
Distributed OAIS- ased Digital Preservation
System with HDFS Technology

Nikita Voinov, Pavel Drobintsev, Vsevolod Kotlyarov
Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia
 {voinov, drob, vpk}@ics2.ecd.spbstu.ru

Igor Nikiforov
Dell EMC/Peter the Great Saint-Petersburg Polytechnic

University
Saint-Petersburg, Russia

igor.nikiforovv@gmail.com

Abstract—The paper describes architecture of a distributed
OAIS-based digital preservation system which uses HDFS as a
file storage system and supports wide distribution on a number of
cluster’s nodes. It is based on Apache Hadoop framework - a
reliable open source solution with well horizontally scalable
distributed architecture. Novelty of the proposed system is
defined by the fact that none of existing OAIS digital
preservation systems use HDFS storage for both structured and
unstructured data archiving. Implementation of the system’s
prototype and results of its testing are also shown.

I. INTRODUCTION

Providing secure storage for big data is extremely
important challenge in the modern world as amount of
generated data is constantly growing. World data volume is
estimated in more than 8 zettabytes and will be doubled every
two year [1]. When speaking about data volume it is also
critical to mention that not only structured data exists and shall
be preserved, but also unstructured content, which is about
80% of all existing data.

To solve issues with big data many companies rely on
traditional RDBMS (relational database management
system) [2] solutions, which show their excellence on data
volume over terabytes. But when data exceeds petabytes,
traditional storages start losing in performance and become
unreliable as they are not scalable enough. Data size issues can
be solved by NoSQL (Non Structured Query Language) [3]
databases, however this technology does not provide enough
flexible and powerful data management workflow in compare
to the approach described below in the paper. For these
reasons RDBMS and NoSQL implementations are not
reviewed and out of scope of this article.

An alternative solution to satisfy business needs in
structured and unstructured data secure storage is usage of
digital preservation system. This is a system for storage of
digital documents which provides security, confidentiality,
different access levels, revision history tracing, fast and easy
search engine. There is an international standard and a
reference model for digital preservation systems called
OAIS (Open Archival Information System) [4]. Its goal is to
formalize requirements for digital preservation systems. It
describes standard architecture and functionality of a digital
archive. Many famous digital preservation projects are based
on this model. Among them are RODA [5], [6] created in

cooperation with the Portuguese National Archives;
Archivematica [7] used by The National Archives of the
Czech Republic; DRI (the Digital Repository of Ireland) [8];
SPAR in the National Library of France [9]; InfoArchive [10]
initially developed by Dell EMC company and recently
acquired by OpenText company.

The analysis of existing solutions revealed that
InfoArchive is the most powerful, scalable and secure storage,
however it is a proprietary software. The rest vendors are
small fishes. Although some of them provide open source
solutions, technologies used for their digital storage
implementations put significant constraints on the level of
horizontal scaling in terms of supported amount of distributed
nodes in a storage. This hampers effective storage distribution
on high-performance clusters and supercomputers.

In order to provide scalable, reliable, secure, open source
solution which also satisfies to the OAIS standard, this work
proposes usage of Apache Hadoop [11] technology with
distributed HDFS (Hadoop Distributed File System) [11] file
system, which is not applied in any existing solutions
observed (Table I).

TABLE I. OAIS-BASED SOLUTIONS FOR DIGITAL PRESERVATION

RODA Archivematica DRI
Proprietarity Open-source Open-source Proprietary
Programming

Language Java Python Java

Ongoing Project No No Yes

Data Storage

Fedora
Commons
or Native

file system

Native file system CephFS

Search Engine No No No
Data Analytics No Yes No

Horizontal Scaling Limited Limited Yes
Message Brokers No No No

HDFS provides:

distributed cluster architecture;
high reliability at installation;
horizontal scaling to up to thousands of nodes;
safe data storage;
multiple interfaces for interaction;

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

multilevel API;
dynamic configuration.

Presently HDFS is likely to be the best solution for secure
and distributed data storage for both structured and
unstructured content [12-14].

