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Abstract—The paper proposes mathematical apparatus that 
can be used for wavelet analysis of compressed biomedical 
signals. As an example of biomedical signals, electrocardiogram 
and electroencephalogram are considered. A brief description of 
these signals is given. In the basis of the proposed algorithm of 
wavelet analysis of compressed biomedical signals lies the use of 
wavelet decomposition of the signal with the subsequent analysis 
of approximating coefficients of the set level with the use of 
continuous wavelet transform and synthesized wavelet. Below is 
suggested a brief description of the wavelet synthesis procedure 
for continuous wavelet transform as well as neural network and 
spline wavelet models proposed by the author. It has been 
practically proven that application of this algorithm allows us to 
compress electrocardiogram and electroencephalogram 8 times. 
In this case possibility to detect the target feature in biomedical 
signal based on the analysis results of the continuous wavelet 
transform. Noted, however, that the use of wavelet compression 
results in a loss of high frequency information in a signal. 
Therefore, the algorithm must not be applied in cases where the 
preservation of small fragments in a signal typical of high-
frequency components is very important. This algorithm can be 
applied in the implementation of wavelet analysis of biomedical 
signals system on mobile devices, where it is important to reduce 
the amount of stored, transmitted and / or processed  
information. 

I. INTRODUCTION 
Wavelets are widely used in the analysis of one-

dimensional signals, including biomedical. This is due to their 
main advantage – the possibility of use in time-frequency 
analysis. The widespread method in the analysis of one-
dimensional signals is algorithms based on continuous wavelet 
transform (CWT). The results received from continuous signal 
wavelet transform allow to accurately detect the feature 
location in the signal, and to determine its type. However, the 
continuous wavelet transform has a serious drawback – it 
requires high computational costs. Even with the power of 
modern element base it can limit the implementation of such 
systems in the form of mobile devices or lead to their 
considerable cost. 

Meanwhile, the mobile systems allowing to monitor the 
state of human health, at a high pace are becoming a part of our 
daily life. It can be a separate device or systems implemented 
as software installed on a smartphone or tablet. In the latter 
case, the user simply installs the application and, if necessary, 
connects the coupler. 

The advantages of the biomedical signal analysis system on 
a smartphone or tablet are: 

Possibility to use computing resources and the interface 
device 
In some cases, cost reduction 
The ability to ensure user secrecy etc 

Biomedical signals may include: 
Electroencephalogram 
Electrocardiogram 
Electrogastrogram 
Other signals 

Let us focus on the electroencephalogram (EEG) and 
electrocardiogram (ECG). The choice of these two types of 
signals is related to the fact that they allow monitoring the 
status of two major systems of the human body: the central 
nervous system (one of its components – the brain) and 
cardiovascular system (the heart). 

EEG analysis on a mobile device (a specialized device, 
smartphone or tablet) is much more complicated than ECG 
analysis. In particular, this problem is related to the correct 
placement of the electrodes on the patient's head. But this 
problem can be solved. It is necessary to change the concept of 
the electrodes. They can be performed in the form of small 
hairpins, grids, etc. Smart technologies can significantly reduce 
the number of EEG electrodes for express analysis.  

Mobile phone occupies more and more space in human life. 
Transmission of voice and text messages, storage and music 
playback, books, movies, games, etc. A person subconsciously 
wants to have everything you need in one device. In this regard, 
the development of mobile biomedical signal analyzing system, 
including EEG, can be justified. 

Analyzing the reference sources on wavelet analysis of 
biomedical signals, we can divide them into the following 
groups: 

1) Research papers dedicated to wavelet compression of 
biomedical signals. Typically, in such studies, discrete or 
packet wavelet decomposition can be used. Their main goal is 
to obtain the highest possible signal compression rate. Some 
papers [1] show research that has made it possible to obtain a 
signal compression more than twentyfold. Such results can be 
achieved with the use of threshold processing of decomposition 
coefficients. In fact, often most of the decomposition 
coefficients contribute insignificantly to the signal and do not 
need to be used in its reconstruction. Removing such 
coefficients allows us to obtain significant signal compression. 
However, from the details of research, it is not clear how the 
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signal restoration should be carried out. As a rule, the 
appearance of such coefficients is random. Therefore, in order 
to recover the signal, it is also necessary to store information 
about the serial numbers of the deleted coefficients. This will 
lead to a significant reduction in the real gain when 
compressing and complicating the algorithm. More universal 
methods are those based on discrete wavelet decomposition 
with the removal of all coefficients of a given type. They allow 
us to get a small but fixed compression rate. 

