
Prediction of Common Weakness Probability
in C/C++ Source Code

Using Recurrent Neural Networks

Petr Vytovtov1,2, Kirill Chuvilin1,3

1Moscow Institute of Physics and Technology (State University), Moscow, Russia
2Kalashnikov Izhevsk State Technical University, Izhevsk, Russia

3Institute of Computing for Physics and Technology, Protvino, Russia

osanwevpk@gmail.com, kirill@chuvilin.pro

Abstract—The article considers source code written in C/C++
programming language. The problem is the automatic detection
of potential vulnerabilities from the common weakness enumer-
ation. The assumption is that the presence of a vulnerability
is determined by the local context. Machine learning approaches
based on recurrent neural networks are investigated. The training
sample is built from known common weakness fixes in public
software code repositories. A new static analysis approach based
on recurrent neural networks is proposed. It is tested on source
code blocks with different sizes and demonstrates good quality
in the terms of accuracy, F1 score, precision and recall. The pro-
posed method can be used as a part of the source code quality
analysis system and can be improved for more deeply source code
analysis or for collaboration with source code autofixing tools.

I. INTRODUCTION

Nowadays, software is involved in all application areas.
And the tools for its creation are accordingly rapidly devel-
oped. Now they are not only compilers and editors, but also
a large number of utilities designed to analyze and improve
the quality of the source code.

Depending on the application area, different requirements
are imposed on the source code and the resulting software. But
the lack of potential vulnerabilities is almost always critical
in commercial projects. Therefore, a significant part of the
software development process is devoted to the detection of the
corresponding errors. It is important to note that the errors of
this kind are difficult to detect, since they are often connected
with logic and poorly formalized.

Therefore, the automating of searching and fixing vulnera-
bilities process is an extremely urgent task. Errors that are not
related to logic can be handled by compilers and linkers. Ex-
ternal code analysis tools are usually used to detect the rest. In
section II we consider some well-known approaches. Common
Weakness Enumeration (CWE) was developed to unify the
vulnerability search process [1]. It contains a catalog of known
software weaknesses and vulnerabilities. In section III-A we
describe the data obtained from it in more detail.

In this paper we consider applications written in C/C++
programming language and apply machine learning approach
(see section III) to automate the search for vulnerabilities from
CWE. Results presented in the article are a part of the system
for analyzing software source code quality developed as a
dynamic library for clang compiler [2]. The source code of the

used models and preprocessing scrips is available on GitHub
under the MIT license terms [3].

II. RELATED APPROACHES AND SOLUTIONS

As it was stated in the introduction, the problem is ex-
tremely urgent, therefore several approaches to its solution
are known. Existing tools for vulnerability detection can be
divided into dynamic and static analyzers.

Dynamic analyzers detect vulnerabilities during the soft-
ware execution. This approach is implemented in such tools as
Avalanche [4], Valgrind [5], !exploitable [6], etc. Most of them
were developed for detecting memory management bugs and
are poorly adapted for other problems in software. Dynamic
analysis provides very accurate information about vulnerabili-
ties but requires a lot of time because of running software with
different starting conditions. Also, (and as a result of previous
statement) it is difficult to check all possible program execution
paths. Thus, static analysis is more preferable for software
checking.

Static analyzers, such as Klockwork [7], PVS Studio [8],
Clang Static Analyzer [9], MOPS [10], PC-Lint [11], Parasoft
C++test [12], CodeSurfer [13], FXCop [14], etc., do analysis
without executing the program. As a result this approach
can provide inaccurate information about vulnerabilities in
software. Especially it is noticeable in static analyzers which
use manually created templates and rules for detecting bugs.
This behavior is illustrated in Fig. 1 and Fig. 2 gotten from
CWE [15] and Microsoft [16] official sites respectively. These
images show that different software analyzers can provide
information about different vulnerabilities.

Several tools, for example BoundsChecker, implement both
approaches. They can provide more accurate information about
vulnerabilities because of combining two approaches, but
require more time for analysis because of the same reason.
Thus we have decided to use machine learning approach which
will accurately detect vulnerabilities in software source code
and will requires less time for analysis.

