PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Development of Collaborative Editing Applications
through Semantic Publish-Subscribe Platforms

Fabio Viola, Francesco Antoniazzi, Alfredo D’Elia, Giacomo Corsi,
Luca Roffia, Tullio Salmon Cinotti

University of Bologna
Bologna, Italy
{fabio.viola, francesco.antoniazzi, alfredo.delia4, luca.roffia, tullio.salmoncinotti}@unibo.it,
giacomo.corsi@studio.unibo.it

Abstract—Cloud computing revolutionized the way resources
(i.e. services and data) are accessed and used. Among the many
changes in data processing and service provision paradigms,
Software as a Service (SaaS) and collaborative editing are two
of the most significant. This paper presents an approach based
on semantic publish/subscribe paradigm to the development
of collaborative editing applications. The main aim of this
research work consists in exploiting emerging technologies (i.e.
semantic web data representation formalisms, publish-subscribe
platforms) in order to (1) overcome limitations coming from the
traditional paradigm of single-author workflows, (2) enhance the
editing capabilities of the users, (3) ease the development and
maintainment of applications and (4) provide a shared high-
level abstraction of the documents that fosters information-level
interoperability and reusability. The proposed approach is then
validated through an ad-hoc vector graphics application, SCEd
(Semantic Collaborative Editor) built upon a SPARQL Event
Processing Architecture derived from the Smart-M3 semantic
publish-subscribe platform.

I. INTRODUCTION

The so-called Web 2.0 brought to a revolution in the inter-
action of the users with the World Wide Web. The role of the
user switched from consumer to prosumer, in fact, as proved by
numerous famous examples (e.g. Wikipedia just to name one),
nowadays a high number of websites propose a knowledge
base made up of the contribution of the community. From a
technological point of view, this is obtained through proper
software (e.g. Mediawiki for Wikipedia). The importance of
collaborative editing software is then continuously growing
and the availability of real-time cloud services contributes to
the spread of this paradigm. But contributing to large-scale
knowledge bases like Wikipedia is not the only advantage
brought by the Web 2.0: thanks to Cloud Computing and in
particular to Software as a Service (SaaS) it is possible to work
together at the same time, on private documents even for users
very far from each other. This area, named collaborative editing
introduces strict requirements. Above all it is worth mentioning
data consistency and timeliness.

The evolution of the Web also led to the birth of the
so-called Semantic Web, a new vision of the Web where
information represented on the Internet is not only human-
readable, but also machine-understandable to foster machine to
machine (M2M) communication. To achieve this task, a new
hierarchical structure of the Web has been introduced. Thanks
to the standards forming the Semantic Web stack, information

can be represented in form of univocally identifiable resources
that, together with their relationships, produce an oriented and
labeled graph that can be browsed, queried and edited using
the powerful SPARQL language. This ambitious project is also
known in literature as the Web 3.0. But, what is the link
between the Web 2.0 and the Semantic Web? Are there pros
or drawbacks in applying technologies from the Semantic Web
to the development of Web 2.0 applications, like for example
collaborative editing?

The main contribution of this paper consists in investigating
the use of semantic technologies in collaborative editing appli-
cations. Semantic publish-subscribe middelwares in fact, may
help in the development of collaborative editing application
by:

e Providing an high-level abstraction of a document
class and its instances that allows to face the barriers
of using heterogeneous devices, operating systems and
applications (i.e. achieving a higher level of interop-
erability).

e Providing a flexible way to follow the development
of a specific document (or section) with focused fine-
grain subscriptions.

e Allowing an easy development of powerful and fully
customizable client applications thanks to the use of
a simple architecture and a shared vocabulary.

This work is the result of the research activity carried on at
the ARCES center (Advanced Research Center on Electronic
Systems) of the University of Bologna and during the course
named “Interoperability of Embedded Systems”.

The article is organized as follows: after an overview of the
state of the art (Section II), the rationale behind the approach
is described in Section III. The software architecture of the
application developed for the selected use case is described in
Section IV. In Section V conclusions are drawn.