2) Research papers dedicated to the identification of 
information signs in a biomedical signal. In this case, as a rule, 
continuous wavelet transform and traditional wavelet families 
are used [2]–[4]. At the same time, the need to create new 
mother wavelets for continuous wavelet transform is often 
emphasized [5]. 

3) Research papers dedicated to the evaluation of 
characteristics of wavelet coefficients obtained after 
performing wavelet decomposition [1]. This research is focused 
on the specific nature of particular types of signals.  

In most types of research with the use of continuous 
wavelet transform, the problem of its implementation on 
element base with a limited computational resource and the 
ways to solve this problem are not considered. 

The author proposes a mathematical apparatus based on the 
use of continuous and discrete wavelet transform. It can be 
used for the implementation of biomedical signal analysis 
mobile system. This takes into account the basic requirements 
for such apparatus: 

High precision of biomedical signals analysis. 

Compression of the biomedical signal to enable 
compact storage or transmission to a remote computer 
for more detailed analysis (if necessary). 

II. BIOMEDICAL SIGNALS 
Electrocardiogram (ECG) is a multi-dimensional signal 

which can be recorded from the body surface and can serve as a 
basis for cardiac arrhythmias diagnosis [6]. 

Fig. 1, a) shows the basic form of a normal ECG.  

 

Fig. 1. Electrocardiogram: the basic form of a normal ECG a), 10-second-
length ECG fragment b) 

It includes [7]: P, Q, R, S, T oscillations which will also be 
called waves. Especially, you can distinguish the so-called 
QRS complex, which together form the respective waves. 

Fig. 1, b) shows a 10-second-length ECG fragment. Signal 
sampling frequency is 250 Hz. The fragment was downloaded 
from the electronic library of biomedical signals [8]. It will be 
used in the future to demonstrate the possibilities of the 
proposed mathematical apparatus. 

Electroencephalogram (EEG) is a signal that can be 
detected from the surface of a human head and is the result of 
brain neurons electrical activity [9]–[11]. 

In the EEG analysis, it is important to identify its basic 
rhythms, as well as a number of features. These features 
include artifacts and graphoelements typical of pathology. 
Artifacts are phenomena not directly related to the human brain 
activity. They can cause harm during the analysis. They must 
be identified and taken into account in the preparation of 
clinical judgment. 

In order to identify the basic EEG rhythms, it is usually 
enough to use methods based on the Fourier Transform. 
Detecting special features in the signal is normally more 
difficult. To demonstrate the capabilities of the proposed 
mathematical apparatus, we are going to consider an ocular 
artifact as a special feature (Fig. 2, a). 

Further, in the analysis, we are going to use 5-second-length 
ECG fragment, containing several ocular artifacts (Fig. 2, b). 
Signal sampling frequency is 250 Hz. 

III. MATHEMATICAL APPARATUS  

A. Continuous wavelet transform 
Wavelets are a generic name for special functions with a 

zero integral value localized along the time axis, able to shift 
along it and to scale [12]–[18]. 

Wavelets are widely applied in the analysis of one-
dimensional signals, among which are biomedical signals 
discussed previously [1], [19]. Thus, most often continuous 
wavelet transform (CWT) is used in the analysis of signals to 
detect features in them. 

 

Fig. 2. Electroencephalogram: EEG fragment with ocular artifact a), 5-second-
length ECG fragment with ocular artifacts b) 
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The formula of continuous wavelet transform function f(t) 
is as follows: 

where (t) is wavelet, a is scale, b is shift parameter. 

The main advantage of the continuous wavelet transform is 
that it can be used in algorithms to detect information signs in 
the signal. 

Continuous wavelet transform results in a number of 
coefficients obtained for different values of scale and shift. 

