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Abstract—In this paper we deal with System-on-Chip (SoC) 
system (transaction and higher abstraction) level modeling. The 
traditional approach based on libraries of custom IPs and 
SystemC/TLM-2.0 framework is saddled with issues, which 
prevents wider dissemination of system modeling technology in 
the industry. Incompatible interfaces of custom IPs give rise to 
integration issues. Current SystemC/TLM-2.0 framework 
requires highly skilled developers having software and hardware 
expertise. We propose a new approach that looks promising and 
overcomes the above-mentioned drawbacks. The essence of our 
approach is an infrastructure library that hides the complexity of 
SystemC.  System level models are assembled from infrastructure 
elements with functional cores expressing hardware capabilities. 
Implementation results and proof-of-concept are presented. 

I. INTRODUCTION

With ever-increasing complexity, SoC requires adequate 
means and tools for modeling. Means includes models and 
languages for system specifications. One of the most popular 
means is SystemC [1], [2]. SystemC is a system level 
modeling language, based on C++ that has gained a lot of 
traction in the fields of system level modeling, architectural 
exploration, performance modeling, software development, 
functional verification, and high-level synthesis. It is a set of 
C++ classes and macros, which provide an event-driven 
simulation interface enabling a designer to simulate concurrent 
processes. SystemC processes can communicate in a simulated 
real-time environment, using signals of any (built-in or user-
defined) data types. 

Transaction level modeling in SystemC involves 
communication between SystemC processes using function 
calls. TLM-2.0 focuses on modeling of on-chip memory-
mapped buses. TLM-2.0 has a layered structure, with the 
lower layers being more flexible and general, and the upper 
layers being specific to bus modeling. TLM-2.0 has kicked off 
a thriving third party ecosystem for development of reusable 
and standard IPs that can be shared across teams and 
companies. 

The flexibility and generality of C++ in modeling 
hardware across multiple levels of abstractions and desired 
cycle accuracy, via templates and libraries, has some 
downsides. The hardware engineers and system architects are 
put off by the syntactic complexity (template heavy) and 
debug (into library internals) of SystemC. There is a 
noticeable amount of boilerplate code that needs to be written 
to handle common scenarios. In addition, the tool vendors 
have made limited investment into the language, whose 
reference implementation is available from Accellera site [2]. 

Tools provide instruments for model development 
including IDEs, which aggregate GUIs, libraries, compilers, 
linkers and execution environment or, in case of SystemC, 
simulation engine. Synopsys “Platform Architect MCO”©
represents a typical tool in this area. The tool provides an 
environment for SystemC/TLM-2.0 models’ development at 
different levels of accuracy (untimed, loosely timed, cycle 
accurate). It gives a powerful means for system architecture 
performance optimization including power optimization. One 
of the important parts of such tools is the library of 
predesigned elements. Libraries usually include typical 
hardware elements such as clock generators, registers, buses 
etc. 

Despite the powerful means and tools in system model 
development, there are substantial drawbacks as listed below, 
which prevents its wider dissemination in the industry: 

Semantic complexity of SystemC/TLM-2.0 for 
hardware engineers and as a result, system models are 
typically developed by highly trained software 
developers who must have both hardware and software 
expertise; 
Long development cycles for model development 
despite hardware libraries usage, due to a labor-
intensive development process, testing and verification; 
Integration of IPs taken from hardware libraries is not 
straightforward due to rigid interfaces. Quite often, 
selected IPs bring the required functionality, but due to 
incompatible interfaces they cannot be integrated in a 
model project; 
Software projects are isolated within on-shelf tools. 
Usually commercial tools do not export system model 
program codes outside their tool environments. 

We have attempted to address all these issues in this paper. 
In the following sections, we describe a system modeling 
methodology, which dramatically simplifies and speeds up 
system model development, while at the same time maintains 
the requested level of accuracy and simulation quality. 

The paper consists of five sections.  After the current 
introduction, the essence of the proposed methodology is 
described in Section II.  Section III presents generic CINFRA 
library, which is a simple library of infrastructure elements 
and templates. This library is the cornerstone of the proposed 
methodology and allows developing system models with any 
level of accuracy and complexity. We present some 
implementation results in Section IV and conclusions in 
Section V. 
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II. PROPOSED SYSTEM MODELING METHODOLOGY

A. Model declarative specification 

Usually a “system model” of hardware assumes a complex 
entity consisting of many interacting elements, which in turn 
can also be treated as a system. Such hierarchical 
decomposition can be continued until some level where all 
elements are atomic and non-decomposable. The term 
“model” exactly reflects the level of decomposition 
(abstraction) where we want to stop decomposition. For 
example, in Register Transfer Level, the model includes 
registers, digital signals and logical operations carried out on 
those signals. More abstract Transaction Level Model (TLM) 
hides communication details, and instead of signals considers 
transactions for data transfer.  Below, in the paper, “system 
model” will be assumed to be of TLM or higher abstraction 
models.  “System model” term will be used for such types of 
models. 