II. RELATED WORK

The analysis of the related works is structured in two
branches: in the first part, collaborative editing research works
are presented, while in the second, researches funded on the
chosen interoperability platform are discussed.

ISSN 2305-7254

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

Tudorache et al. in [1], [2] propose an interesting technique
for the collaborative ontology development applied to Protégé.
Some of the requirements highlighted by the authors (e.g.
synchronous and asynchronous access to data, support for an-
notations, scalability and user managements) were considered
relevant for the project described in this paper. Still in the
field of collaborative ontology development, in [3] a more
general approach with a complete and exhaustive ontology is
presented. In [4] an approach for collaborative editing of 3D
meshes is presented, but, to the best of our knowledge, it is not
founded on semantic publish-subscribe platforms, that repre-
sent instead the focus of this analysis. The relevance of seman-
tic technologies in collaborative editing has been discussed by
Volkel et al. [5] who proposed Semantic MediaWiki (SMW) to
semantically annotate wiki pages, enabling enhanced browsing
and searching. The approach has been reprised by Skaf-Molly
in [6] where, thanks to semantics, a network of SMW servers,
named Distributed SMW, is presented.

As it will be proved in the rest of the article, semantic
technologies could help the development of collaborative edit-
ing software. The project started by Tim Berners-Lee in 1999
and named Semantic Web [7] brought to the birth of a stack
of protocols designed to transform the web in a machine-
interpretable world. Currently, many of the protocols compos-
ing the Semantic Web stack are also used in contexts not re-
lated to the web, for example in order to grant interoperability
among smart devices in IoT or pervasive computing scenarios.
For example Unicode is used to univocally identify resources,
RDF (Resource Description Framework) [8] to represent data
as graphs composed by triples (subject, predicate and object),
OWL (Web Ontology Language) [9] to provide meanings to
the represented information and SPARQL UPDATE [10] and
QUERY [11] language to respectively modify and retrieve in-
formation from the RDF knowledge base. Among the existing
interoperability platforms, a suitable choice as a target platform
for the development of the article scenario is Smart-M3 [12].
Smart-M3 implements the publish-subscribe paradigm [13],
[14] to timely inform entities about changes on the knowledge
base. Despite being a relatively young project (it was born in
2008 in the European Project SOFIA), several researches have
been conducted, leading to strategies for application develop-
ment and attempts of integration with other frameworks have
been shown [15]. Furthermore, several real-life applications
have been presented: a blogging application called SmartScribo
was proposed in [16], [17]; then, its integration in a Smart
Conference System was performed and described by Korzun et
al. in [18]. The following works tried, first, to evolve the latter
in a Smart Room application [19] and, then, to combine the E-
Tourism services [20], [21] with the Smart Room [22], [23].
The most recent research topics on the Smart-M3 platform
include mobile health [24], robots organization [25]. A first
attempt of using Smart-M3 for collaborative work can be found
in [26]. In the first use case described in the paper, the use
of semantic technology is aimed at facilitating the real time
participation to a conference: in this paper the focus is instead
the production of documents by multiple authors. The second
use case presented by [26] seems to be more similar, since
the focus is on the production of a shared knowledge base
(KB) for tourist information, however we focus on allowing
the production not of a single large scale KB, but many small
documents represented by independent subgraphs.

352

III. THE APPROACH

In the development of collaborative editing applications we
identified some requirements: first of all the need of a real-time
communication among clients. The second is about interoper-
ability: users of different devices and operating systems should
not be left out.

For each specific application class several file formats exist,
and, generally speaking, every software vendor or organization
tries to impose its own format. Taking as an example the
field of vector graphics, enterprises like Adobe and Corel
Corporation (just to name a few) and entities like the W3C
promote their own file formats to describe vector graphic
artworks. For users it is usually very hard to interoperate
if different software and file formats are adopted. To fulfill
the requirement of interoperability, we propose to rely on
semantics technologies. The approach consists in mapping to
a common ontology all the possible elements of an application
class and sharing, for each document, only the high-level
semantic representation based on the defined document type.
In this way interoperability at information level can be granted.
Semantic Web technologies play a crucial role in this approach:
the common ontology is defined through RDFS and OWL
and can be modified and extended to support new features
as the selected scenario evolves; documents built according to
the shared ontology are represented as RDF graphs and can
be retrieved and updated using whatever software capable to
perform a query or an update using the SPARQL language
(that belongs to the Semantic Web too). This model then
intrinsically fosters the maintenance and development of the
software thanks to the use of well-known standards and the
definition of a vocabulary that can be later on extended to
support new advanced features.