The key point during the continuous wavelet transform is a 
wavelet choice. The importance of such a choice follows from 
the analysis of the formula of continuous wavelet transform (1). 
The more accurate the wavelet will coincide with the 
imposition of a signal part, the more localized response to an 
information sign will be achieved. 

The results of the continuous wavelet transform can be 
displayed as a graph. This graph is called wavelet spectrogram 
(Fig. 3). Based on wavelet spectrogram, time-frequency signal 
analysis can be performed. This is achieved by simultaneously 
obtaining information about the size of  signal components 
(frequency components) and their position in time. Small scale 
values a transmit information about high-frequency signal 
components (small components), and large scale values 
transmit information about low-frequency signal components 
(large components). In case when a wavelet with 
predetermined scale coincides with the signal component, it is 
displayed on spectrogram as a localized light area. 

The main disadvantage of the continuous wavelet transform 
is a need for high computational cost to run it. This is due to 
some redundancy of CWT. Even with the limitation of scale 
levels, it can still have a negative impact on its application in 
signal processing algorithms with limited computing resource 
of element base. 

Thus, we can conclude that the efficiency of the continuous 
wavelet transform in the analysis of biomedical signals based 
on the element with a limited computing resource is affected by 
the following factors: 

 
Fig. 3. An example of the analyzed signal a) and wavelet spectrogram 
obtained by performing a continuous wavelet transform b) 

 

Selection of the wavelet, close to the type of features 
that provides a good localization on the wavelet-
spectrogram and the accuracy of its detection in the 
signal 

Reducing the redundancy in the continuous wavelet 
transform 

B. Models of wavelets for continuous wavelet transform 
 

The studies conducted by the author [13] have shown that 
the traditional families of wavelets do not provide the variety of 
functions, which would allow to accurately detect all the 
features in biomedical signals. 

The problem of selecting wavelet suitable for identifying a 
specific feature can be solved by means of its synthesis. 

Let us formulate the main stages of the wavelet synthesis 
procedure for continuous wavelet transform: 

1) Selecting a fragment that will serve as the basis for the 
wavelet. Such a fragment is called a sample. 

2) Sample modification in order to provide all zero values 
on its edges. 

3) Mathematical description of the sample to obtain a 
formal representation of the wavelet. 

4) Functions check to make sure they satisfy the condition 
of admissibility for the wavelet: 

In practice, it is enough for the function to have zero 
integral value. 

When the function satisfies this condition, it can be 
considered wavelet suitable for continuous wavelet transform. 

5) If the resulting function does not satisfy the condition of 
admissibility, it is subjected to further modification. Then 
steps 2–4 are repeated until it allows us to obtain the 
corresponding function. 

6) Wavelet valuation. 

The key point in the wavelet synthesis is the choice of the 
method of sample mathematical description. 

Using approximation in the synthesis of wavelets by 
algebraic polynomials [1] does not allow to obtain the 
necessary feature localization on wavelet-spectrogram. 

The author has developed neural network and spline models 
[20], [21], which can be used in the synthesis of wavelets for 
continuous wavelet transform. These mathematical models 
allow to receive the wavelets that can be used in the continuous 
wavelet transform and provide localized mapping of the 
features on the wavelet-spectrogram. 

Below is the general information and comparative analysis 
of the data for these models. 

1
2

1( , ) ( ) t bW a b f t dt
aa

, (1) 

2 1C d .  
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Neural network models are based on the use of the 
mathematical description of the sample approximation 
performed by means of artificial neural networks. 

As is known [22], artificial neural networks can be regarded 
as universal approximators. 

The study conducted by the author proves that multilayer 
perceptrons with one and two hidden layers, as well as artificial 
neural network based on radial basis functions can be 
successfully used in the synthesis of wavelets for continuous 
wavelet transform [20]. 

In order to demonstrate it, we chose ECG fragment as a 
sample (Fig. 4). 

The minimum accuracy of approximation to the wavelet 
pattern was achieved using a multilayer perceptron with one 
hidden layer (Fig. 5, a). The standard deviation was 
0.0215 mV. A significant deviation from the sample wavelet is 
a disadvantage. However, such an artificial neural network 
allowed us to obtain a model with a small number of 
parameters that can be considered its advantage. 

