access, but also
allows for better performance, scalability and ease of
programming use. GloMoSim is thus perceived to be modular,
easy to use and flexible, besides maintaining a high degree of
detail [1].

B. QualNet
QualNet is the commercial flavor of GloMoSim, and has

additional implementations of layers/modules and features like
GUI based analysis tools. It runs on all common platforms
(Linux, Windows, Solaris, OS X) and is specialized in
simulating all kind of wireless applications. It has a quite clear
user interface while also offering an easy to use command line
interface [3]. The QualNet user interface is shown in Fig. 2.

QualNet is composed of the following components:

1) QualNet Architect: graphical scenario design and
visualization tool. In Design mode, it is possible to set up
terrain, network connections, subnets, mobility patterns of
wireless users, and other functional parameters of network
nodes. User can create network models by using intuitive,
click and drag operations, customize the protocol stack of any
of the nodes, specify the application layer traffic and services
that run on the network. Visualize mode gives an ability to
perform in-depth visualization and analysis of a network
scenario designed in Design mode. As simulations are
running, users can watch packets at various layers flow

through the network and view dynamic graphs of critical
performance metrics. Real-time statistics are also an option,
where you can view dynamic graphs while a network scenario
simulation is running.

Fig.2. QualNet user interface

2) QualNet Analyzer: a statistical graphing tool that
displays hundreds of metrics collected during simulation of a
network scenario. You can choose to see pre-designed reports
or customize graphs with their own statistics. Multi-
experiment reports are also available. All statistics are
exportable to spreadsheets in CSV format.

3) QualNet Packet Tracer: a graphical tool that provides a
visual representation of packet trace files generated during the
simulation of a network scenario. Trace files are text files in
XML format that contain information about packets as they
move up and down the protocol stack.

4) QualNet File Editor: a text editing tool.

5) QualNet Command Line Interface: Command line
access to the simulator [4].

Therefore, QualNet has a lot of benefits and useful
components, but unfortunately, it is a very expensive
solution.

C. OPNET
OPNET is a registered commercial trademark and a name

of product presented by OPNET Technologies incorporation. It
became one of the most famous and popular commercial
network simulators. Because of its use for a long time in the
industry, it has become mature and has occupied a big market
share. OPNET claims to be the fastest simulation engine among
leading industry solutions. It has a wide variety of niche
simulators for the wired/wireless areas. It also has many of
wired/wireless protocol and vendor device models with source
code, and allows object-oriented modeling of components.
Modeling environment is an hierarchical one and has a slightly
more complex method of definition of nodes as finite state
machines. They also have an optional System-in-the-Loop to

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 399 --

interface simulations with live systems. The simulator is
flexible and, therefore, allows integration with other libraries
and simulators. With help from a rich suite of integrated, GUI-
based debuggers and analyzers the setup, configuration can be
done. The OPNET user interface is shown in Fig. 3.

Fig.3. OPNET user interface

OPNET inherently has three main functions: modeling,
simulating, and analysis. In modeling, it provides intuitive
graphical environment to create all kinds of models of
protocols for modeling. For simulating, it uses different
advanced simulation technologies and can be used to address a
wide range of studies. For analysis, the emulation results and
data can be analyzed and displayed very easily for convince of
its users. User friendly graphs, charts, statistics, and even
animation can be generated by OPNET [1], [5].

D. NS-2

NS-2 is one of the most widely used network simulation
tools in the research community and is available as freeware.
Being an object-oriented discrete event simulator that follows
the layered approach, NS-2 is accompanied by a rich set of
protocols. Beside this NS-2 is also an emulator, and can talk to
real networks. However, to its disadvantage, it has a large
footprint, and is not very scalable. NS-2 also ranks low on the
flexibility and ease of use fronts. In addition, the process of
new protocols implementation is complex. It uses C++ and
OTcl script language. The NS-2 user interface is shown
in Fig. 4.

NS-2 separates control path implementations from the data
path implementation. The scenes can be changed easily by
programming in the OTcl script. When a user wants to make a
new network object, he can either create the new object or
assemble a compound object from the existing object library,
and plumb the data path through the object. This plumbing
makes NS-2 very powerful. Another feature of NS-2 is the
event scheduler. In NS-2, the event scheduler keeps track of
simulation time and release all the events in the event queue by
invoking appropriate network components [6].