One more related research is dedicated to the automatic
synthesis of formal correcting rules for LATEX documents. In
the work [17] each document is represented as a syntax tree.
Tree node mappings of initial documents to edited documents
form the training set, which is used to generate the rules. Rules

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 1. CWE analyzers matching claims

Fig. 2. Overlapping between different analyzers

with a simple structure, which implement removal, insertion
or replacing operations of single node and use linear sequence
of nodes to select a position are synthesized primarily. The
constructed rules are grouped based on the positions of ap-
plicability and quality. The rules that use tree-like structure
of nodes to select the position are studied. The changes in
the quality of the rules during the sequential increase of the
training document set are analyzed.

The common part with the task considered in this work
is detection of hardly formalized errors in the source code.
Moreover, in both cases the machine learning approaches
described in detail in the section III are used. However, in
the work [17] tree structures are investigated, while in this
research we consider linear sequences that are easier to obtain
and understand. In addition, the data sets suitable for training
differs considerably.

III. MACHINE LEARNING APPROACH

In this work we consider an approach based on methods of
machine learning. This means that the model parameters are
adjusted (or trained) according to the training set of known
results (in our case this set if formed by source code snippets
that are known to contain weaknesses).

Here is the formal statement of the problem.
Given:

• S0 is the source snippets with known vulnerabilities

positions,

• V0 is the CWE markup for S0,

• S is the source code to detect vulnerabilities in.

Required: V (the CWE markup for S).

Visually the workflow of this approach is shown on Fig. 3.
The training set is formed by V0 corresponding to the prece-
dents and S0 forming the context. Mode detailed these sets
are described in section III-A. This information is used to
train the classification model in a such way that it will take
a new portion of the source code S and predict vulnerability
presence rate V . In more general case the model should specify
the CWE identifier. The process of constructing the model is
described in detail in section III-C.

S0
(known

source code)

V0 (CWE
markup
for S0)

S
(new source

code)

Model
training Classification

Classification
model

V (CWE
markup
for S)

Fig. 3. Machine learning workflow

A. The dataset
As mentioned above, our task is to predict the probability

of emerging weakness in functions written in C/C++ program-
ming language. For this we decided to use CWE as a formal
list of software weakness which was created for improving
the process of analyzing the software source code, architec-
ture, and design. This enumeration contains information about
common weakness templates, what technical impact is possible
because of the weakness, and which stages of software life
cycle is important for this weakness.

National Institute of Standards and Technology has pub-
lished the dataset based on this list [21]. It contains source
code of open source software which has marked code lines
with type of vulnerability. From this dataset, we chose the
information about four open source software products: GNU
Grep, Wireshark, FFmpeg, ang Gimp.

On the next step, we processed the data for getting and
labeling blocks of source code, where the block is started with
open brace, finished with close brace, and may contain other
blocks. It is necessary because it is important to know the
location of the weakness. And the less is source code block the
better will be position prediction. Thus, we have got 136086
blocks without bugs and 2858 blocks with bugs.

On the last step of preparing dataset, we selected separately
five groups of blocks, where the size of each block is less or

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 526 ----------------------------------------------------------------------------



equal to 1KiB, 1.5KiB, 2KiB, 3KiB, and 4KiB respectively.
We think the greater size of source code blocks will not provide
accurate information about weaknesses position. After this,
the numbers of blocks with bugs and blocks without bugs
were aligned with undersampling (so that their number will be
equal), shuffled, and split to training and test sets. The sizes
of these sets are shown in Table I.

TABLE I. THE SIZES OF THE TRAINING AND TEST SETS FOR CODE

CLOCK SIZES

Source code block size Training set size Test set size
(less or equal to)

1 KiB 554 278
1.5 KiB 1194 598
2 KiB 1688 846
3 KiB 2550 1276
4 KiB 3016 1510

When the dataset is prepared the data should be prepro-
cessed. In our case blocks of source code should be converted
to the sequences of lexemes. It is necessary for unification the
source code representation in a sequence. For this we used
Clang compiler [22] with -dump-tokens flag and got its
result with a few modifications.

B. The baseline

As a baseline, we chose FastText tool developed by Face-
book [18], [19]. This tool uses the hashing for building the
embeddings for words and linear methods for text classifying
or language modeling. Embeddings for lexemes are calculated
as an average value of char n-gram hashes sum. In the
following steps they can be used as is or as a base for
embeddings for new lexemes calculated in runtime.

