
A Method to Derive TRiStar Diagrams from Textual
Descriptions of Teleo-Reactive Systems

José Miguel Morales, Pedro Sánchez
Universidad Politécnica de Cartagena

Cartagena, Spain
josemiguel.morales, pedro.sanchez@upct.es

Antonio Sánchez
Sociedad Anónima de Electrónica Submarina

Cartagena, Spain
a.sanchez@electronica-submarina.com

Abstract—This paper presents a method for obtaining a
TRiStar diagram starting from a textual description of a Teleo-
Reactive system. The steps in the method are exemplified using a
Unmanned Underwater Vehicle used for deactivateing naval
mines. Using this method will make the specification and reuse of
Teleo-Reactive systems much easier.

I. INTRODUCTION

Nilsson’s Teleo-reactive (TR) paradigm is a goal-oriented
approach for modelling autonomous reactive systems which
directs the system to achieve its goal (Teleo) by reacting to
changes in the environment (reactive) [1]. Morales et alter
propose an extension for the i* specification language, called
TRiStar, in order to adapt it to the particularities of TR
systems [2] [3]. TRiStar has proven to be more effective and
more efficient than the original notation [4].

The objective of this paper is to propose some
methodological steps in order to obtain a TRiStar diagram
starting from the description of the System To Be (STB) in
natural language. In the next subsections we will give some
notions on the TR paradigm and TRiStar notation. Section II
will show the methodological steps we are proposing for
getting a proper TRiStar diagram. And last, Section III
contains some conclusions and future work.

A. The Teleo-reactive paradigm
The Teleo-reactive paradigm was defined by Nilsson as a

robust way to guide a software agent towards its goals (see [5]
for an exhaustive survey). TR programs have the ability to
react robustly when conditions in the environment change,
thanks to the continuous computation of the perceptions given
by the sensors. TR programs take advantage of propitious
changes and recover from adverse changes. TR programs are
defined as a set of prioritized condition/action rules that
continuously sense the environment. The action of the rule
with the highest priority among all the rules whose condition
is true, is executed. That execution may lead the system to
satisfy the conditions of other rules with higher priority or,
eventually, the final goal of the STB. Here follows a simple
example of a TR program:
UUV:
 MineDeactivated && nextToOwnship -> nil
 MineDeactivated && !nextToOwnship -> ComeBack
 true -> DeactivateMine

ComeBack:
 OwnshipAhead -> forward
 true -> search

DeactivateMine:
 NextToMine -> deactivate
 true -> FindMine

FindMine:
 MineAhead -> forward
 true -> search

The previous code corresponds to a very simplified
Unmanned Underwater Vehicle (UUV) which is submerged
from a mothership in a zone where a naval mine is known to
be; the vehicle looks for the mine, deactivates it and goes back
to the mothership.

The program starts executing the main goal of the vehicle
(UUV). At the beginning, among the three rules in that goal,
only the condition of the third rule is true (in fact, it is always
true). Then, the action DeactivateMine is executed. Only
the condition of the second rule in DeactivateMine is true
and that is why the action FindMine starts its execution.
Analogously the action that finally executes is the task
search. When the UUV starts searching, it makes some
movements in order to find a particular element. As a
consequence of those movements it may eventually face a
mine and the condition of the first rule (MineAhead)
becomes true. As the first rule has a higher priority than the
second one, the UUV stops searching and starts going forward.

Now suppose that a stream in the water helps the vehicle
and it arrives to the mine before than expected. The condition
nextToMine becomes true and the vehicle can proceed with
the deactivation of the mine. If the stream changes and the
vehicle is thrown away, the program will recover itself
executing again the search task until the mine is found
again. The advantages of using the TR paradigm can be seen
more clearly if you think of the equivalent statechart that
considers all the possible transitions.

This example will be used all along this paper and is
deeply described in section II.

B. TRiStar
i* notation provides a lot of advantages for graphically

specifying goal-oriented systems, but some weaknesses have

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

been described when using i* for specifying TR systems. This
is why Morales et al. decided to develop TRiStar, an extension
of i* which overcomes those weaknesses [2]. In order to prove
that the new notation was more effective and efficient than the
original one when specifying TR systems, a family of
experiments was carried out and its results published in [4].

As stated before, a TRiStar diagram inherits and extends i*
graphical notation. Fig. 1 shows a summary of the graphical
elements used in i*. Those elements allow the modeling of:
hierarchical decomposition of goals (ellipses), the actions
taken in every goal (hexagons) and the conditions that enable
the execution of those actions (links to rectangles). In addition,
the behavior of every agent is encapsulated inside a shadowed
ellipse.