Fig.4. NS-2 user interface

E. NS-3

Similar to NS-2, NS-3 is also an open source discrete-event
network simulator which targets primarily for research and
educational use. NS-3 is licensed under the GNU, GPLv2
license, and is available for research and development. NS-3 is
designed to replace the current popular NS-2. NS-3 is a new
simulator and it is not backward-compatible with NS-2. The
major differences lying between NS-3 and NS-2 is that it has
different software core (C++ and Python), protocol entities are
designed to be closer to real computers, lightweight virtual
machines are used. NS-3 is developing a tracing and statistics
gathering framework trying to enable customization of the
output without rebuilding the simulation core [1], [7].
The NS-3 user interface is shown in Fig. 5.

Fig.5. NS-3 user interface

F. OMNet++

OMNeT++ is a C++-based discrete event simulator for
modeling communication networks, multiprocessors and other
distributed or parallel systems. OMNeT++ is public-source,
and can be used under the Academic Public License that makes
the software free for non-profit use. omponents of
OMNET++ are defined by nested hierarchical modules in a
simple text based language which is easy to learn, while being

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 400 --

very expressive. OMNet++ offers an easy to use GUI for
graphical network editing, animation and configuring
simulation runs. OMNet++ has a basic output analyzer, which
can display collected statistics in graphical formats. However,
not many OSI-related models are implemented. Nevertheless,
its base infrastructure is very extensible, and it is easy to
modify. This offsets the lack of implemented models to a
certain extent. The models or modules of OMNeT++ are
assembled from reusable components as OMNeT++ is
designed to provide a component-based architecture. Modules
are reusable and can be combined in various ways which is one
of the main features of OMNeT++. The OMNeT++ user
interface is shown in Fig. 6.

Fig.6. OMNeT++ user interface

The OMNeT++ approach significantly differs from that of
NS-2, the most widely used network simulator in academic and
research circles: while the NS-2 (and NS-3) project goal is to
build a network simulator, OMNeT++ aims at providing a rich
simulation platform, and leaves creating simulation models to
independent research groups [1], [8].

G. SSFNet

SSFNet (Scalable Simulation Framework) is defined as a
“public-domain standard for discrete-event simulation of large,
complex systems in Java and C++”. The SSFNet standard
defines a minimalist API (which, however, was designed with
parallel simulation in mind). The topology and configuration of
SSFNet simulations are given in DML files. DML is a text-
based format comparable to user friendly graphs: charts,
statistics, and even animation can be generated by OPNET
XML, but has its own syntax. DML can be considered the
SSFNet equivalent of NED, however it lacks expressing power
and features to scale up to support large model frameworks
built from reusable components. SSFNet also lacks
OMNeT++'s INI files, all parameters need to be given in the
DML. The SSFNet user interface is shown in
Fig. 7.

SSFNet has four implementations: DaSSF and CSSF in C++,
and two Java implementations (Renesys Raceway and JSSF).

There were significantly more simulation models developed for
the Java versions than for DaSSF.

H. REAL

REAL is a network simulator originally intended for
studying the dynamic behavior of flow and congestion control
schemes in packet-switched data networks. It provides users
with a way of specifying such networks and to simulate their
behavior. It provides around 30 modules (written in C) that
exactly emulate the actions of several well-known flow control
protocols (such as TCP), and 5 research scheduling disciplines
(such as Fair Queueing and Hierarchical Round Robin). The
modular design of the system allows new modules to be added
to the system with little effort. Source code is provided so that
interested users can modify the simulator to their own
purposes.

Fig.7. SSFNet user interface

The simulator takes as input a scenario, which is a
description of a network topology, protocols, workload and
control parameters. It produces as output statistics such as the
number of packets sent by each source of data, the queueing
delay at each queueing point, and the number of dropped and
retransmitted packets. REAL includes a graphical user interface
written in Java. The GUI allows users to quickly build
simulation scenarios with a point-and-click interface [9].
However, REAL is pretty much old simulator, so mostly it is
not used for the serious modern projects.

