
Software Defect Prediction in the Cloud

Cagatay Catal, Merve Erdogan, Cem Isik
Istanbul Kultur University

Istanbul, Turkey
c.catal, m.erdogan, c.isik@iku.edu.tr

Abstract—Software defect prediction is one of the software
quality assurance activities that can be applied during the
software development life cycle. This activity helps quality
assurance groups and project managers to determine risky
modules which require more attention and more testing efforts.
In this study, we investigated nine classification algorithms on 22
datasets which contain class-level metrics as part of our within-
project case study. After this case study, we sorted the datasets
regarding their data instances and performed cross-project
experiments on the large datasets, namely Apache Xalan, Xerces,
and POI projects. We demonstrated that Decision Tree based
algorithms are mostly superior to the other classification
algorithms for within-project defect prediction and acceptable
results can be achieved with Logistic Regression algorithms for
cross-project defect prediction even if the data transformation
approaches are not applied.

I. INTRODUCTION
Most of the software defect prediction models utilize from

historical defect and metrics data [1]. From machine learning
perspective, this prediction problem can be represented as a
supervised learning problem and classification algorithms such
as Naive Bayes and Random Forests can be applied. However,
there are some real-world cases in which there are no previous
defect data. For example, the first project of a company in a
new domain such as unmanned aerial vehicles (UAV) will not
be able to use historical defect data to build the defect
prediction model. In this kind of cases, it’s possible to use data
from the other projects or companies. In literature, this research
area is known as Cross-Project Defect Prediction (CPDP).
Recently, many researchers proposed novel methods to apply
data from the other companies for defect prediction. Herbold
[2] published a very recent systematic mapping study on this
issue and he accessed 49 CPDP papers published between year
2002 and 2015. He reported that 25 publications applied
Logistic Regression technique and summarized the
contributions of these 49 papers in detail.

In this study, we aimed to analyze the available
classification algorithms in Azure Machine Learning (ML)
Studio for within-project defect prediction problem and build
cross-project defect prediction models without using any data
transformation algorithm. We performed our experiments on
the following 22 datasets which exist in the PROMISE
repository [3] and prepared by Jureczko and Madeyski [4]:
Workflow, Xerces, Xalan, POI, Velocity, Tomcat,
Thermoproject, Systemdata, Synapses, Skarbonka, Sherapion,
Redactor, Prop, Forest, Ivy, JEdit, Log4j,Lucene, Ant, Arc,
Kalkulator, Nieruchomosci.

There are 20 metrics in these datasets. 6 metrics (WMC,
DIT, NOC, CBO, RFC, and LCOM) belong to Chidamber-
Kemerer metrics suite [5], two metrics (CA and CE) are
proposed by Martin [6], three metrics (IC, CBM, AMC) are
suggested by Tang et al. [7], five metrics (NPM, DAM, MOA,
MFA, CAM) belong to Bansiy and Davis metrics suite [8], one
metric (LCOM3) is proposed by Henderson-Sellers [9], two
cyclomatic complexity metrics (MaxCC, avgCC) are related
with McCabe cyclomatic complexity metric [10], and one
metric is the popular lines of code (LOC) metric.

The investigated classification algorithms are Averaged
Perceptron, Bayes Point Machine, Boosted Decision Tree,
Decision Forest, Decision Jungle, Locally Deep Support,
Logistic Regression, Neural Network, and Support Vector
Machine. After the performance of these algorithms are
calculated based on Area under ROC Curve (AUC) evaluation
parameter, top three algorithms were marked in the tables with
#1, #2, and #3 labels. Since we did not observe an algorithm
which performs best on all the 20 datasets, we decided to count
the number of these labels. Based on the count of these labels,
we identified the top algorithms for within-project defect
prediction. After this first case study, we listed the datasets
based on their sizes and selected the large ones for cross-
project defect prediction case study. In the second case study,
we performed our experiments on Apache Xalan, Xerces and
POI projects. Therefore, we created four different analyses:

1) Xalan for training – Xerces for testing

2) Xerces for training – Xalan for testing

3) Xerces for training – POI for testing

4) POI for training – Xerces for testing

After the best algorithm is selected, the best model was
transformed into a web service and deployed on Azure cloud
platform. In addition, a web-based client application was
implemented to consume this web service. The following
explains the Related Work. Section III shows the methodology
applied in this study. Experimental results are given in section
IV. Section V shows the conclusion and future work.