We consider FastText as baseline because it implements
linear methods for sequences. Therefore, recurrent neural net-
works usage, such as long-short term memory neural network
(LSTM) [20], should improve the results gotten with FastText.

We trained five models: one for each block size. The results
are showed in Table II. FastText provides better results for
longer sequences, and the sequences size which is less or equal
to 3 KiB is enough for training the model.

Also we trained the character-level model with LSTM, but
it did not provide useful results. More information about it will
be shown in section IV.

C. The model

The architecture of our model is showed on Fig. 4. It
consists of an embedding layer, one LSTM layer, and one
linear layer with sigmoid function applied to the output.

The embedding layer uses the dictionary which contains
all unique tokens which are appeared in chose datasets. Thus,
vocabulary sizes are 1132, 2473, 3685, 6512, 8708 lexemes
for datasets with blocks size less or equal to 1 KiB, 1.5 KiB,
2 KiB, 3 KiB, and 4 KiB respectively. The identifiers of vari-
ables and constants are used “as is” without any modifications.

TABLE II. THE BASELINE QUALITY ESTIMATIONS FOR SOURCE CODE

BLOCKS

Source code block size Training set Test set
(less or equal to)

Accuracy
1 KiB 0.7 0.69

1.5 KiB 0.83 0.85
2 KiB 0.87 0.87
3 KiB 0.91 0.9
4 KiB 0.92 0.91

F1 score
1 KiB 0.58 0.57

1.5 KiB 0.82 0.83
2 KiB 0.87 0.86
3 KiB 0.9 0.89
4 KiB 0.9 0.91

Precision
1 KiB 0.95 0.97

1.5 KiB 0.88 0.93
2 KiB 0.93 0.93
3 KiB 0.96 0.94
4 KiB 0.96 0.96

Recall
1 KiB 0.41 0.4

1.5 KiB 0.76 0.75
2 KiB 0.81 0.8
3 KiB 0.85 0.84
4 KiB 0.87 0.86

Embedding
layer

LSTM
layer

Linear
layer

Sigmoid

Fig. 4. The architecture of the model

The LSTM layer is defined [20] as

ft = σg(Wfxt + Yfht−1 + bf ),

it = σg(Wixt + Yiht−1 + bi),

ot = σg(Woxt + Yoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ycht−1 + bc),

ht = ot ◦ σh(ct),

where xt is an input vector (one lexeme in our case) and
ht−1 is an output vector from the previous step. ft is a forget
gate which is calculated with sigmoid function σg weights
matrices Wf and Yf and bias vector bf . The same way is
used for calculating the input gate it and output gate ot. The
LSTM cell state on the current step ct is calculated as element-
wise multiplication between forget gate and cell state from
previous state ct−1 (here some information can be saved or
forgotten) with following addition the input state calculated
as element-wise multiplication between input gate and tanh

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 527 ----------------------------------------------------------------------------



function of input vector and output vector from the previous
step. The output of the LSTM unit is calculated as a element-
wise multiplication between output gate and tanh function of
current cell state. On the first step h and c are zero vectors.

The size of the vector h (hidden size; hidden units count)
is a hyperparameter, which value should be set manually.
We tested our model with different hidden sizes: 50, 100,
150, 200, 250, 300, 350, 400, 450, and 500 units, using Grid
Search method. The results of the experiments are shown in
section IV.

A linear layer with sigmoid function σ returns a single
number showing the probability of weakness of the analyzed
source code block.

For training the model we are minimizing the cross-entropy
function:

L = min(−y log(σ(ŷ))− (1− y) log(1− σ(ŷ))),

where y is a real target value, ŷ is a predicted label for the
same issue, and σ is a sigmoid function.

We used Adam [23] as an optimization algorithm with
learning rate equals to 0.001, and batch size equal to 1 [24].
The training process was during 10 epochs for each pair of
(hidden size; block size) values.

IV. EXPERIMENTS

We searched optimal values for two hyperparameters: the
LSTM hidden units count and the maximum size of analyzed
source code blocks. As mentioned in the previous section, we
tried five sizes of blocks. Also, we tried five sizes of LSTM
hidden layer. The results are presented in Table III.