But how to fulfill the requirement for real-time communi-
cation using a Semantic Web knowledge base? In this paper
we exploit our previous experience in the field of semantic
publish-subscribe platforms by using a SPARQL Event Pro-
cessing Architecture [27] (SEPA). SEPA can be described as
a central knowledge-base provided with a publish-subscribe
mechanism based on SPARQL. The puslish-subscribe mecha-
nism is the key for overcoming the limitations of a traditional
single-author workflow.

Specifically, in our approach, we develop a collaborative
editing application by:

1) Identifying the application domain;

2) Identifying the main concepts of a document in that
application domain;

3) Providing an high-level abstraction of the concepts in
form of an ontology;

4) Identifying the SPARQL updates and
queries/subscriptions that allows to manipulate
and retrieve (parts of) the documents;

5) Providing specific translators that extract the semantic
representation of a document from the shared knowl-
edge base and produce an output file in the desired
format.

The use case of vector graphics is described in the rest
of the paper. An ontology was created to map the concepts
of different vector graphics applications into a shared agreed

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

vocabulary. Then, a new application named Semantic Collab-
orative Editor was developed. Due to the generality of the
approach, authors could as well have extended existing vector
graphics applications.

IV. THE USE CASE: SCED

In this Section the approach described in Section III and
representing the main contribution of this research work is
validated through a proof of concept application. The selected
use case is focused on collaborative editing for computer
graphics, and in particular vector graphics. The rest of this
Section is organized as follows: in Subsection IV-A the on-
tology designed for this use case is presented and discussed.
In Subsection IV-B the reference platform adopted to develop
the proof of concept is introduced, while in IV-C the software
architecture planned for the development of the collaborative
editor (named SCEd, Semantic Collaborative Editor) is de-
picted. Finally, in Subsection IV-E, the developed software is
analyzed to verify the validity of the proposed approach.

A. The ontology

The starting point for the development of a collaborative
editor relying on semantic technology consists in the design
of a proper ontology. In this proof of concept, the use case
is the one of collaborative vector graphics, so the ontology
should map the main entities that compose a vector artwork,
but also the users and their comments. Starting from the
analysis of the graphic elements provided by the Scalable
Vector Graphics (SVG) format, the ontology provided in Fig. 1
has been designed. While the leftmost branch represents the
class dedicated to the User profile, the central and the rightmost
branches contains, on the other hand, the classes needed
to represent all the elements of a vector graphics artwork.
Vector graphics is only one of the possible use cases. In fact,
this approach is general enough to apply to other domains,
by simply mapping a different document type in a proper
ontology.

The description of the ontology cannot be complete without
an exhaustive list of the Datatype and Object properties defined
for the domain. They are reported respectively in Table I (with
their domain) and II (with domain and range).

B. The reference platform

The development of the Semantic Collaborative Editing
Platform has been centered on a SPARQL Event Processing
Architecture born as an evolution of the Smart-M3 interoper-
ability platform. This platform provides one or more central
nodes aimed at storing the shared knowledge base: this kind of
node (formerly named Semantic Information Broker or SIB)
is named SEPA. Several implementation of the SIB exists:
1) RedSIB [28] is a C general-purpose implementation, fast
and nowadays very diffuse; 2) the OSGi SIB [29], [30] is a
more recent work oriented at [oT gateways; 3) pySIB [31] is a
lightweight Python implementation developed for low-powered
computing nodes as, for example, System on Chips (SoCs)
devices; 4) CuteSIB [32] is another recent implementation born
as a fork of the old RedSIB. In this research work, we focus
on SEPA rather than on the SIB due to the support for standard
protocols such as SPARQL 1.1 Protocol to query and update