I. J-Sim

J-Sim (formerly known as JavaSim) is a component-based,
compositional simulation environment, implemented in Java.
J-Sim is similar to OMNeT++ in that simulation models are
hierarchical and built from self-contained components, but the
approach of assembling components into models is more like
NS-2: J-Sim is also a dual-language simulation environment, in
which classes are written in Java, and glued together using Tcl
(or Java). The use of Tcl in J-Sim has the same drawback as
with NS-2: it makes implementing graphical editors
impossible. In fact, J-Sim does provide a graphical editor
(gEditor), but its native format is XML. Although gEditor can
export Tcl scripts, developers recommend that XML files are
directly loaded into the simulator, bypassing Tcl. This way,
XML becomes the equivalent of OMNeT++ NED. However,
the problem with XML as native file format is that it is hard to
read and write by humans. Simulation models are provided in

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 401 --

the Inet package, which contains IPv4, TCP, MPLS and other
protocol models.

The fact that J-Sim is Java-based has some implications. On
one hand, model development and debugging can be
significantly faster than C++, due to existence of excellent Java
development tools. However, simulation performance is
significantly weaker than with C++, and, moreover, it is not
possible to reuse existing real-life protocol implementations
written in C as simulation models [8]. Example of J-Sim gedit
application is shown in Fig. 8.

Fig.8. J-Sim gedit user interface

III. SPACEWIRE NETWORK SIMULATION TOOLS

Most of considered network simulation tools are related to
Ethernet and Wi-Fi networks simulation and unfortunately,
none of these tools can model SpaceWire networks. However,
this overview gives a good vision for the development of a tool
for the SpaceWire simulation, because it shows the useful
abilities and mechanisms, user-friendly GUIs and additional
features for the network operation analysis. In addition, let us
consider some tools that are specially developed for SpaceWire
networks modeling. Most of them are based on the OPNET
simulation framework. For these purposes OPNET was adapted
for the SpaceWire and updated with a list of specific modules
and network elements.

This way was chosen by Thales Alenia company, which
implemented MOST (Modeling of SpaceWire Traffic) [10] for
the European Space Agency. MOST based on the OPNET
toolkit dedicated to network modeling. The MOST library
contains SpaceWire nodes, routers and links which are selected
by the user to build the SpaceWire network topology thanks to
drag & drop actions. Configuration is done at the network level
thanks to a set of attributes attached to each network
component that can be tuned by the user. In MOST the
Building Block (BB) concept is used to identify different
communication layers in the node layout and it is in order to
offer to user a flexible simulation tool. For example, the
“SpaceWire standard BB” (or CODEC) is a SpaceWire node
interface, which ensures node physical connection to the

SpaceWire network with the data transmission management.
This “SpaceWire standard BB” is clearly separated from the
protocol “RMAP BB”. As a result, one BB can be enhanced
anytime without impacting others BB. Example of MOST
capabilities is shown in Fig. 9.

OPNET offers a tool to analyse simulation output. It
provides various ways to display each type of data. SpaceWire
traffic analysis is done based on observation of statistic
parameters such as: the end-to-end delay, the bottleneck
observation, packet size, packet latency or jitter, number of sent
and received packets, evaluation of the sustained bandwidth
and also buffers occupation. Observables are selected by the
user and it can be chosen to observe the data at the node level
(internally) or at the network level [9].

Fig.9. MOST user interface

Similar solution has been developed by Sandia National
Laboratories (SNL) [11], but it gives less abilities than MOST,
because it does not have an option to insert errors to the
transmitted data, which is not good for testing and verification.
The SNL team also used extension features within OPNET
Modeler to create a set of general purpose modules
representing different network elements or basic building
blocks for SpaceWire networks simulation. The modules
include models of SpaceWire nodes, routers, broadcast servers,
and links. These modules can be arranged to represent
networks during the design stage. Then, these networks can be
analyzed for the desired behavior.

The second ability of the tool is an in-depth analysis of the
accurate distribution of system time across the SpaceWire
network. To accomplish this task, the SNL team developed a
packet broadcast mechanism that would lay upon the standard
SpaceWire protocol. A representative SpaceWire network was
constructed within the OPNET Modeler simulation
environment. Based on this network representation, several
simulations were executed to study the behavior of the network
with respect to packet transmission time, jitter, and the
accuracy of distributed system time.