II. RELATED WORK

There are many recent papers on cross-company defect
prediction. Traditional software defect prediction models are
evaluated under within-company defect prediction research
area. Yu et al. [11] analyzed whether the features or instances
are more important for cross-project defect prediction and
concluded that features are more important than instances

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

based on their analyses on NASA and PROMISE datasets.
Gunarathna [12] identified 30 CPDP studies as part of
systematic literature review (SLR) study and reported that
models using Nearest Neighbour and Decision Tree provide
good performance in CPDP problems. Hosseini et al. [13]
proposed a new data selection approach called Genetic Instance
Selection for CPDP context and concluded that it is promising
for the selection of training data. He et al. [14] proposed a
novel data selection method called TDSelector and reported
that the prediction models using this method provide better
performance than the baseline methods. Wu et al. [15]
developed a semi-supervised structured dictionary learning
(SSDL) approach for cross-project semi-supervised defect
prediction problem. Hosseini et al. [16] demonstrated that
search based instance selection and feature selection can
improve the performance of CPDP models. Yu et al. [17]
designed a feature matching and transfer approach (FMT) and
showed that it is effective for CPDP. Yu et al. [18] suggested a
data filtering approach based on Agglomerative clustering and
showed that it improves the performance of CPDP models. Yu
et al. [19] showed that the class imbalance learning method
called under-sampling improves the performance of CPDP
models. Herbold et al. [20] analyzed the performance of local
models in CPDP context and reported that they provide a minor
difference compared to global models. You et al. [21] CPDP
problem was modelled as a ranking problem and suggested a
ranking-oriented CPDP method. As seen in these recent
studies, researchers are still developing methods for this
challenging problem.

III. METHODOLOGY

Datasets regarding to the software projects were
downloaded from the PROMISE repository [3]. Since there
were different versions of each project such as Xerces-init,
Xerces-1.2, Xerces-1.3, Xerces-1.4, we decided to merge these
datasets to get a larger dataset. It’s known that a larger dataset
mostly simplifies the learning process of machine learning
algorithms in machine learning community. This merge
operation was performed for the other projects such as JEdit,
Ivy, Forrest, POI, and Log4j as well. Therefore, we got only
one dataset for each project.

For the evaluation of our fault prediction models, we
applied the hold-out validation approach. In this approach, the
original dataset is split into two parts, namely training and
testing. The performance of the model on the testing set is
considered as the generalization capability of the learning
model. We used 70% of the dataset for training and 30% of the
dataset of testing. This step is performed with the Split Data
component in Azure ML Studio platform. The experiment
screen regarding to the within-project defect prediction is
shown in Figure 1. The dataset component (poi-merge.csv) is
inserted into the top of the experiment screen as seen in Figure
1. Two-Class Boosted Decision Tree component, shown at the
left hand side of the screen, represents the learning algorithm
in this experiment. All the other classification algorithms were
used after this algorithm was applied. Split Data component
helps us to specify the hold-out evaluation approach. If the
dataset is not large enough, K-fold cross-validation might also
be considered as an alternative evaluation method in machine

learning. To do so, Partition and Sample module must be used
instead of Split Data component. Train Model component in
the figure uses the training dataset to learn the parameters of
the learning algorithm. Once the training model component is
inserted into the screen, the class label of the dataset must be
specified on the Train Model component with the help of
Launch Column Selector button. Score Model component
analyzes the performance of the model in the testing set.
Evaluate Model component helps to depict the evaluation
parameter results. All of these components in italics are shown
in Fig. 1.

Fig. 1. Experimental design for the case study-I

Fig. 2. Experimental design for the case study-II

In Fig. 2, experimental design for the case study II is
depicted. In this figure, we have two datasets because while
one of them will be used for the training step, the other one
will be used for the testing step.