The table shows that the best value of the loss function
appears after eight epochs with 250 LSTM hidden units and
source code blocks size less or equal to 3 KiB. The graph of
the loss function for this configuration is shown on Fig. 9. The
Table III also shows that one layer LSTM network with 250
hidden units provides a local minimum for all test source code
blocks from our dataset for the CWE prediction task.

It is clear from Fig. 9 that the model is overfitted after eight
epochs. For configuration with 250 LSTM hidden units and
source code blocks size less or equal to 3 KiB the overfitting is
not giant. However Figs. 5–10 show that the overfitting is much
significant for the other configurations. The general conclusion
is that there is an epoch after which overfitting begins. We
choose such epoch as the optimal for the model adjustment.

Lets consider the best and the worst variants of out model
in detail and compare them with the best FastText baseline
(section III-B). The summary results are presented in Table IV.

It could be mentioned that the worst variant of our model
is better than the FastText baseline for the same source code
blocks size (less or equal to 1 KiB), and it is similar to the
FastText baseline for blocks size less or equal to 2 KiB. The
best variant of our model is better than all FastText baselines.
The ROC curves for both models are shown in Fig. 11 and
Fig. 12.

Thus, we claim that our model has good quality in the
problem of software common weakness prediction. It provides

TABLE III. LOSS FUNCTION VALUES FOR THE BEST EPOCH DEPENDS

ON THE LSTM HIDDEN UNITS COUNT

Source code block size The best epoch Training set Test set
(less or equal to) number loss loss

50 hidden units
1 KiB 3 0.37 0.38

1.5 KiB 2 0.32 0.37
2 KiB 3 0.27 0.28
3 KiB 3 0.22 0.21
4 KiB 3 0.23 0.24

100 hidden units
1 KiB 3 0.38 0.36

1.5 KiB 3 0.32 0.33
2 KiB 7 0.26 0.29
3 KiB 2 0.24 0.24
4 KiB 2 0.26 0.27

150 hidden units
1 KiB 6 0.39 0.35

1.5 KiB 3 0.31 0.33
2 KiB 2 0.27 0.31
3 KiB 4 0.24 0.22
4 KiB 2 0.24 0.24

200 hidden units
1 KiB 4 0.36 0.38

1.5 KiB 2 0.32 0.35
2 KiB 3 0.25 0.25
3 KiB 5 0.18 0.19
4 KiB 2 0.24 0.24

250 hidden units
1 KiB 9 0.29 0.32

1.5 KiB 4 0.27 0.29
2 KiB 4 0.21 0.24
3 KiB 8 0.17 0.17
4 KiB 5 0.19 0.2

300 hidden units
1 KiB 6 0.36 0.37

1.5 KiB 3 0.26 0.3
2 KiB 5 0.25 0.28
3 KiB 3 0.2 0.19
4 KiB 3 0.2 0.22

350 hidden units
1 KiB 5 0.33 0.41

1.5 KiB 5 0.25 0.27
2 KiB 2 0.28 0.3
3 KiB 6 0.26 0.26
4 KiB 2 0.2 0.21

400 hidden units
1 KiB 8 0.31 0.39

1.5 KiB 3 0.26 0.29
2 KiB 10 0.22 0.22
3 KiB 8 0.16 0.18
4 KiB 3 0.18 0.22

450 hidden units
1 KiB 7 0.29 0.32

1.5 KiB 4 0.29 0.36
2 KiB 5 0.22 0.26
3 KiB 4 0.18 0.20
4 KiB 2 0.22 0.22

500 hidden units
1 KiB 6 0.36 0.39

1.5 KiB 3 0.3 0.36
2 KiB 4 0.22 0.24
3 KiB 3 0.18 0.21
4 KiB 2 0.21 0.21

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 528 ----------------------------------------------------------------------------



Fig. 5. The loss function of training and test sets for model with 150 LSTM
hidden units trained with source code blocks with size less or equal to 1 KiB

Fig. 6. The loss function of training and test sets for model with 250 LSTM
hidden units trained with source code blocks with size less or equal to 1 KiB