We specify hardware models as formal algorithms 
following [3]. Nevertheless, due to hardware nature, it needs 
to be kept in mind that it should be a declarative specification. 
The basis of the system modeling methodology is an adequate 
underlying model of computation (MoC) [4]. Description of 
system hardware models based on MoC brings us at least two 
advantages, which are vital for complex systems: 

mathematically rigorous hardware elements 
behavior and their interactions; 
ability for formal verification. 

Hardware components of TLM models are reactive. It 
means that a corresponding component starts work when it 
receives all input data. The component generates output data 
after processing all input data. This reactive behavior 
motivates us to use the dataflow model of computations 
(Dataflow Network Processes, [3], Section B.4) for 
specification of system models. Let us also note that this 
specification is purely declarative. 

Fig. 1 shows an example of a dataflow model consisting of 
two terminal operators A, B and data 1, 2, 3, 4 among them. 
An operator A starts work (or fires) when both input data 1 
and 2 are full. The operator A generates an output data 3. The 
data 3 is an input data for an operator B. Thereafter, the full 
data 3 enforces firing the operator B that, in its turn, generates 
an output data 4.  

Operators A and B might be not terminal but rather 
complex operators. In such cases, they play role of wrappers 
for internal terminal operators and their firing is defined 
by internal components of corresponding operators. 

Our strategy in building the system modeling methodology 
is the following. 

A

B

1 2

3

4

Fig. 1. An example of dataflow model 

Keeping in mind the mentioned dataflow MoC, we are 
going to use SystemC to build infrastructure templates and 
objects, which will behave according to this MoC and provide 
related hardware functionality. TLM-2.0 supplies the standard 
communication capabilities. One of the obstacles on the way is 
the perceived complexity of SystemC/TLM-2.0. While 
SystemC has found a home as a system level modeling 
language, it still has work to do to endear itself to people 
coming from non-software background. One way to deal with 
this is to provide a framework that they are already familiar 
with and tucks away the complexity until they need to deal 
with it. What is the familiar paradigm? Passing input/output 
values as function parameters and capturing the processing 
logic within the function. This provides a simple mind-map for 
consuming input values, processing it and generating 
output. 

The framework also takes care of providing the appropriate 
input/output SystemC ports and TLM memory buses to 
connect with other SystemC/TLM-2.0 compliant models out 
of the box. The framework provides this through a simple 
declarative mechanism, which captures the intent, and takes 
care of transforming the same to corresponding 
implementation at compile time. 

We introduce three types of infrastructure templates for 
building system models. 

COMPONENT – terminal element bringing hardware 
functionality; it is atomic and the functional core is 
executed when all input values are presented. 
BLOCK – complex element consisting of 
COMPONENTs and other BLOCKs; it does not have 
its own functionality; all block functionality is 
expressed in components. 
SUBSYSTEM – complex element consisting of 
COMPONENTs and BLOCKs with specific 
communication capabilities, it reflects a complex 
cluster of hardware elements. 

General methodology of system model development 
consists of the following actions. 
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Specification of the model as a dataflow model in terms 
of operators, complex operators and data flow amongst 
them. 
Mapping operators onto COMPONENTs and complex 
operators onto BLOCKs or SUBSYSTEMS. 
Development of functional cores for corresponding 
COMPONENTs or referring to functions from an 
existing functional library. 
Writing program code by declaration of model 
COMPONENTs, BLOCKs, SUBSYSTEMs and 
elements from CINFRA library.   
Binding declared modules by using corresponding 
macros from CINFRA framework or specification of a 
text netlist. 
Testing. 

B. Component template 
COMPONENT is a sc_module declaration. It shown in 

Fig. 2. The Component is the basic unit to capture the 
hardware functionality. The Component, by default, awaits 
inputs on all its input ports, and then fires the functional core 
while passing all the input data as input Params<data-
type>&… to the function. The functional core then executes 
the functionality and populates the output in 
Params<data_type>&… which is then forwarded to the 
corresponding output ports. Params<> may be thought of as a 
vector/map which has a 1-1 correspondence to its 
corresponding port. Execution (and pipeline) delay can also be 
(optionally) inserted after the functional core execution. 