The goal of this work is to present an implementation of a
digital preservation system prototype based on the OAIS
model and HDFS storage for full support of horizontal scaling,
fast search, secure data receipt and storage.

II. OPEN ARCHIVAL INFORMATION SYSTEM

The OAIS is an international standard of digital
preservation. It describes standard architecture and
functionality of a digital archive. On different stages of data
lifecycle the OAIS introduces the following artifacts: data
submitted into the archive (SIP - Submission Information
Package [4]), archived data (AIP - Archival Information
Package [4]), disseminated data (DIP - Dissemination
Information Package [4]).

Functional model of the OAIS is represented in Fig. 1:

Fig. 1. OAIS functional entities [4]

The roles listed below are considered to be external
regarding to the OAIS:

Producer - sources of the archive gathering and their
informational systems which produce data and transfer
data for preservation;

Consumer - people or systems interacting with archive
services to find and obtain archived data; according to
the standard there is a specific user group called
”designated community” - a group of users who shall
be able to understand archived data;

Management of the organization (host of the archive)
who defines the archive strategy, aims and tasks.

Described below are the main modules of the OAIS
internal architecture.

A. The Ingest functional entity
This entity provides the services and functions to accept

SIPs from Producers (or from internal elements under
Administration control) and prepare the contents for storage
and management within the archive [4]. Ingest functions
include:

 receiving SIPs;
 performing quality assurance on SIPs;
 generating an AIP which complies with the archive’s
data formatting and documentation standards;
extracting descriptive information from the AIPs for
inclusion in the archive database;
coordinating updates to Archival Storage and Data
Management.

B. The Archival Storage functional entity
Provides the services and functions for the storage,

maintenance and retrieval of AIPs [4]. Archival Storage
functions include:

receiving AIPs from Ingest and adding them to
permanent storage;
managing the storage hierarchy;
refreshing the media on which archive holdings are
stored;
performing routine and special error checking;
providing disaster recovery capabilities, and providing
AIPs to Access to fulfill orders.

C. The Data Management functional entity
It provides the services and functions for populating,

maintaining, and accessing both descriptive information which
identifies and documents archive holdings and administrative
data used to manage the archive [4]. Data Management
functions include:

administering the archive database functions
(maintaining schema and view definitions, and
referential integrity);
performing database updates (loading new descriptive
information or archive administrative data);
performing queries on the data management data to
generate query responses and producing reports from
these query responses.

D. The Administration functional entity
Provides the services and functions for the overall

operation of the archive system [4]. Administration functions
include:

soliciting and negotiating submission agreements with
Producers;
auditing submissions to ensure that they meet archive
standards;
maintaining configuration management of system
hardware and software.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 492 --

It also provides system engineering functions to monitor
and improve archive operations, and to inventory, report on,
and migrate/update the contents of the archive. It is also
responsible for establishing and maintaining archive standards
and policies, providing customer support, and activating stored
requests [4].

E. The Preservation Planning functional entity
This entity provides the services and functions for

monitoring the environment of the OAIS, providing
recommendations and preservation plans to ensure that the
information stored in the OAIS remains accessible to, and
understandable by, the designated community over the long
term, even if the original computing environment becomes
obsolete [4]. Preservation Planning functions
include:

evaluating the contents of the archive and periodically
recommending archival information updates;
recommending the migration of current archive
holding;
developing recommendations for archive standards and
policies;
providing periodic risk analysis reports;
monitoring changes in the technology environment and
in the designated community’s service requirements
and knowledge base.

Preservation Planning also designs information package
templates and provides design assistance and review to
specialize these templates into SIPs and AIPs for specific
submissions. Preservation Planning also develops detailed
migration plans, software prototypes and test plans to enable
implementation of Administration migration goals [4].

F. The Access functional entity
It provides the services and functions that support

Consumers in determining the existence, description, location
and availability of information stored in the OAIS, and
allowing Consumers to request and receive information
products [4]. Access functions include:

communicating with Consumers to receive requests;

applying controls to limit access to specially protected
information;

coordinating the execution of requests to successful
completion;

generating responses (DIP, query responses, reports)
and delivering the responses to Consumers.