353

| owl:Thing
| ns:Container

ns:Linker

{

ns:Drawable

l

{

ns:Picture

nsStrokable | | ns:image

——

ns:Fillable ns:Line

| ns:Group

I

! }

ns:Rect }

|

ns:Text

ns:Circle

ns:Ellipse l

ns:Polygon ns:Polyline

‘ ns:Path ‘

Fig. 1. The ontology for the vector graphics application
TABLE 1. DATATYPE PROPERTIES
Property Domain
hasWidth Picture, Rect, Image
hasHeight Picture, Rect, Image
hasReference Width Picture
hasReferenceHeight Picture
hsaLink Linker
hasGroupStroke Group
hasGroupStroleWidth ~ Group
hasGroupFill Group
startsAtX Rect, Text, Image
startsAtY Rect, Text, Image
hasRoundingX Rect
hasRoundingY Rect
hasStroke Strokable
hasStrokeWidth Strokable
isFilledBy Fillable
hasX1 Line
hasX2 Line
hasY'1 Line
hasY2 Line
hasCenterX Circle, Ellipse
hasCenterY Circle, Ellipse
hasRadius Circle
hasRadiusX Ellipse
hasRadiusY Ellipse
hasPoints Polygon, Polyline
hasFont Text
hasFontSize Text
hasDescription Path

TABLE II. OBJECT PROPERTIES
Property Domain Range
hasPicture User Picture
hasFriend User User
isUpon Drawable ~ Drawable
contains Container Drawable, Linker, Group

the KB or the SPARQL 1.1 Subscribe Protocol defined by the
authors and introduced in this platform to provide subscriptions
over WebSockets. Agents interacting with the SIB/SEPA are
called Knowledge Processors (KPs) and can be developed
exploiting one of the many existing APIs (currently available
for Java, Python, C, Ruby, Javascript). The architecture of the
SEPA platiform is summarized in Fig. 2.

The SEPA Platform is founded on a SPARQL endpoint
(i.e. Blazegraph in our case) holding an RDF graph. The

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

SEPA Engine wraps up the endpoint and provides support
for the publish-subscribe mechanism providing a Websocket
interface and a novel protocol named SPARQL Subscribe
Protocol. Applications may interact with SEPA by producing
(i.e. through the SPARQL Update Language) or consuming
information (i.e. in real time with the SPARQL 1.1 Subscribe
Language or by polling the KB with a SPARQL query). In the
first case we talk about Producers, while in the latter about
we talk about Consumers. Both write and read information
according to a shared ontology that defines the content and
the meaning of each triple. For an in-depth introduction and
analysis of the reference platform we invite the reader to refer
to [33], [27].

Producer Consumer

SPARQL 1.1 Update SPARQL 1.1 Subscribe

SEPA Engine

SPARQL 1.1 Protocol

SPARQL Endpoint

<

Fig. 2. The architecture of the SEPA platform

C. The Software architecture

The software architecture of SCEd is represented in Fig. 3.
The broker of the SEPA platform hosts in its RDF graph the
high-level semantic representation of the shared documents.
The client-side of the application is composed by several
interoperating modules described in the following subsections.

-

Client
S
KP, KP; 1 SEPA
Producer Consumer -
1‘ !)

Y

[Validator J [ReEr:':;ei;i:g J

[User Interface]

Fig. 3. Software architecture of SCEd

In Fig. 4, an example of information flow is depicted.
Two instances of SCEd load the same document, composed
by a triangle. The document is retrieved using a SPARQL

354

subscription that, as a first confirm message, sends the reply
of the corresponding query. Then the client on the left creates
a circle. This shape is translated into a proper SPARQL
update issued to the SEPA. The SPARQL Event Processing
Architecture detects a change in the subgraph of the image
and sends a notification to the client on the right that, in a few
milliseconds, updates the drawing on the User Interface.

A A

SCEd Instance
by Open Document N
SPARQL Motif. »
t Create Circle —
! SPARQL Update ['-— —_—

: Circle created t
SPARQL Motif. !