For e.g. if we need to model a simple Max2 Component 
with a reset/in, two inputs int/in and one output int/out, it may 
be declared as follows: 

// Simple functional core to calculate max
void max2(Params<int> &in, Params<int> &out) {

out[0] = (in[0] > in[1]? in[0]: in[1]);
}
// Max2 Component
COMPONENT (Max2, PORT (rst_t, 1, IN), PORT (int, 2,

IN), PORT (int, 1, OUT)) {
COMPONENT_CTOR (Max2) {

// Associate this Component with Max2
// functional core
this >set_func_core(&max2);

}
};
The communication between Components is standardized 

and this allows for flexible exchange of information based on 
the need. 

Each port is declared as a triad – PORT (data-type, size, 
IN/OUT), where 

data-type is any C++ built-in type, SystemC type or 
User-defined data type. 
block(data-type) changes the port to a blocking port-
type from the default non-blocking port type. 
evt_t is a data-less port type that signals events. 

COMPONENT

Functional Core

p1 p2 pN

Fig. 2. A COMPONENT template 

wr_tlm_t & rd_tlm_t is a stand-in for TLM2.0 
write/read sockets. 
size is the number of ports, default size is 1. 
IN/OUT determines the direction of the port. INOUT is 
not supported now. 

A Component or Block supports all PORT types, whereas 
a SubSystem supports a subset of PORT types. 

Callbacks are associated with each PORT/IN type to 
handle the incoming signals. Drive functions are associated 
with each PORT/OUT type. Default implementation is 
provided, which users can override, if needed. 

C. BLOCK template 
BLOCK is a sc_module declaration. Fig. 3 illustrates 

BLOCK concept.  

The Block is a structural mechanism to put together 
simpler Components/Blocks to model more complex logic. 
BIND() is a function that is used to dynamically discover and 
connect the given pins, instantiating a channel in between as 
needed. The Block, unlike the Component, can execute 
operations when only a part of data are available for 
computations. For this purpose, we use a specific component -
mux2, having two inputs and one output. The mux2 executes 
data time-division multiplexing and is triggered by only one 
input. A dataflow model of mux2 is shown in Fig. 5. 

The following example illustrates the Block concept. Let 
us suppose we need to model a Max4 Block (using 3 simple 
Max2 Components) we could declare and bind it as follows: 

// Max4 Block
BLOCK (Max4, PORT (rst_t, 1, IN), PORT (int, 4, IN),
PORT (int, 1, OUT)) {

// Declare 3 Max2 Components.
Max2 m0, m1, m2;

BLOCK_CTOR(Max4)
: m0(“m0”), m1(“m1”), m2(“m2”)
{
BIND(“rst_0”, “m0.rst_0, m1.rst_0, m2.rst_0”);
BIND(“in_0”, “m0.in_0”);
BIND(“in_1”, “m0.in_1”);
BIND(“in_2”, “m1.in_0”);
BIND(“in_3”, “m1.in_1”);
BIND(“m0.out_0”, “m2.in_0”);
BIND(“m1.out_0”, “m2.in_1”);
BIND(“m2.out_0”, “out_0”);
}

};
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BLOCK

COMP1 COMP2

COMP3

p1 p2

p3 

Fig. 3. An example of a BLOCK template 

D. SUBSYSTEM template 
SUBSYSTEM is a sc_module declaration. Fig. 4 illustrates 

SUBSYSTEM concept.  

A SubSystem is a structural element like a Block except 
that it has restrictions on the kind of ports it permits at the 
boundaries (only Reset, Clock and Tlm ports permitted). 

For e.g. if we would like to support a pipeline operation on 
a given input TLM stream, we could do it as follows: 
SUBSYSTEM (Image, PORT (rst_t, 1, IN), PORT (wr_tlm_t, 1,
IN), PORT (wr_tlm_t, 1, OUT)) {

PipeOp0 p1;
PipeOp1 p2;
PipeOp2 p3;

SUBSYSTEM_CTOR (Image)
: p0(“p0”), p1(“p1”), p2(“p2”)
{
BIND(“rst_0”, “p0.rst_0, p1.rst_0, p2.rst_0”);
BIND(“in_0”, “p0.in_0”);
BIND(“p0.out_0, p1.in_0”);
BIND(“p1.out_0”, “p2.in_0”);
BIND(“p2.out_0”, “out_0”);
}

};

E. Communications 
The Communication and Computation part of the 

Components are strictly separated as it was described in [5]. 
The framework provides a standard set of communication 
mechanisms for notifications and exchanging information. 
They are listed as follows: 

1) evt_t: data-less notifications.