III. CONCEPTUAL APPROACH TO THE ARCHITECTURE OF THE
DIGITAL PRESERVATION SYSTEM

It is supposed in this work that the main feature of the
digital preservation system being developed is that it shall be
distributed. This means that it shall support simultaneous
execution on specified number of cluster’s nodes. Interaction

and synchronization between the nodes shall be supported as
well. The system shall support horizontal scaling to handle
extra storage equipment (hardware-software unit which can be
connected to the cluster) when there is no free space left in the
data storage. In case of increased server load because of high
intensity of input data flow, a new server can be added to
distribute load between different nodes and make overall
working process more balanced.

Horizontal scaling in the system is provided by automated
configuration of distributed storage with configuration
files.

The prototype supports secure storage of stored data.
Stored packages have several access levels. A user with
insufficient rights cannot get access to the data. Data access
rights are implemented by Kerberos authentication
system [15].

Data replication is proposed to increase fault tolerance. By
that the system keeps operating even if some node is damaged.
Data replication is performed on the storage level and the
system can configure replication coefficient which specifies
number of nodes to locate each unit. By default replication
coefficient supported by HDFS equals 3.

Errors and data loss shall be eliminated during data
transmission. Message brokers are proposed to do that. They
provide required level of security and integrity during data
transmission. Packages received at the preservation system
input pass through message broker. Thus, horizontal scaling
with increased input data flow is achieved in general system’s
configuration.

The system shall also provide easy search among stored
data. A search module is used in the prototype. A data package
is indexed by the search engine after its validation in the
archive module. Only structured text information from the
package is being indexed. Search engine and stored indexes
are distributed in the cluster as a cloud. Usage of search library
and back index approach provide fast search through stored
data. Search index shall be stored in distributed cluster system
to keep support for good horizontal scaling.

Software components of the system are the core (the
archive module), connectors and the client part (Fig. 2).
Connector downloads data from some data source, creates
packages from this data and passes them to the system’s core
entry. For testing purposes connectors obtained data from
Twitter and Facebook social networks.

The core (the archive module) is responsible for package
receipt, its indexing and writing into the storage (Fig. 2). The
core also contains logging module and module for managing
stored data.

Client interface is used to interact with data received by the
system (Fig. 2). Searching servlet allows to input key words
into special form and search for them through structured
indexed data. Web interfaces are also supported to debug
particular system components or download specific
packages.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 493 --

Fig. 2. Main components of the preservation system

The cores and connectors can be run on any node using
script (Fig. 3).

Fig. 3. Distributed configuration of the preservation system

A. The Archive module
The main part of the system is the archive module. Its main

task is to download data packages into the preservation
system. Its lifecycle can be divided into 3 steps: writing into
the system; storing and administrating in the system; reading
from the system.

Writing is performed as following. SIP constructed in
accordance with the OAIS standard is sent to the archive
module through message broker. Then this package moves
into the unit where its construction is checked for correctness.
In case of failed check the packed is rejected without writing
in the storage and indexing by search engine, otherwise it is
written and indexed.

Storing and administrating is performed during system
execution. The archive module contains logging unit, reports
generation unit and a unit for managing data in the storage.
Logging is required to trace system state and possible errors
during execution. Reports generation provides convenient
interface for providing compact information about all data in
the storage. Managing data in the storage provides storing and
removal specific packages depending on metadata contained
inside them.

Reading from the system is possible whether by searching
through structured information in the packages using searching
servlet or by extracting whole packages from the system using
special web UI interface.

B. Data storage file system
To provide high quality infrastructure of data storage

modern cloud storages shall provide the following features:

high reliability;

constant data availability;
fast access with minimal delays;
low cost;
additional features: clone, snapshots, etc.

Neither RAID storages nor data storage systems can
provide all these features simultaneously. As a result,
software-defined storage is getting a very popular approach in
data storage industry.

High reliability and calculation speed are the most
important criteria when selecting a file system for a
preservation system. This can be achieved by replication, i.e.
multiple copies of data blocks and their distribution among
cluster’s nodes. Data load shall be distributed among several
machines. Files in the file system shall be written only once
and arbitrary modifications shall not be allowed. To read and
write files a specific interface for interaction with file system
shall be used. Data security support shall also be provided to
avoid unauthorized access to confidential information.