The additions made by TRiStar to the original i* notation
are summarized in Fig. 2. See [2] for a complete description.
The new elements are the following:

Logical Resources: this type of resources are used to
represent boolean combinations of other resources. In
addition to the resource, a table containing the
equivalent boolean expression is needed in the diagram.
Prioritized Decomposition Links: i* doesn’t provide a
representation for priorities among the different
subgoals and tasks of a goal. To stablish priorities,
TRiStar adds a number of marks to the i*
decomposition link. The fewer marks, the lower
priority of the linked subgoal or task.
Decomposition Link Dependency: i* offers dependency
links on resources, goals and tasks, but not on
decomposition links. Through this link we can
represent the condition / action relation present in the
rules of a TR program. The resource represents a
perception which acts as a condition in the rule
represented by the decomposition link between a goal
and its subgoal.
Logical Resource Dependency: this link gives the
relationship among a logical resource and the resources
used in its boolean expression.

These extensions allow graphically modelling TR systems,
which makes it easier for stakeholders and other non-technical
people the understanding and reuse of TR specifications. Fig.
3 shows the TRiStar diagram corresponding to the UUV
example described in the previous section. In that figure,
examples of use of all those elements can be observed. Section
II deeply analyzes that example.

Obtaining the TR program which corresponds to a TRiStar
diagram is a simple and direct process and is described in [4].
For that reason, obtaining a TRiStar diagram can be
considered equivalent to obtaining a TR program.

II. THE METHOD

In this section we will use the UUV example described in
the previous section in order to show the main steps that will
guide the process to obtain a TRiStar diagram like that in Fig.
3 starting from a description of the STB in natural language.

The description of our example is the same as we stated in
section I:

“The STB is an UUV which is submerged from a
mothership in a zone where a naval mine is known to be; the
vehicle looks for the mine, deactivates it and goes back to the
mothership.”

A. STEP 1: Identifying the Main Goal
The first thing we need to clarify when designing a TR

system is what the system is going to do. That is what we call
the Main Goal (MG). Try to find a sentence that summarizes the
purpose of the STB as simply as possible. Boolean relationships
such as and, or and not between concepts may be used in the
MG. In the UUV example, the MG is:

“To deactivate the naval mine and go back to the
mothership”.

B. STEP 2: Identifying the elements
Once we have identified the MG we need to identify which

elements are available to achieve that MG. Three types of
elements need to be identified:

Sensors available to be used in the STB and the
perceptions those sensors can provide. For TR systems
we need boolean perceptions, i.e. perceptions that tell
us if a condition is true or false. We will probably need
to write some wrapper for the off-the-self sensors that
can be found in the market.
Actuators available to be used in the STB and the
actions those actuators are able to make.
Beliefs: taken from the TeleoR approach [7], it has

Fig. 1. i* graphical elements

Fig. 2. TRiStar added graphical elements

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 451 --

become usual in TR systems to use beliefs that may
affect the processing just as if they were perceptions.
Those beliefs are stored in the BeliefStore.

In the UUV example the identified sensors are the SONAR
and the Camera. The SONAR provides the following
perceptions:

MineAhead: this perception becomes true when the
SONAR detects a naval mine in front of the UUV. The
SONAR processes the acoustic signal received and a
wrapper states if there is an object within its range that
could be a naval mine.
OwnshipAhead: this perception becomes true when
the SONAR detects the mothership just in front of the
UUV. In the same way as the previous perception, the
SONAR processes the acoustic signal received and the
wrapper states if the mothership is within its range.

The perceptions provided by the Camera agent are the
following:

NextToMine: this perception becomes true when the
Camera detects that the UUV is near enough to the
mine in order to deactivate it. The wrapper of the
Camera will state if the captured images correspond to
a mine within the range of the Arm.
NextToOwnship: this perception becomes true when
the Camera detects that the UUV is near enough to the
mothership in order to be recovered. The wrapper of
the Camera will state if the captured images
correspond to the mothership being at a distance that
allows its recovery.

On the other hand, the actuators identified in the UUV
example are the Engine and the Arm. The actions that the
UUV is able to make using the Engine are the following:

forward: this action allows the UUV to move
forward following a rectilinear trajectory in the
direction it is facing.

Fig. 3. UUV TRiStar diagram

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 452 --

search: this action allows the UUV to turn over itself
following a pattern designed to maximize the
possibilities of finding a naval mine. While the UUV
follows this pattern the SONAR is at the same time
trying to detect the mine.

The only action that the UUV is able to make using the
Arm is deactivate. Through this action the UUV will
deactivate the naval mine by, for example, cutting the moors
of a moored mine.

At last, the only identifed belief in the UUV example is
MineDeactivated. When the mine is finally deactivated,
this belief becomes true in the BeliefStore.

C. STEP 3: Decomposing MG into subgoals
Decompose the MG into subgoals trying to answer to the

question: “HOW can the MG be achieved?”. Take each of
those subgoals and try to decompose them again into new
subgoals or actions allowed by the available actuators.
Alternative decompositions may be considered representing
different solutions to the same problem. At the end of this step,
all the subgoals must be decomposed into actions. Otherwise,
new actuators may be needed. At this moment, some of the
alternative decompositions may be discarded due to the lack of
appropriate actuators.