SpaceWire models provide a generalized tool for examining
network behavior and different network designs. The user
interface is very similar to MOST because of the OPNET
base.

However, there is a tool that is not based on the OPNET. It
is VisualSim SpaceWire modeling, developed by MIRABILIS
Design Company [12]. VisualSim is intended for end-to-end
system-level design. The graphical nature of the product and

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 402 --

the availability of the parameterized library, SmartBlocks,
make the tool easy to use, adopt and learn. VisualSim combines
DSP, Analog, Protocols and Digital Architecture in a single
simulation model. SmartBlocks are graphical representations of
hardware, software and networking components at queuing,
performance, transaction and cycle-accurate levels of
abstraction. VisualSim can be used for performance trade-offs
using metrics such as bandwidth utilization, application
response time and buffer requirements. Architecture analysis of
arbitration algorithms, component sizing, software instruction
optimization, hardware-software trade-offs and system
coverage. Therefore, VisualSim gives an ability to test the real
hardware SpaceWire devices, but it is not applicable for
prototyping of real onboard networks on early stages of the
project. The VisualSim user interface is shown in
Fig. 10.

Fig.10. VisualSIM user interface

Consequently, there are only three tools that give an ability
to build SpaceWire networks and to simulate their operation.
Two of them are based on the OPNET and use its capabilities.
Moreover, all these three tools are commercial and rather
expensive.

The SUAI team has good experience in network modeling
and building SpaceWire network models. In addition, we have
a tool, which is able to simulate basic SpaceWire networks and
transport-layer protocols – DCNSimulator [14].

The Digital Communication Network Simulator
(DCNSimulator) is a tool for design, system-level simulation
and analysis of networks. DCNSimulator is based on Qt and
SystemC. It consists of the simulation engine and libraries of
network components. The simulation engine is a general part
that could work for simulation of any network. Libraries of
network components are specific for particular network
standards and could represent network components at various
details levels – from general virtual components to cycle-
accurate models of particular devices. Simulated device models
are implemented in C++. Application software algorithms
could run at end nodes thus generating realistic traffic for the
simulated network. The simulator also allows users to design
networks graphically in MS Visio. The DCNSimulator runs in
Windows and does not require any other third party software
for its operation. The DCNSimulator user interface is shown
in Fig. 11.

The DCNSimulator with its library completely supports
SpaceWire networks. It implements all levels of the SpaceWire
standard (excluding signal and physical ones) and provides
models of a terminal node, a routing switch and a channel
(parameterized point-to-point link). Network models can be
composed of these models of network elements. It also
supports error imitation for channels and devices. With this
tool, SpaceWire networks can be analyzed at the levels of bit
flows, characters and packets. Therefore, one can analyze
control codes and data packets propagation, channel workload
and all errors occurred in channels. The simulator displays
appropriate charts, statistics and information about every
transferred code and packet.

We gathered the requirements for such kind of a simulation
tool from industry. Analysis of these requirements showed that
current version of the DCNSimulator also does not meet all
industry requirements. Therefore, we started redesigning the
existing tool in order to make it more useful and convenient in
application.

Fig.11. DCNSimulator user interface

IV. A NEW COMPUTER-AIDED DESIGN SYSTEM FOR THE
SPACEWIRE NETWORKS SIMULATION

To be useful for the needs of the large industrial companies
the following abilities should to be provided by the network
simulation tool:

Simulation of network models that are implemented
according to the SpaceWire and SpaceWire-RUS
standards. That means, it has to have GigaSpaceWire
extension;

Simulation of the protocols of transport and application
levels in nodes (at least RMAP [15] and STP-ISS [16]);

Simulation of fault tolerance and redundancy;

Simulation tool should be able to build a SpaceWire
network consisting of network regions;

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 403 --

Simulation tool should be able to save different
designed objects (like nodes or switches) into a separate
library that could be used for the other projects;

Simulation tool should be able to build and model a
network consisting of up to 1024 nodes.