C. Search engine
Automatic indexing of structured data and interface for

convenient search among indexed data are required for the
preservation system. Search engine shall also provide the
following features:

full text search;
highlighting search results;
integration with data bases;
language for requests with support of structured search
on the same level as text search;
support of multiple formats over HTTP including
JSON, XML, CSV and libraries for other programming
languages;
web-interface for administration;
replication to increase request processing speed;
search through data distributed over multiple nodes;
dynamic clustering of search results;

caching requests, filters and documents.

D. Message broker
Message broker is typically a set of applications each of

which performs processing of a particular step within message
exchange: receive a message, put a message on a queue and
transfer a message to the process responsible for execution.

Message broker is an intermediate level between different
services. It significantly reduces the time on a message
transfer as the time consuming tasks are distributed among
working processes intended exactly for these particular tasks.
Message broker provides secure channel for message transfer
between applications.

Message broker in preservation system shall guarantee
stability and scaling of the queue as it is the key node of the

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 494 --

whole system. It shall also be open source and implement
AMQP protocol [16] which provides libraries for all main
programming languages and platforms. Also required are high
speed of service, security of transferred data and support of
horizontal scaling for cluster architecture. Message broker
shall effectively distribute data load among clients in
automatic mode as well.

IV. IMPLEMENTED PROTOTYPE OF THE PRESERVATION SYSTEM

The prototype was implemented on a cluster with 6 nodes,
where each node is a virtual machine (Fig. 4). VMware
vSphere [17] infrastructure was used for this architecture.
Each node runs Ubuntu 14.04 operating system.

Fig. 4. Software distribution among cluster’s nodes

The cluster contains installation of Apache Hadoop
distributive from Cloudera company – CDH. The first node is
the NameNode, other 5 nodes are DataNode.

RabbitMQ [18] is used in the system as a message broker to
transfer generated SIPs to the archive module. It is installed on
the first two cluster’s nodes. RabbitMQ implements data
exchange between system’s components. Horizontal scaling is
also supported for cluster architecture.

Apache Solr [19] is used as a search engine through archive
packages as it is one of the most popular search toolsets. Solr
provides distributed search and replication and supports
scaling. Solr is deployed on all 6 nodes. Communication
between the nodes is provided by Apache Zookeeper [20]
server which is installed on the first cluster’s node.

Fig. 5. Interaction between modules of the preservation system

Control script starts and stops the connectors and the cores
of the preservation system in the cloud (Fig. 5). When
connectors start execution, data packages generated by them
are transferred to the message broker located on the nodes one
and two. The system receives these packages from queues,
loads them into the storage and indexes their
contents.

A. Implementation of the archive module
Prior to data load in the archive module data packages shall

be generated. For this purpose two connectors to Facebook
and Twitter social networks were implemented (Fig. 6). The
main task of the connectors is downloading data both
structured and unstructured and preparing SIPs of specified
format and size based on this data.

Fig. 6. Scheme of the connector

SIPs appear in the system through message broker.
Correctness of the input data is checked in Ingest
module (Fig. 7). Then a package is written into HDFS or
rejected in case of some errors. All structured information
passing through the archive module is indexed by search
engine.

Fig. 7. Scheme of the archive module

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 495 --

Logging and Data Management modules are also involved
in the system execution. Also supported is generation of
reports based on information within the system.

Client part is represented as Web UI interfaces. Hue allows
viewing the storage contents. While searching servlet performs
searching through the indexed packages contained in HDFS. It
is also possible to view the contents of a particular file.

B. HDFS storage
HDFS is a file system intended to store files of large size

which are distributed by blocks among cluster’s nodes. All
blocks in HDFS (except the last block of a file) have one size
and each block can be located on several nodes. The block size
and its replication coefficient are defined in file settings.
Replication ensures fault tolerance of the whole system to
failures of separate nodes. Each file can be written into HDFS
only once while input into the file can be performed by only
single process at one time. Files organization within the name
space is traditionally hierarchical: there is a root folder,
subfolders and each folder can contain files and other folders.