The total number of parameters, taking into account the 
normalizing coefficient was 45. The network contains 21 
neurons in the hidden layer and 1 in output layer. This number 
of neurons was obtained in a practical series of experiments 
and corresponds to the minimum standard deviation of the 
wavelet model for this type of neural network. 

Hyperbolic tangent is used in the hidden layer neurons as 
the activation function. Linear activation function is used in the 
output layer neuron. 

A more accurate approximation was obtained by using a 
multi-layer perceptron with two hidden layers (Fig. 5, b). The 
standard deviation of the wavelet sample was 0.0182 mV. 
However, the number of mathematical model parameters 
increased to 73. 

Such neural network has two hidden layers and one output 
layer. Hyperbolic tangent is used in the hidden layer neurons as 
the activation function, linear activation function is used in the 
output layer neuron. 

Maximum approximation accuracy of the obtained wavelet 
compared to the sample was achieved by using artificial neural 
network based on radial basis functions (Fig. 5, c). The 
standard deviation was 1.68×10-12 mV. However, this model is 
complex and has 403 parameters. 

 

Fig 4. Sample for wavelet synthesis 

 
Fig. 5. Artificial neural networks: multilayer perceptron with one hidden layer 
a), a multilayer perceptron with two hidden layers b), artificial neural network 
based on radial basis functions c) 

Wavelet spline models for continuous wavelet transform 
are based on the use of cubic spline sample in the process of 
interpolation [21]. The use of splines allows us to obtain a 
formalized representation of the wavelet on the one hand, and 
on the other hand, it provides high accuracy of the wavelet 
approach to the original sample. 

Fig. 6 shows the interpolation procedure. It is obvious that 
the resulting wavelet will exactly match the sample, since the 
interpolation cubic spline will pass through the interpolation 
points corresponding to the values of the sample frame. A 
slight approximation error that may occur is related to the 
modification of the sample at its edges, in accordance with the 
requirements of paragraph 2 of the synthesis algorithm. It can 
not be eliminated. 

High precision of wavelet approximation to the sample is 
the main advantage of spline models. The main disadvantage is 
their high complexity. This model has a significant number of 
parameters, which is 4 times the number of sample readings. 
For the sample examined, the number of parameters was 801. 

Comparing the neural network models to spline models, 
one can note the high accuracy of the wavelet approximation to 
the sample by using artificial neural networks approximation 
based on radial basis functions and a guaranteed accuracy 
while using cubic spline interpolation. However, an important 
factor which greatly affects the possibility of application of 
these models in the implementation of continuous wavelet 
transform calculation algorithm, is the complexity of these 
models. The final choice of the model should be based on the 
computing power of an element base. 

 
Fig. 6. Procedure of sample interpolation by cubic splines 
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C. Wavelet analysis of compressed biomedical signals 
 

The requirements for computing resources of the element 
base used can be reduced by decreasing the amount of 
information processed. Reducing the number of biomedical 
signal channels by reducing the number of leads may reduce 
the accuracy of ongoing research. Simple reduction of the 
number of readings by reducing the sampling rate would result 
in a loss of signal registration accuracy and impossibility of 
taking into account the impact of temporary reading. 

In order to solve this problem, we need a method which 
would allow us to reduce the number of processed readings, as 
well as keep the possibility to analyze such a signal to detect 
information characteristics. 

In this paper, we propose an algorithm for the analysis of 
biomedical signals in their compressed representation. 

The basis of this algorithm is to use in the first stage the 
discrete wavelet decomposition of signal followed by 
continuous wavelet transform of approximating coefficients 
with the use of synthesized wavelets in the second stage. 

Let us study the algorithm in more detail. 

The algorithm of compressed biomedical signal wavelet 
analysis (Fig. 7) is a modification of the two-level algorithm of 
electroencephalogram wavelet analysis, developed earlier by 
the author [19]. This algorithm includes the following steps: 

1) Registration of biomedical signal. At this step, the signal 
is recorded 

2) Signal is separated into fragments of fixed length. This 
step allows us to reduce the requirements for computing power 
of the element base on which the algorithm is implemented. 