When dividing goals and subgoals keep always in mind the
perceptions that the available sensors are providing. Take into
account that the system needs to know when a goal or subgoal
has been achieved. The only way for knowing that is through
the sensors of the system.

In this step we can start drawing the TRiStar diagram by
representing the STB as an agent. Draw the MG as a TRiStar
goal (an ellipse with the name of the goal in it) in the upper
part of the agent that represents the STB. Just below the MG
draw all the subgoals you have divided the MG into using the
same representation (ellipses). If you have identified any
action, draw them as TRiStar tasks (hexagons). Connect the

MG and the new subgoals and tasks using decomposition links
(see Fig. 1).

If you are considering alternative decompositions for a
certain goal, use means – end links for each of them (See Fig.
1). Fig. 4 shows an example of the use of means – end links
for this purpose. In order to achieve Goal1, two possibilities
have been considered: SubgoalAlt_1 and
SubGoalAlt_2. Each alternative is decomposed in its own
subgoals and tasks. Eventually, one of those alternatives will
be chosen to be implemented.

Fig. 5 shows the diagram of the UUV example at the end of
this step. See how we have drawn the MG in the upper part of
the UUV agent. We have divided it into two subgoals:
Deactivate Mine and Come Back. The task nil
represents in this case the achievement of the goal: as the goal
has been achieved, the system has nothing more to do. Then,
Deactivate Mine has been divided into the subgoal
Find Mine and the task deactivate. Both Find Mine
and Come Back subgoals have been divided into the tasks
search and forward. In the first case, the task search
will eventually put the UUV facing a mine. At that moment
the UUV can move forward to reach it. In the second case the
behavior is similar but facing the mothership. This difference
will be solved in step 5 using the sensors of the system.

D. STEP 4: Prioritization
In this step, priorities among the different subgoals and

tasks are introduced. In TR systems, the order in which the
subgoals are being achieved is very important. In the UUV
example, the vehicle obviously needs to find the mine prior to
deactivating it. TRiStar uses prioritized decomposition links to
stablish the order in which each subgoal or task has to be
achieved. The fewer marks in the link, the earlier that task has
to be initiated. The priority stablished in this way will
determine the order of the rules in the resulting TR program.

Fig. 6 shows the UUV TRiStar diagram including the
priorities among the subgoals. See how the decomposition link

Fig. 4. Alternative decompositions

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 453 --

between Deactivate Mine and Find Mine has only one
mark and that between Deactivate Mine and
deactivate has two marks. When the system tries to
achieve Deactivate Mine it needs to find where the mine
is and move next to it in order to deactivate it using the Arm.

E. STEP 5: Monitoring the environment
The STB needs to know when it has achieved the MG or

any of the subgoals. The perceptions given by the available
sensors are the only way of being aware of the changes in the
environment. For this purpose, we need to stablish a
correspondance between each subgoal and a boolean
combination of the perceptions given by the sensors of the
STB.

In the UUV example, the MG can be represented by the
following expression:

mineDeactivated AND nextToOwnship

In addition, the system needs to know when a subgoal has
been achieved and when to stop executing a task and start
executing the next one. The same process must be
accomplished with the rest of subgoals and tasks. If a
correspondance for any of the subgoals or tasks cannot be
stablished we may need to get new sensors or discard the
alternatives which include those subgoals or tasks. The
expression representing the achievement of a subgoal will be
the same as the one representing the achievement of its
subgoal with the highest priority (or the accomplishment of its
task with the highest priority).

In the UUV example, the subgoal Find Mine can be
considered as achieved when the vehicle is located next to the
mine. Then, we can use the perception NextToMine to
represent the achievement of the subgoal Find Mine and the
trigger for the next task to be done once the mine has been
found: deactivate it.

The sensors whose perceptions are being used in the STB
will be represented in the diagram as TRiStar agents. The
perceptions provided by those sensors will be represented as
resources inside the agent representing the corresponding
sensor. See for example the agent Camera and the resource
NextToMine inside it in Fig. 3.

Boolean expressions combining two or more perceptions
will be represented as TRiStar logical resources. See
ReadyToGoBack or MissionOK in Fig. 3 as examples.
The boolean expresions corresponding to those logical
resources can be found in the table at the lower left corner of
the figure. Notice how each logical resource is linked to the
perceptions used in those expresions through dependency
links. For example, looking at the table in Fig. 3 we can see
that ReadyToGoBack corresponds to the expression:

mineDeactivated AND NOT(nextToOwnship)

For that reason, the logical resource ReadyToGoBack in
Fig. 3 is linked to both MineDeactivated and
NextToOwnship resources.