Deploying instance of HDFS is supposed to have one name
node, which stores metadata of a file system and information
about blocks distribution, and a set of data nodes, which store
all files blocks. Name node is responsible for processing
operations on the level of files and folders: files opening and
closing, folders manipulating. Data nodes process operations
of data reading and writing. Name node and data nodes are
supplied by web-servers to display current node state and to
observe the contents of the file system. Administrating
functions are available via command line interface.

C. Solr search library
Solr is an open source platform for full text search based on

Apache Lucene project [21]. Except full text search it also
provides highlighting search results, dynamic clustering,
integration with data bases, processing documents of complex
formats (Word, PDF). Solr is highly scalable due to support of
distributed search and replication.

Solr is written in Java and launched as a separate web-
application of full text search. It uses Lucene as a basis for
searching and indexing. It contains HTTP/XML and JSON API
which makes possible to use Solr with almost all popular
programming languages. It also supports flexible setup and
connection with external modules.

D. RabbitMQ as a messaging broker
RabbitMQ is open source message broker

software (sometimes called message-oriented middleware) that
implements the Advanced Message Queuing
Protocol (AMQP). The RabbitMQ server is written in the
Erlang programming language and is built on the Open
Telecom Platform (OTP) framework for clustering and
failover. Client libraries to interface with the broker are
available for all major programming languages (Java, .NET,
Perl, Python, Ruby, PHP, etc.) RabbitMQ is produced under
Mozilla Public License. It supports horizontal scaling for
deploying cluster architecture.

One of the main reasons to use RabbitMQ is its
implementation over Erlang/OTP platform which guarantees
stability and scaling of the queue as the key node of the whole
system. Another reason is publicity of Mozilla Public License
and AMQP with libraries available for all programming
languages and platforms including Node.js

V. RESULTS

Developed prototype of the system has successfully passed
all testing stages.

Module testing revealed that all program components are
working properly: connectors can download data and create
data packages while the archive module can write packages
into the storage.

Integration testing was conducted to check connection
between the modules. All components including message
queue were run and their communication was observed. A set
of data packages was successfully transferred from connectors
to the archive module via message queue.

Functional testing checked miscellaneous use cases of the
system execution. Components were run on different nodes,
100 data packages of 50 Mb each were generated and many
search requests were run via searching servlet.

During load testing connectors and archive modules were
run on different nodes and the time spent on single package
writing into the storage was measured.

Consider a test case when 600 packages of 50 Mb each
shall be generated and each cluster node runs one connector
and one archive module. Results of this test case are shown in
Table II.

TABLE II. SYSTEM LOAD DEPENDING ON NUMBER OF NODES IN USE

Nnodes Pnode V node T1 T2 Tsum Unode Usum

1 600 30000 244,86 5,69 250,55 119,74 119,74
2 300 15000 122,43 4,51 126,94 118,17 236,33
3 200 10000 81,62 3,83 85,45 117,03 351,08
4 150 7500 61,22 3,42 64,64 116,04 464,14
5 120 6000 48,97 2,78 51,75 115,94 579,69
6 100 5000 40,81 2,36 43,17 115,82 694,93

Where:

Nnodes - number of cluster nodes in use;
Pnode - number of packages which shall be downloaded
on one node; the load is distributed evenly and equals
Pnode=600/Nnodes;
Vnode (in Mb) - average size of data loaded on one node;
calculated as Vnode= Pnode * 50;
T1 (in minutes) - overall time on loading data and
preparing packages on one node;
T2 (in minutes) - overall time on verification, writing
packages into file system and their indexing on one
node;
Tsum (in minutes) - overall time on constructing all
packages on one node; Tsum = T1 + T2;

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 496 --

Unode (in Mb/min) - archiving speed on one node; Unode
= Vnode /Tsum;
Usum (in Mb/min) - overall archiving speed on the
whole cluster; Usum = Unode * Nnodes.

The results show that increasing number of nodes leads to
lower load of each node (considering constant number of
packages) and the most productive configuration with the
fastest generation and writing is 5 connectors and 2 archive
modules.