2) rst_t: Specialized evt_t with custom behavior to reset
the module to init_state.

3) pos_clk_t/neg_clk_t: Clock types triggered at positive
and negative edges.

4) T: In-built or user defined data type that is implemented
using sc_in/sc_out ports. This provides non-blocking
communication interface.

5) block(T): Like T, except that the transaction blocks
unless there is space to write/data to read. This may be
used for flow-control.

SUBSYSTEM

BLOCK1

BLOCK2

BLOCK
N

CO
M
M

CO
M
P

p

Fig. 4. An example of a SUBSYSTEM template 

1. wr_tlm_t/rd_tlm_t: Write/Read TLM sockets. Write and
Read TLM transactions are handled separately for ease of
modeling. tlm_generic_payload is wrapped with a simple
structure (mreq_t) to hide its complexity.

Currently INOUT transactions and TLM/Debug 
transactions are not supported. 

III. CINFRA LIBRARY

A. Infrastructure elements 
Many infrastructure-plumbing elements were developed to 

enable easy connectivity of Components. Some of them are 
listed below: 

mux2/fmux – different multiplexers: mux2, multiplexer 
with 2 input ports and 1 output port, fmux, configurable 
multiplexer with variable number of input ports and user 
defined functional core; 
dmux2/fdmux – different demultiplexers: dmux2, 
demultiplexer with 1 input port and 2 output ports, fdmux, 
configurable demultiplexer with variable number of output 
ports and user defined functional core; 
fwd – forwarder copies data from the input port to 
configurable number of output ports; 

Fig. 5. A dataflow model of the multiplexer mux2 
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sel – selector selects data from the input port according to a 
user defined rule in the functional core and copies selected 
data to the output port; 
splitter – splitter routes data from configurable number of 
input ports to configurable number of output ports 
according to user defined rules;  
terminator – terminator terminates input or output ports; 
const – constant value generator. 

B. Declarative syntax 
The declarative syntax is enabled using C++ Template 

Meta Programming. Some of the important elements in it are 
described below. 

1. ToPort: This is used to convert a duet of data-type and
direction to a SystemC port of appropriate type using
template partial specialization.

template<typename T, direction_t D>
struct ToPort {
using type = sc_core::sc_out<T>;
};
template<typename T>
struct ToPort <T, IN> {
using type = sc_core::sc_in<T>;
};
template<>
struct ToPort <evt_t, IN> {
using type = sc_core::sc_in<bool>;
};
template<>
struct ToPort <evt_t, OUT> {
using type = sc_core::sc_out<bool>;
};

2. Port: This is used to capture the user defined Port
declarations and communicate it to the underlying
class.

template<typename T, size_t N, direction_t D>
struct Port {
using port_data_type = T;
static const size_t port_size = N;
static const direction_t port_dir = D;
};

3. Variadic template base class to capture port
declarations. This information is then used to declare
SystemC ports, instantiate corresponding port-buffers,
evaluate trigger condition for FunctionalCore, generate
pre-callbacks for ports etc.

template<typename FunctionalCore, typename ...Ts>
struct Component
: public sc_core::sc_module {
// See how declarative syntax can be used to drive
// SystemC port declarations
std::tuple< sc_core::sc_vector< typename ToPort<typename
Ts::port_type, Ts::port_dir>::type >... > ports;
/* … */
}

C. Common extensible core framework in C++11 
The framework provides a simple and consistent way to 

declare a Component/Block/SubSystem. The heavy lifting of 
transforming this declarative structure to C++ code is 
accomplished using the C++ Variadic Template feature and 

Template Meta Programming. Component<>, Block<> and 
SubSystem<> classes are defined as generic base classes with 
mandated functionality. Each user-defined 
COMPONENT/BLOCK/SUBSYSTEM inherits this 
functionality and expands on it as required. Since the bulk of 
the functionality is already captured and well-tested in the base 
classes, the amount of code to be written by the user is 
drastically reduced (order of 2x-10x). 

D. Text based netlist connectivity and configuration 
The framework supports dynamic discovery of SystemC port 

types and has knowledge of how to connect common port types 
(and instantiate appropriate channels, if needed). The user can 
extend this for user-defined types as well. While the dynamic 
discovery may slow down the init-time of the system, this is 
miniscule compared to the runtime of a typical simulation. In 
addition, this helps cut down the compilation times by changing 
fix-recompile-run to fix-run cycles, for netlist connectivity 
errors. 