3) The wavelet is decomposed into approximating and 
detailing (if necessary) coefficients with a given number of 
decomposition levels. At this stage, discrete wavelet transform 
is used. 

Fig. 8 shows a conventional single-level diagram of 
wavelet decomposition of the signal. The signal is fed into two 
decomposition branches. The upper branch contains a 
cascaded low-frequency decomposition filter (LFDF) and 
decimator with coefficient 2. The lower branch contains a 
cascaded high-frequency decomposition filter (HFDF) and 
decimator with coefficient 2. Decimator removes even count, 
and in the other cases – uneven count. Thus, the number of 
coefficients at the output of each branch is reduced by half. 
The coefficients on the output of the upper branch are called 
approximating coefficients. They describe low-frequency 
signal components. The coefficients on the output of the lower 
branch are called detailing coefficients. They describe high-
frequency signal components. 

Signal wavelet decomposition is reversible. The original 
signal can be reconstructed on the basis of approximating and 
detailing coefficients. For this purpose, restoration filters are 
used, and the missing coefficients are zero padded in the 
interpolation process. 

 

Registration of biomedical signal

Signal is separated into fragments of fixed length

The wavelet is decomposed into approximating 
and detailing (if necessary) coefficients with a 

given number of decomposition levels

Allocation of approximating coefficients of a 
given level of wavelet decomposition

Primary analysis of the signal fragments using a 
continuous wavelet transform and traditional 

wavelet families

Secondary (qualifying) signal fragments analysis 
using a continuous wavelet transform and 

synthesized wavelet

Forming a list of features by type and their 
location in the signal

Making a report on biomedical signal analysis

 
Fig. 7. The algorithm of wavelet analysis of compressed biomedical signal 

 

Wavelet decomposition may be performed repeatedly. In 
such case approximating coefficients of the previous level of 
decomposition are subjected to decomposition. At every level 
the number of coefficients in each branch is reduced by half. 

Studies have shown that for the majority of biomedical 
signals detailing coefficients of several decomposition levels 
do not contain useful information. They can be removed. And 
in case of signal recovery, the deleted detailing coefficients 
can be supplemented with zeros. 

By removing detailing coefficients of selected levels, one 
can get a significant reduction in the volume of stored 
information. 

 
Fig. 8. Single-level wavelet decomposition scheme 
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Thus, for an electroencephalogram recorded at a sampling 
frequency of 250 Hz the signal was compressed by 8 times 
without significant loss of quality in the original signal. In this 
case detailing coefficients of three levels of decomposition 
were removed. The electrocardiograms recorded at a sampling 
frequency of 250 Hz was compressed 8 times. Thus detailing 
coefficients of three levels of decomposition were removed. 

Obviously, wavelet compression is a compression with 
losses. Therefore, when selecting the required number of 
decompositions, it is important to consider the type of signal, 
its characteristics, including the sampling rate. 

Retaining detailing coefficients is only necessary if we 
want the exact signal recovery. In case when the recovery is 
not required or there are no strict requirements for accuracy of 
recovery, the lower branch of the decomposition chain may be 
missing. 

4) Allocation of approximating coefficients of a given level 
of wavelet decomposition. At this stage, approximating 
coefficients of the last level of decomposition are detected. 
They will be subjected to further analysis. 

5) Primary analysis of the signal fragments using a 
continuous wavelet transform and traditional wavelet families. 

At this level, "rough" wavelet analysis of biomedical signal 
using one of the wavelet is performed. Such a wavelet can be 
represented by wavelet "Mexican hat" (Fig. 9). Studies have 
shown [13] that this wavelet is well suited for the analysis of 
electroencephalogram. Due to its characteristics, it can be used 
for analysis of other smooth biomedical signals including 
electrocardiogram. 

In addition, this wavelet has formalized representation 
which is a rare case for wavelets of traditional families. A 
formalized representation of the wavelet is a significant 
advantage in the implementation of algorithms for continuous 
wavelet transform. After performing a continuous wavelet 
transform with the use of this wavelet, the obtained wavelet 
coefficients are analyzed. In the simplest case, the threshold or 
multithreshold processing can be used. The result of analysis is 
the selection of signal fragments with original features and their 
primary classification. 