VI. CONCLUSION

So, in the scope of this work the architecture of a digital
preservation system was proposed, analyzed and used for
creation of a prototype of the OAIS-based system with full
support of horizontal scaling on distributed architecture due to
HDFS storage.

The system architecture allows to have reliable distributed
storage as well as powerful management capabilities provided
by the OAIS standard.

Usage of HDFS as a storage for data allows not only to
have robust store, but also perform and execute different
analytical tasks and jobs which can be developed on customer
side, without necessity to transfer the data out of customer
location.

Having the system satisfy the OAIS standard makes sure
that required data workflow is implemented and the data can
be stored for tens of years.

The project was held in collaboration of Peter the Great
Saint-Petersburg Polytechnic University with Dell EMC
company. The aim and goals of the project were fully achieved
and the project was considered to be successfully completed.

REFERENCES

[1] X. Jin, B.W. Wah, X. Cheng and Y. Wang, “Significance and
challenges of big data research”, Big Data Research, vol. 2, issue 2,
June 2015, pp. 59-64.

[2] B. Rahnama, Hierarchical data in RDBMS: a new horizon for data
storage and retrieval. LAP LAMBERT Academic Publishing, 2011.

[3] P.J. Sadalage and M. Fowler, NoSQL distilled. Addison-Wesley
Professional, 2012.

[4] The Consultative Committee for Space Data Systems, Reference
Model for an Open Archival Information System (OAIS), CCSDS
650.0-M-2, Magenta Book, June 2012, Web:
https://public.ccsds.org/pubs/650x0m2.pdf.

[5] RODA Community, Web: http://www.roda-community.org.
[6] L. Faria, M. Ferreira, R. Castro, F. Barbedo, C. Henriques, L. Corujo

and J.C. Ramalho, “Roda - a service-oriented repository to preserve
authentic digital objects”, in Proc. of the 4th International
Conference on Open Repositories, May 2009.

[7] Archivematica: open-source digital preservation system, Web:
https://www.archivematica.org.

[8] Digital Repository of Ireland, Web: http://dri.ie.
[9] Preservation of digital material: the SPAR project, Web:

http://www.bnf.fr/en/preservation_spar_old/s.preservation_spar_reali
zation_old.html?first_Art=non.

[10] OpenText company official website, Web:
http://documentum.opentext.com/infoarchive.

[11] T. White, Hadoop: the definitive guide, third edition. O’Reilly, 2012.
[12] B.A. Jurik, A.A. Blekinge, R.B. Ferneke-Nielsen and P. Møldrup-

Dalum, “Bridging the gap between real world repositories and
scalable preservation environments”, International Journal on Digital
Libraries, vol. 16, issue 3-4, May 2015, pp. 267-282.

[13] J. Lin, M. Gholami and J. Rao, “Infrastructure for supporting
exploration and discovery in web archives”, in Proc. of the 23rd
International Conference on World Wide Web, Apr. 2014, pp. 851-
856.

[14] L. Medjkoune, S. Barton, F. Carpentier, J. Masanès and R. Pop,
“Building scalable web archives”, Archiving 2014 - Final Program
and Proceedings, May 2014, pp. 138-143.

[15] B. Spivey and J. Echeverria, Hadoop security. O'Reilly Media Inc.,
2015.

[16] AMQP - Advanced Message Queuing Protocol, Web:
http://www.amqp.org/.

[17] L. Dekens, J. Medd, G. Sizemore, B. Graf, A. Sullivan and M. Boren,
VMware vSphere powerCLI reference, 2nd edition - automating
vSphere administration. Wiley / Sybex, 2015.

[18] S. Boschi and G. Santomaggio, RabbitMQ cookbook. Packt
Publishing, 2013.

[19] S. Mohan, Apache Solr high performance. Packt Publishing,
2014.

[20] F. Junqueira and B. Reed, ZooKeeper - distributed process
coordination. O'Reilly Media, 2013.

[21] E. Ng and V. Mohan, Lucene 4 cookbook. Packt Publishing, 2015.

__PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

-- 497 --