Fig. 4. SCEd: example information flow

SCEd Instance

Open Document
SPARQL Notif. SEPA

1) The Input Validator: Tt is responsible of translating user
inputs into semantic requests (i.e. SPARQL SUBSCRIBE and
UPDATE requests). It also assesses the validity of the user
input and, if needed, filters out wrong or unauthorized requests.

2) The User Interface: The User Interface (UI) constitutes
the highest layer of the application. A screenshot of the first
implementation made using Javascript’s popular framework
JQuery is shown in Fig. 5.

Through the UI users visualize and edit documents. The Ul
allows to select the operating mode (i.e. online or offline) and
if online mode is selected, the Semantic Information Broker
to be used can be specified by providing the URL for update
requests and the one for subscriptions.

While the uppermost part of the UI is dedicated to the
connection setup and to the choice of the document, the bottom
area of the UI presents the canvas where the current state of
the image is visualized in real-time (exploting the subscription
mechanism). The canvas also presents a toolbar that contains
the main interaction buttons classified among creation, editing,
removal and export buttons.

3) The SEPA Interaction Module: The SEPA interaction
module represents the interface between the client application
and the SEPA platform. It is composed by two conceptu-
ally different knowledge processors: one (i.e. the Producer)
responsible for transferring local changes to the SIB; the
other (i.e. the Consumer) to retrieve all the changes made
by the other users. The simultaneous actions performed by
the two KPs allows to keep the local and remote documents
synchronized. The SEPA Interaction module is configured
through the Configuration Manager: the URL for updating and
subscribing to the knowledge base are provided to the SEPA
Interaction Module by the Configuration Manager. Exploiting
the subscription mechanism, the SEPA Interaction Module
is timely notified about changes on a documents and such
changes are propagated to the Rendering Engine to be visu-
alized. The publish-subscribe paradigm allows the application
to be fast and responsive.

4) The Configuration Manager: As mentioned in the pre-
vious susbsection, the Configuration module is used to set

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

9¢

B Rectangie @@ Cicie | Poline 4 Polygon

Line A

testing SCEd

Fig. 5. A screenshot of SCEd

the connection parameters needed to connect to the SEPA.
Through this module it is also possible for the user to cus-
tomize the look and feel of the application.

5) The File Loader: Feeding SCEd with an existing file,
a semantic representation of the document content is built
and shared through the SIB. The SCEd module responsible
of such operation is the File Loader. The development process
of the File Loader must take into account the file formats to
be supported; in the use case described in this article, the File
Loader currently provides support only for the SVG file format.

6) The Rendering Engine: The Rendering Engine draws on
the users device the shared document in its current state. This
particular software module is also responsible for rendering the
document into file with the file format specified by the user.
In this case the Rendering Engine plays a complementary role
with respect to the File Loader. The application developed for
the scenario supports rendering into SVG files or PNG files.
The semantic representation of the document is general enough
to make possible for every developer to implement a custom
rendering function to translate the high-level document to a
specific format, as in the case of SVG and PNG.

D. SCEd and the web of things

SCEd is not only a simple collaborative editing application
founded on Semantic Web technologies and the publish-
subscribe paradigm. SCEd is a Web of Things application.
The Web of Things (WoT) is a novel research area born in
2009 but becoming popular only in these latest years [34].
The aim of the WoT is to fight the fragmentation of the
Internet of Things through the use of standard and well-known

355

Ep

Collabomtose Editor

protocols adopted in the Web. Every device can be discovered
and controlled by means of its Thing Description (TD) that
contains an exhaustive description of all the Thing’s properties,
events and actions.

That said, SCEd also includes a module that enables the au-
tomatic generation of a Web Thing for every illustration. This
allows to create a virtual device discoverable and controllable
through SEPA. The Thing Description of the virtual device
includes its properties, but first of all the events (i.e. about
new modifications to the sketch) and the available actions (i.e.
draw a new shape).

E. Discussion

The objective of this study was the analysis of the advan-
tages of using semantic publish-subscribe platforms to develop
collaborative editing applications.