Simulation tool should give an ability to provide such
simulation results like traffic between any two nodes,
latencies, packet delivery time, transmission errors,
channel bandwidth, etc.

 Therefore, we made a decision to update the DCNSimulator
with a number of new features that would give an ability to use
the simulation tool during the whole process of the spacecraft
onboard network design. This simulation tool would be a part
of a complex computer-aided design system. This system will
consist of four main components, and simulation tool would be
only the one of them. Therefore, we propose a new computer-
aided design system for SpaceWire on-board networks which
will support full on-board network design and simulation flow,

which begins from the network topology automated generation
and finishes with getting the simulation results, statistics and
different diagrams. CAD will include all the improvements and
extensions that are needed for the space industry. The proposed
architecture of the CAD system is shown in Fig. 12. Network
simulation tool is presented in the architecture diagram by the
Component #4 and will we implemented in SystemC.

Each node of the simulated network will include an
instance of the SpaceWire protocol and two transport layer
protocols: RMAP and STP-ISS – two main transport protocols
that are to be used in the Russian spacecraft. Switches in the
network will operate according to the SpaceWire (ECSS-E-ST-
50-12C [18]) and SpaceWire-RUS standards.

For some future implementations of the CAD system we
plan to give a possibility to add other space protocols to the
CAD system (e.g. SpaceFibre). For this purpose we will use
particular library for each protocol implementation, so that in
future we will be able to replace the SpaceWire for
SpaceFibre.

Fig. 12. A new computer-aided design system architecture

Visualization and graphical interface will be taken from the
VIPE project [17]. Architecture of the proposed CAD system
includes four main components:

A component for on-board network topology design and
estimation of its physical characteristics (based on
Design Space Exploration technique [19], [20], [21]);

A component for tracking of the routes for the data
transmission in a network;

A component for generation of the scheduling table for
the STP-ISS transport protocol for the transmission of
the data with Scheduled quality of service;

A component for simulation of the network operation
with all the data that component got from other 3
components and graphical user interface (majorly
redesigned DCNSimulator).

Graphical user interface (GUI) will provide the visual
network composition and management capabilities. It will
allow designing SpaceWire network topology in visual
interactive way from components. The component library is a

replenish set of network nodes and switches relevant to
physical devices that are available for network building. It may

also include flexible components if the developer wants to try
various combinations of network equipment.

For all nodes, switches and channels the GUI will provide
the configuration interface to set up their parameters, configure
transport protocols and application-level traffic generators.

The designed network will be exported to the intermediate
representation format to be used in other CAD tools for
simulator, routes tracking, scheduling calculation and other
tools. GUI will be also able to show simulation results both on
the network structure and on charts and diagrams.

All these difficult tasks are planned to be solved in the new
project. Implementation of such kind of a design and
simulation toolset will give an ability for spacecraft designers
to design the onboard SpaceWire network with all its technical
characteristics and features, distribute the data flows and
simulate it taking into account real latencies, channel
errors, etc. In addition, the toolset will present simulation
results in convenient and unambiguous form.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 404 --

VII. CONCLUSION
 In current paper, we overviewed existing simulation tools

for on-board and local-area networks and proposed the solution
of a new computer-aided design system for the SpaceWire
onboard networks design and simulation. This software will
solve important tasks, which spacecraft developers face with
during implementation of satellites and other space vehicles.
The CAD system will begin its workflow from the on-board
network topology design and estimation of its physical
characteristics. Then it will give an ability to track the routes
for the data transmission in a network and generate the
scheduling table for the STP-ISS transport protocol for data
transmission with Guaranteed QoS. After the network design is
finished – the last stage would be simulation of the network
operation with real characteristics. Graphical user interface will
provide possibilities to draw the network topology and set
different parameters of nodes, switches and channels. The
proposed software system would be a good assistant during the
spacecraft design, implementation and testing.

Fig. 13. SpaceWire network scheme in GUI

ACKNOWLEDGEMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under the contract RFMEFI57816X0214.

REFERENCES
[1] Mrs. Saba Siraj, Mr. Ajay Kumar Gupta, Mrs Rinku-Badgujar.