Evaluation results are given based on the AUC (Area under
ROC Curve) evaluation parameter which is between 0 and 1.
If the value is near to 1, this indicates that the model’s
performance is perfect. We can state that the higher this value
is, the better the performance of the model is. While the x-axis
of the ROC (Receiver Operating Characteristics) curve plots
the false positive rate, y-axis represents the true positive rate.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 411 --

This curve passes from the points (0, 0) and (1, 1). Once new
points are added to this curve, the integral of this curve
provides the area under this curve.

We divide our experiments into two categories:

 Case Study I: Within-Project Defect Prediction

 Case Study II: Cross-Project Defect Prediction

Since a large amount of data will be required to build a
high-performance CPDP model, we sorted the datasets based
on their sizes. Therefore, Case Study-II was performed on the
large datasets instead of all the datasets used in Case Study I.
However, Case Study I was performed for all the datasets and
all the classification algorithms. Also, all the classification
algorithms were investigated for Case Study II.

IV. EXPERIMENTAL RESULTS

Nine classification algorithms were applied for both of the
case studies. While 22 datasets were used in the first case
study, three datasets were investigated for CPDP analyzes.

A. Case Study I: Within-Project Defect Prediction
In this case study, all the classification algorithms were

investigated for the within-project defect prediction. The top
three algorithms are indicated with the red colour in Table 1.
Red 1 indicates that the corresponding algorithm works best
for that dataset. We decided to count the number of these
labels (1, 2, and 3) to select the best algorithm for the case
study I.

TABLE I. EXPERIMENTAL RESULTS FOR CASE STUDY-I

In Table 2, we show that how many times an algorithm has
been listed in the top three ranks during the experiments.
According to the Table 2, it is observed that decision jungle,
decision forest, and boosted decision tree algorithms work
better than the other classification algorithms when all the

datasets are considered. Since all of these three algorithms are
based on the decision tree concepts, we can state that the
decision tree based algorithms are more appropriate for within-
project defect prediction when class-level metrics are used.

TABLE II. PERFORMANCE RESULTS OF EACH ALGORITHM

B. Case Study II: Cross-Project Defect Prediction

Since Xalan, Xerces, and POI datasets had larger amount of
data instances, we decided to work with them for cross-project
analyzes. According to the experimental results, we observed
that Logistic Regression works best for most of the cross-
project cases as shown in Table 3. We did not perform any data
filtering or data selection method while building our CPDP
models. Therefore, we can state that a large amount of cross-
project data might be good at predicting the defects in another
environment and no complex data selection algorithms are
required to build these CPDP models. However, if the reported
performance results are not acceptable for a specific domain
such as real-time mission critical systems, it’s absolutely
required to integrate recent data selection and data filtering
methods into the machine learning models.

TABLE III. CROSS-PROJECT ANALYSIS RESULTS

After these analyzes were done, the best model for within-
project defect prediction was transformed into a web service in
Azure ML Studio Platform. The selected dataset for this
transformation was Log4j and the algorithm was Decision
Jungle since it provides the best performance over all the other
classification algorithms.

Web Service Input and Web Service Output components
must be integrated into the experiment screen to build the web
service. After the web service was deployed into the Azure
cloud platform, a web-based client application was
implemented using ASP.NET technology. The inputs are
received from the user, sent to the web service, and the defect
prediction result is returned to the user. Azure ML Studio
platform easily lets developers to use the request/response API
produced after the web service is produced.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 412 --

V. CONCLUSION AND FUTURE WORK
In this study, several classification algorithms were first

investigated for within-project defect prediction and it was
shown that decision jungle, decision forest, and boosted
decision tree algorithms which are decision tree-based
algorithms provide better performance than the other
classification algorithms. In the second case study, it was
demonstrated that logistic regression based CPDP provides
acceptable results even if any data transformation and data
filtering method are applied. In addition, we showed that the
transformation of the prediction model into a web service is an
efficient approach for building software fault prediction
systems. Also, it was concluded that acceptable results can be
achieved if the cross-project data are large enough to build the
training model. In the future, new experiments will be
performed on the new datasets and data filtering algorithms
will be integrated into these systems to improve the prediction
results.