TABLE IV. THE COMPARISON OF THE QUALITY ESTIMATIONS

Model Training set Test set
Accuracy

Our best 0.94 0.94
Our worst 0.87 0.86
FastText best 0.92 0.91

F1 score
Our best 0.94 0.93
Our worst 0.85 0.85
FastText best 0.9 0.91

Precision
Our best 0.98 0.96
Our worst 0.97 0.95
FastText best 0.96 0.96

Recall
Our best 0.91 0.91
Our worst 0.76 0.76
FastText best 0.87 0.86

Recall
Our best 0.91 0.91
Our worst 0.76 0.76
FastText best 0.87 0.86

94% of accuracy on the training and test sets which is better
than our baseline based on FastText. The precision and recall
values also are better.

Fig. 7. The loss function of training and test sets for model with 250 LSTM
hidden units trained with source code blocks with size less or equal to 1.5 KiB

Fig. 8. The loss function of training and test sets for model with 250 LSTM
hidden units trained with source code blocks with size less or equal to 2 KiB

As mentioned in section III-B, we also tried the character-
level recurrent model with the same dataset. Unfortunately, it
did not give us the satisfactory level of prediction. The graphs
of loss function for this model are shown in Fig. 13 and Fig. 14.

V. DISCUSSION

Three approaches to software common weakness prediction
are considered: FastText and two types of recurrent neural net-
works. The results of our work and experiments show that the
recurrent neural networks provide better quality in prediction
than linear method FastText. It is because linear models do
not save dependencies throw time, and weakness prediction
in software is possible only if we have the information about
the history of program execution. Furthermore the usage of
lexemes in model got better quality than single characters
usage because of because of the need to take the context into
account during weakness prediction.

The observed features form an understanding of what is
needed to improve the results. We propose to build further
research from the following sequential steps.

1) Improving the preprocessing stage using embeddings.
It is necessary because it is expensive to store all

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 529 ----------------------------------------------------------------------------



Fig. 9. The loss function of training and test sets for model with 250 LSTM
hidden units trained with source code blocks with size less or equal to 3 KiB

Fig. 10. The loss function of training and test sets for model with 250 LSTM
hidden units trained with source code blocks with size less or equal to 4 KiB

possible variables names in the vocabulary. Therefore,
the approach to calculate embeddings for variables
names in the inference time is needed. This approach
is provided, for example, by FastText.

2) Using an abstract syntax tree (AST) as input to the
model instead of the sequence of lexemes. In out
mind it should improve the model quality because
the information about the source code structure can
be useful in the task of common weakness prediction
forming more complex context. Moreover, it is pos-
sible that variables names will not be important if the
model know the analyzed source code structure.

3) Testing the model scaling to lager data and longer
sequences. We have an assumption that the model
can be approximated to long sequences form short.
If it is true than the model can be trained much faster
and with the less data.

4) Moving the model from C/C++ programming lan-
guage to LLVM IR language. It is quite useful
because we plan to analyze source code written
in different programming languages and LLVM IR
provides the universal approach for representation
high-level programming languages. Also, it will be

Fig. 11. The ROC curves for the worst variant of our model and for FastText
models with source code blocks sizes less or equal to 1 KiB and to 2 KiB

Fig. 12. The ROC curves for the best variant of our model and for FastText
models with source code blocks sizes less or equal to 3 KiB and to 4 KiB

interesting to check the correlation between predic-
tions based on C/C++ programming language and
based on LLVM IR.

5) Changing the binary classification model to mul-
ticlass classification and predicting the probability
of common weakness types. It can be useful for
application fields to know what type of weakness the
program has.

6) Integrating the model into clang dynamic library for
analyzing software source code during the compila-
tion (or precompilation) time.

VI. CONCLUSION

In work described in this paper, we considered machine
learning approach for the common weaknesses prediction in
the source code written in C/C++ programming language. The
dataset is formed from the source code and common weakness
positions of GNU Grep, Wireshark, FFmpeg, and Gimp.

We managed to achieve the desirable quality of the weak-
ness detection (with 94% if accuracy on test set), thanks to
the method based on Recurrent Neural Networks. The LSTM
model with 250 hidden units which is trained with source

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 530 ----------------------------------------------------------------------------



Fig. 13. The graph of character recurrent model loss function throw batches

Fig. 14. The graph of character recurrent model loss function throw epochs

code blocks with size less or equal to 3 KiB provides the best
prediction quality.