6) Secondary (qualifying) signal fragments analysis using a 
continuous wavelet transform and synthesized wavelet. 

After the primary analysis of biomedical signal, the 
secondary wavelet analysis of selected fragments is carried out 
in order to clarify the type of features. So in the continuous 
wavelet transform synthesized wavelets are used. 

 
Fig. 9. "Mexican hat" Wavelet 

Fig. 10 shows the results of continuous wavelet transform 
of electrocardiogram and electroencephalogram fragments 
compressed eightfold using wavelets synthesized on the 
respective samples. In the synthesis, spline wavelets models 
have been used. These wavelets have formalized 
representation. 

As it follows from the figure, the data of wavelet-
spectrogram has sufficient localizing capacity to detect 
features on them. 

Since each feature has its own basic frequency, it is 
characterized by an appropriate response to the synthesized 
wavelet, which is most explicit for the coefficients of the 
scale, corresponding to the given frequency. 

Thus, in the simplest case, the threshold processing may be 
used. For features having a complicated shape, more 
sophisticated methods of analysis can be used, including the 
ones based on application of learning systems. 

It should also be noted that the used procedure of wavelet 
compression leads to losses of high-frequency component of 
the signal. Therefore, the proposed algorithm should not be 
used in the analysis of signals that requires the preservation of 
small fragments of the signal typical of the high-frequency 
signal components. 

7) Forming a list of features by type and their location in 
the signal. 

As a result of the two levels of analysis a list of features is 
formed with the obligatory indication of their type and location 
in the signal. 

8) Making a report on biomedical signal analysis. 

In the report on the analysis of biomedical signal its basic 
rhythms, features and other signal parameters, specific to its 
type, are taken into account. Comprehensive assessment of 
information received is possible. In this case, a brief report 
indicating the warning information for the patient can be 
obtained. 

 
Fig. 10 shows the results of a continuous wavelet transform: fragment of 
electrocardiogram which was compressed eightfold a), the wavelet 
spectrogram obtained using synthesized wavelet b), a fragment of eightfold 
compressed electroencephalogram c), the wavelet spectrogram obtained using 
synthesized wavelet d) 
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IV. CONCLUSION 
The paper considers the mathematical apparatus which can 

be the basis for the algorithm of biomedical signals analysis. 
In practice, the following results were obtained: 

1) The possibility to compress ECG 8 times. The sampling 
frequency of the original signal was 250 Hz. 

2) The possibility to wavelet-analyze the eightfold 
compressed electrocardiogram with the use of synthesized 
wavelets. In the synthesis of wavelets spline wavelets model 
has been used. The fragment of the ECG has been selected as a 
sample. 

3) The possibility to compress ECG 8 times. The sampling 
frequency of the original signal was 250 Hz. 

4) The possibility to wavelet-analyze the eightfold 
compressed electroencephalogram with the use of synthesized 
wavelets. In the synthesis of wavelets spline wavelets model 
has been used. The fragment of the EEG with ocular artefact 
has been used as a sample. 

5) Applying the proposed algorithm is not possible when it 
is needed to maintain high-frequency component of 
biomedical signal. In the process of wavelet decomposition 
when removing detailing coefficients, it results in the loss of 
information about small detail of signals typical of the high 
frequency components. 

6) The choice of number of wavelet decomposition levels 
is carried out based on the type of signal, the sampling 
frequency and its upper frequency which must be preserved. 

7) In the synthesis of wavelets for continuous wavelet 
transform, used in the second level of wavelet analysis, neural 
network and spline models can be used. The choice of a 
specific type of model is determined by its computing 
capabilities used in the implementation of element base. In the 
absence of such restrictions spline s can be used, allowing us 
to obtain a high accuracy of approximation of the synthesized 
wavelet to the sample. In case where it is impossible to use a 
large number of model parameters, neural network wavelet 
models can be used. In assessing the proximity of the 
synthesized wavelet to the sample qualitative and quantitative 
evaluation is used. 

8) In evaluation of the results of continuous wavelet 
transform, qualitative assessment is used based on the 
subjective opinion of an expert. 
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