REFERENCES
[1] C. Catal, “A systematic review of software fault prediction

results”, Expert Systems with Applications., vol.36, no.4, 2009, pp.
7346-7354.

[2] S. Herbold, “A systematic mapping study on cross-project defect
prediction”, Empir Software Eng., in press.

[3] PROMISE official website, Web: http://openscience.us/repo.
[4] M. Jureczko, L. Madeyski, “Towards identifying software project

clusters with regard to defect prediction”, in Proc. 6th
International Conference on Predictive Models in Software
Engineering, 2010, pp. 1-10

[5] S.R. Chidamber, C.F. Kemerer, “A metrics suite for object oriented
design”, IEEE Transactions on Software Engineering, vol. 20,
no.6, 1994, pp.476-493.

[6] R. Martin, “OO design quality metrics. An analysis of
dependencies”, in Proc. ROAD 1995, vol. 12, 1994, pp. 151-170.

[7] M.H. Tang, M.H. Kao, M.H. Chen, “An empirical study on object-
oriented metrics”, in Proc. Software Metrics Symposium, 1999, pp.
242-249.

[8] J. Bansiya, C.G. Davis, “A hierarchical model for object-oriented
design quality assessment”, IEEE Transactions on Software
Engineering, vol.28, no.1, 2002, pp. 4-17.

[9] B. Henderson-Sellers, Object-oriented metrics: measures of
complexity. NJ, Prentice-Hall, 1995.

[10] T.J. McCabe, “A complexity measure”, IEEE Transactions on
Software Engineering, vol.4, 1976, pp. 308-320.

[11] Q. Yu, S. Jiang, J. Quian, “Which is more important for cross-
project defect prediction: instance or feature?”, In Proc.
International Conference on Software Analysis, Testing, and
Evolution, 2016, pp.90-95.

[12] D. Gunarathna, “A systematic literature review on cross-project
defect prediction”, 2016, University of Oulu, Master Thesis.

[13] S. Hosseini, B. Turhan, M. Mantyla, “Search based training data
selection for cross project defect prediction”, In Proc. of the 12th
International Conference on Predictive Models and Data Analytics
in Software Engineering”, 2016, pp.3.

[14] P. He, Y. Ma, B. Li, “TDSelector: A training data selection
method for cross-project defect prediction”, CoRR, in press.

[15] F. Wu, X.Y. Jing, X. Dong, J. Cao, M. Xu, H. Zhang, B. Xu,
“Cross-project and within-project semi-supervised software defect
prediction problems study using a unified solution”,
“In Proceedings of the 39th International Conference on Software
Engineering Companion”, 2017, pp. 195-197.

[16] S. Hosseini, B. Turhan, M. Mäntylä, “A benchmark study on the
effectiveness of search-based data selection and feature selection
for cross project defect prediction”, Inf. Soft. Tech. in press.

[17] Q. Yu, S. Jiang, Y. Zhang, “A feature matching and transfer
approach for cross-company defect prediction”, Journal of Systems
and Software, vol.132, 2017, pp. 366-378.

[18] X. Yu, J. Zhang, P. Zhou, J. Liu, “A data filtering method based on
agglomerative clustering”, In Proc. SEKE 2017, pp. 392-397.

[19] X. Yu, M. Zhou, X. Chen, L. Deng, L. Wang, “Using class
imbalance learning for cross-company defect prediction”, In Proc.
SEKE 2017, pp. 117-122.

[20] S. Herbold, A. Trautsch, J. Grabowski, “Global vs. local models
for cross-project defect prediction”, Empirical Software
Engineering, 2016, pp. 1-37.

[21] G. You, F. Wang, Y. Ma, “An empirical study of ranking-oriented
cross-project software defect prediction”, International Journal of
Software Engineering and Knowledge Engineering, vol.26, 2016,
pp.1511-1538.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 413 --