Hierarchical (XML-based) configuration support is provided 
for initializing the init-time parameters of 
Components/Blocks/SubSystems. These can help to override the 
default values of the base classes to suit the SoC being 
constructed. When SystemC Configuration, Control and 
Interface (CCI) [7] is released, this may be updated to CCI 
standard without much ado. 
<system>

<module name="t"> <! top >
<module name="tb"> <! testbench >

<attribute name="tv" value="10,20,60,9,
1,16"/> <! testvector >

</module>
<module name="adder_0">

<attribute name="port_names" value="rst_in,
int_in, int_out"/>

<attribute name="delay" value="10 ns"/>
</module>
<module name="adder_1" clone="adder_0"/>
<module name="adder_2" clone="adder_0">

<attribute name="delay" value="15 ns"/>
</module>
<attribute name="connect"

value="tb.rst, adder_0.rst_in_0,
tb.rst1, adder_1.rst_in_0,
tb.rst2, adder_2.rst_in_0,
tb.a, adder_0.int_in_0,
tb.b, adder_0.int_in_1,
tb.A, adder_1.int_in_0,
tb.B, adder_1.int_in_1,
adder_0.int_out_0, adder_2.int_in_0,
adder_1.int_out_0, adder_2.int_in_1,
adder_2.int_out_0, tb.c"/>

</module>
</system>

IV. IMPLEMENTATION RESULTS

A. CINFRA library implementation
The CINFRA library is developed using standard C++11 

features and uses the Boost library for XML config parsing. 
The code has been compiled using both g++ and clang++ 
compilers on Windows and Linux (64-bit). The complete 
source code is only a few kLOC; as it leverages the 
SystemC/TLM2.0 infrastructure in full. 
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B. System Cache Model 
The CINFRA framework was used for modeling a System 

Level Cache which is one of the important parts of shared-
memory System-on-Chip (SoC) architectures (see for example 
[6], Chapter 5.2). The System Level Cache (SLC) defines 
memory access performance of application processors in most 
smartphones. The functional and loosely timed SLC models 
(TLM) are described by the same program code, with the 
difference in time attributes. Time attribute for all model 
components is equal to zero in the functional model and they 
are non-zero in the loosely timed model.  Metrics 
characterizing CINFRA efficiency for this case is shown in 
Table I. In the table, we compare SLC development based on 
SystemC/TLM-2.0 only and with CINFRA framework. We 
ported SystemC/TLM-2.0 SLC model into Synopsys Platform 
Architect© environment and compared simulation speed of 
ported model and model in CINFRA framework. 

TABLE I.  EFFICIENCY METRICS

Metrics Value
Model development time reduced by ~ 50% 

Code length reduced 40% - 70% 
Simulation speed increased 2 - 8 times 

We did not use IP libraries for model development. 
CINFRA methodology requires only functional library 
development. Functions from this library are responsible for 
implementation of core hardware functionality. Component 
functional cores refer to such functions. In case of the SLC, 
the functional library includes program codes related to the 
cache operations. Functions can be developed in C or C++ 
style. Only new functions require unit testing. Other model 
elements are taken from well-tested CINFRA library and does 
not require unit testing at all. It substantially reduces testing 
efforts.       

V. CONCLUSION

We proposed in this paper a system modeling methodology 
founded on algorithmic specification of a complex hardware 
system. It provides us with an ability to use formal verification 
of system models and substantial simplification of 
development process. Simplification is approached by 
development of the specific CINFRA framework that includes 
three basic templates and infrastructure elements allowing us 

to build system models with any level of complexity and 
accuracy. CINFRA framework is created just using pure 
C++11. It allows escaping to script languages for system 
models programming and significantly increases simulation 
speed of resulting models. The basic templates annotated by 
indexes (delay, area, power consumption etc.) supports 
development of performance models or models for 
architecture explorations. From a practical point of view, a 
process of system model building consists of three steps: 
system specification as a dataflow model, development of 
functional cores expressing elementary hardware functionality 
and mapping the dataflow model onto CINFRA framework. 

CINFRA framework does not have issues related to IPs 
integration due to incompatible interfaces. Hardware 
functionality is described in functional cores that can be bound 
with any interface parameterized in CINFRA templates.  

 The proposed methodology was applied for development 
of the System Cache TLM model and has demonstrated its 
efficiency first in terms of time-to-market. 
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