Our research shows that the model has a high predictive
ability. We see the potential to extend this approach further
in order to implement dynamic library for analyzing software
source code. The further work will be aimed to improving and
scaling our model. The important part of it is the migrating of
the model from C/C++ programming language to LLVM IR,
and integrating it into the clang dynamic library.

Also, we can say that FastText provides slightly worse
results but it works faster than recurrent neural network. Thus,
if the time of analysis is preferable and accuracy is not critical
linear methods like FastText could be more suitable.

The source code of our model and preprocessing scripts
are available on GitHub under the MIT license terms [3].

ACKNOWLEDGMENT

This work was supported by the RFBR grant 16-07-01267.

REFERENCES

[1] CWE - About DWE. Web: http://cwe.mitre.org/about/index.html

[2] P. Vytovtov, E. Markov, “Source Code Quality Classification Based On
Software Metrics”, Proceedings of the 20th Conference of Open Innova-
tions Association FRUCT, Apr. 2017, pp.505–511.

[3] GitHub - osanwe/source-code-cwe-analyzer Web: https://github.com/
osanwe/source-code-cwe-analyzer

[4] Avalanche - Testing the security of app aware devices and networks -
Spirent. Web: https://www.spirent.com/Products/Avalanche

[5] Valgrind Home. Web: http://valgrind.org

[6] !exploitable Crash Analyzer - MSEC Debugger Extensions - Home. Web:
https://msecdbg.codeplex.com

[7] Source Code Analysis Tools for Security & Reliability — Klocwork.
Web: https://www.klocwork.com

[8] PVS-Studio: Static Code Analyzer for C, C++ and C#. Web: https://
www.viva64.com/en/pvs-studio

[9] Clang Static Analyzer. Web: https://clang-analyzer.llvm.org

[10] MOPS. Web: http://web.cs.ucdavis.edu/∼hchen/mops

[11] Gimpel Software PC-lint Overview. Web: http://www.gimpel.com/html/
pcl.htm

[12] Parasoft C/C++test: Comprehensive dev testing tool for C/C++. Web:
https://www.parasoft.com/product/cpptest

[13] CodeSurfer — GrammaTech. Web: https://www.grammatech.com/
products/codesurfer

[14] FxCop. Web: https://msdn.microsoft.com/en-us/library/bb429476(v=vs.
80).aspx

[15] CWE - Detection Methods. Web: https://cwe.mitre.org/community/swa/
detection methods.html

[16] Microsoft TechNet - The History of the !exploitable Crash
Analyzer. Web: https://blogs.technet.microsoft.com/srd/2009/04/08/
the-history-of-the-exploitable-crash-analyzer/

[17] K. V. Chuvilin, “Machine Learning Approach to Automated Correction
of LATEX Documents”, in Proceedings of the 18th FRUCT & ISPIT
Conference, 18–22 April 2016, Technopark of ITMO University, Saint-
Petersburg, Russia. FRUCT Oy, Finland. ISSN 2305-7254, ISBN 978-
952-68397-3-8, pp. 33–40. Web: http://fruct.org/publications/fruct18/
files/Chu.eps.

[18] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, “Enriching Word Vec-
tors with Subword Information”, arXiv:1607.04606 [cs.CL]

[19] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, “Bag of Tricks for
Efficient Text Classification”, arXiv:1607.01759 [cs.CL]

[20] F. A. Gers, J. Schmidhuber, F. Cummins, “Learning to Forget: Continual
Prediction with LSTM”, Neural Computation, 12 (10), 2000, pp. 2451–
2471.

[21] Software Assurance Reference Dataset. Web: https://samate.nist.gov/
SRD/testsuite.php

[22] ”clang”: a C language family frontend for LLVM. Web: https://clang.
llvm.org

[23] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”,
arXiv:1412.6980 [cs.LG]

[24] T. M. Breuel, “The Effects of Hyperparameters on SGD Training of
Neural Networks”, arXiv:1508.0278

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 531 ----------------------------------------------------------------------------