“Network Simulation Tools Survey”, International Journal of
Advanced Research in Computer and Communication Engineering,
Vol. 1, Issue 4, Wagholi, 2012, pp. 201-210

[2] J. Nuevo, “A Comprehensible GloMoSim Tutorial”, INRS -
Universite du Quebec, 2004, 34 p.

[3] T. Doerffel, "Simulation of wireless ad-hoc sensor networks with
QualNet", Advanced Seminar on Embedded Systems, Technische
Universitat Chemnitz, 2009, 16 p.

[4] SCALABLE Network Technologies, “Make Networks Work.
Network modeling software for Development and Analysis”, QualNet
Datasheet, 2014, 4 p.

[5] Hou Jianru, Chen Xiaomin, Sun Huixian, “An OPNET Model of
SpaceWire and Validation”, Proceedings of the 2012 International
Conference on Electronics, Communications and Control, Zhoushan,
2012. pp. 792-795

[6] T. Issariyakul, E. Hossain, “Introduction to Network Simulator NS2”,
Springer Science+Business Media, 2012, 512 p.

[7] NS-3 Manual, “NS-3 Network Simulator”, 2017, 165 p.
[8] A. Varga, R. Hornig "An overview of the OMNeT++ simulation

environment", Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops, Marseille, France, 2008.

[9] S. Keshav, “REAL: A Network Simulator”, University of California,
Berkley, 1988, 16 p.

[10] B. Dellandrea, B. Gouin, S. Parkes, D. Jameux, “MOST: Modeling of
SpaceWire & SpaceFiber Traffic-Applications and Operations: On-
Board Segment”, Proceedings of the DASIA 2014 conference,
Warsaw, 2014.

[11] Thales Alenia Space, “Modeling Of SpaceWire Traffic”, Project
Executive Summary & Final Report, 2011, 25 p.

[12] B. van Leeuwen, J. Eldridge, J. Leemaster, “SpaceWire Model
Development Technology for Satellite Architecture”, Sandia Report,
Sandia National Laboratories 2011, 30 p.

[13] Mirabilis Design, “Mirabilis VisualSim data sheet”, 2003. 4 p.
[14] A. Eganyan, E. Suvorova, Y. Sheynin, A. Khakhulin, I. Orlovsky,

“DCNSimulator – Software Tool for SpaceWire Networks
Simulation”, Proceedings of International SpaceWire Conference
2013, 2013, pp. 216-221.

[15] ESA. Standard ECSS-E-ST-50-52C, SpaceWire — Remote memory
access protocol. Noordwijk : Publications Division ESTEC, February
5, 2010.

[16] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, D. Dymov
“STP-ISS Transport Protocol for Spacecraft On-board Networks”,
Proceedings of 6th International SpaceWire Conference 2014
Program; Greece, Athens, 2014. pp. 26-31.

[17] Syschikov, A., Sheynin, Y., Sedov, B., Ivanova, V. “Domain-specific
programming environment for heterogeneous multicore embedded
systems”, International Journal of Embedded and Real-Time
Communication Systems, Volume 5, Issue 4. 2014, pp. 1-23.

[18] ESA (European Space Agency), “Standard ECSS-E-50-12C, Space
engineering. SpaceWire – Links, nodes, routers and networks”,
European cooperation for space standardization / ESA. Noordwijk:
ESA Publications Division ESTEC, 2008.

[19] K. Lahiri, A. Raghunathan, S. Dey "Design Space Exploration for
Optimizing On-Chip Communication Architectures", IEEE
transactions on computer-aided design of integrated circuits and
systems, Vol. 23, No. 6, 2004.

[20] F.B. Abdallah, C. Trabelsi, R.B. Atitallah, M. Abed. "Model-Driven
Approach for Early Power-Aware Design Space Exploration of
Embedded Systems", Journal of Signal Processing Systems, 2016, pp.
1-16

[21] Sheynin, Y., Suvorova, E., Syschikov, A., Sedov, B., Matveeva, N.,
& Raszhivin, D. Toolset for onboard networks design and
configuration. Proceedings of the 29-th Congress of the International
Council of the Aeronautical Sciences, ICAS 2014, 2014.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 405 --