When a subgoal (subA) has been achieved, the system must
go on trying to achieve the next subgoal (subB). The condition
that represents the achievement of subA is at the same time the
trigger to start trying to achieve subB. This is represented in a
TRiStar diagram as a dependency link between the resource
that represents the achievement of subA and the decomposition
link ending in subB. That is why the MG is always linked to a
decomposition link ending in the nil task: when the MG has
been achieved, nothing more has to be done. As stated before
in the UUV example, NextToMine means that the
FindMine subgoal has been achieved and that the
deactivate task must begin. See in Fig. 3 how resource
NextToMine is linked to the decomposition link between the
subgoal DeactivateMine and the task deactivate.

Although both Find Mine and Come Back subgoals
share the same tasks (search and forward) the difference
between them is in the perceptions they use to decide that the
system doesn’t need to continue executing those tasks. In
Find Mine the system stops searching when the SONAR
detects a mine in front of the UUV (perception MineAhead).
Nevertheless in Come Back the system stops searching when
the SONAR detects the mothership in front of the UUV
(perception “OwnshipAhead”).

At the end of this step the TRiStar diagram is completed.
The complete TRiStar diagram for the UUV example has been
already shown in Fig. 3.

Fig. 5. UUV after step 3

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 454 --

F. THE METHOD IN A NUTSHELL
The five steps needed to get a TRiStar diagram starting

from the textual description of a TR system are the following:

1) Identify the Main Goal.
2) Identify the elements: sensors (and their perceptions),

actuators (and their actions) and beliefs.
3) Decompose the Main Goal into subgoals and tasks and

those subgoals into new subgoals or tasks until there
are no subgoals left.

4) Stablish the priority among the subgoals and tasks.
5) Monitor the environment using the identified

perceptions and beliefs to state when a subgoal has
been achieved and the next task needs to be started.

III. CONCLUSIONS AND FUTURE WORK

We have presented five methodological steps to obtaining a
TRiStar diagram starting from a textual description of a Teleo-
Reactive system. In addition we have proven that this steps
can be easily applied by showing a complete example.

In the near future we pretend to design a family of
experiments to test the usefulness of this methodology. In each
of those experiments we will present a textual description of a
TR system to two group of subjects. One group will try to
obtain the TR program which implements the proposed system
directly from the description. The other will be told to use
these methodological steps to obtain the correspondant
TRiStar diagram. We will measure and compare the
correctness of the obtained results and the time used to get
them.

Although the transformations needed to obtain a TR
program from a TRiStar diagram are clearly stated, a tool that
allows making this transformation automatically would be
really useful. In addition, that tool should allow drawing the
TRiStar diagram in a manner similar to that of OpenOME, an
open source tool to draw i* diagrams [7].

ACKNOWLEDGEMENT

This paper is the result of the research carried out under the
Research Program for Groups of Scientific Excellence of the
Seneca Foundation (Agency for Science and Technology of
the Region of Murcia, ref. 19895/GERM/15) and has been
partially supported by the CDTI’s OCEAN MASTER
(Multipurpose Autonomous System for different Environment
and Roles) project in the FEDER INNTERCONECTA 2015
program.

The authors wish to thank SAES (Sociedad Anónima de
Electrónica Submarina) [8] for their generosity and support for
this research.

REFERENCES

[1] N. J. Nilsson, “Teleo-reactive programs for agent control”, J. Artif.
Intell. Res. 1(1), 1993, pp. 139–158.

[2] J. M. Morales, E. Navarro, P. Sánchez and D. Alonso, “TRiStar: an i*
extension for Teleo-reactive systems requirements specifications”,
Proceedings of the 30th Annual ACM Symposium on Applied
Computing, April 13-17 2015. Salamanca (Spain) , pp. 283-288.

[3] E. Yu, “Towards modelling an reasoning support for early-phase
requirements engineering”, Proc. of the 3rd IEEE International
Symposium on Requirements Engineering, January 6-8, 1997.
Washington D.C. (USA), pp. 226-235.

[4] J. M. Morales, E. Navarro, P. Sánchez and D. Alonso, “A family of
experiments to evaluate the understandability of TRiStar and i for
modeling teleo-reactive systems”, The Journal of Systems and
Software, 114, pp. 82-100.

[5] J. M. Morales, P. Sánchez and D. Alonso, “A systematic literature
review of the Teleo-reactive paradigm”, Artificial Intelligence
Review, 42, pp. 945–964.

[6] K. L. Clark and P. J. Robinson, “Robotic agent programming in
TeleoR”, 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 26, 2015. pp. 5040-5047.

[7] OpenOME official website, Web:
https://se.cs.toronto.edu/trac/ome/wiki

[8] SAES official website, Web: http://www.electronica-submarina.com.

Fig. 6. UUV after step 4

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 455 --