As stated in the Introduction, one of the main advantages,
is the higher degree of information-level interoperability. In
fact people with different operating systems and requirements
in terms of file formats can work together using SCEd and
only manipulating the high-level representation of the artwork:
this abstract entity can be translated by the proper exporter in
the desired file at the end of the work. The ability to extend
SCEd with a custom exporter provides the power to support
potentially each destination file format.

A second advantage is the ability to follow the development
in a flexible way: in fact, being this approach centered on a
semantic publish-subscribe platform, the user may subscribe
to the whole document he is working on or issuing a more

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

specific subscription to follow the evolution of only a part of
the graph.

Third, the development model is easy and powerful: in fact,
after designing an ontology mapping the main concepts of the
domain of interest, the development of two simple Knowl-
edge Processors is enough to provide the basic features of a
collaborative editor. Furthermore, being each artwork only a
graph in the main knowledge base, it is quite easy to extend an
application providing custom SPARQL queries/subscriptions
(e.g. for custom selection mechanisms) or updates (e.g. to
simultaneously update multiple elements).

Drawbacks of the approach may be represented by the poor
performance that may affect the scalability and responsiveness
[27]. The performance of the application are influenced by the
size of the document (i.e. the number of triples composing a
document), the number of clients connected to the system (i.e.
due to the number of subscriptions to be processed), by the
size of the KB (i.e. high density means higher time to detect
changes in the graph). Further investigations will be carried
on to assess the performance of the designed system and to
quantify the maximum amount of contemporary users, drafts
(and their complexity) that can grant a fluid behaviour.

V. CONCLUSIONS AND FUTURE WORK

In this paper a domain-agnostic approach for the develop-
ment of collaborative editing applications has been presented.
The main idea consisted of relying on the powerful duo made
by semantic technologies and the publish-subscribe paradigm.
The selection of a use case allowed to validate the approach
through the development of a proper application centered on
the domain of vector graphics.

The approach proved to be general enough to be extended
to different application domains (e.g. word processing, spread
sheet manipulation and so on). Furthermore, the flexibility
granted by Smart-M3 follower, SEPA, allowed to easily build
an application starting by the design of a proper ontology and
the development of the two main components, the Knowledge
Processors, responsible for the interaction with the Semantic
Information Broker and then for manipulating each document.

Further investigations will be carried on in the next months
to analyze the possibility to merge several different application
domains by proper extensions of SCEd (and, of course, its
ontology).

ACKNOWLEDGEMENTS

Authors would like to thank Mirco Gurioli and Valerio
Carpani for the preliminary development of the presented
application.

REFERENCES

[1] T. Tudorache, N. F. Noy, and M. A. Musen, “Collaborative protege:
Enabling community-based authoring of ontologies,” in Proceedings
of the 2007 International Conference on Posters and Demonstrations-
Volume 401. CEUR-WS. org, 2008, pp. 151-152.

[2] T. Tudorache, N. F. Noy, S. Tu, and M. A. Musen, “Supporting col-
laborative ontology development in protégé,” in International Semantic
Web Conference. Springer, 2008, pp. 17-32.

356

(3]

(4]

[3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

N. F. Noy, A. Chugh, W. Liu, and M. A. Musen, A Framework
for Ontology Evolution in Collaborative Environments. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 544-558. [Online].
Available: http://dx.doi.org/10.1007/11926078_39

G. Salvati, C. Santoni, V. Tibaldo, and F. Pellacini, “Meshhisto:
Collaborative modeling by sharing and retargeting editing histories,”
ACM Trans. Graph., vol. 34, no. 6, pp. 205:1-205:10, Oct. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2816795.2818110

M. Volkel, M. Krotzsch, D. Vrandecic, H. Haller, and R. Studer,
“Semantic wikipedia,” in Proceedings of the 15th International
Conference on World Wide Web, ser. WWW ’06. New
York, NY, USA: ACM, 2006, pp. 585-594. [Online]. Available:
http://doi.acm.org/10.1145/1135777.1135863

H. Skaf-Molli, G. Canals, and P. Molli, “Dsmw: Distributed semantic
mediawiki,” in Extended Semantic Web Conference. Springer, 2010,
pp. 426-430.

T. Berners-Lee, J. Hendler, O. Lassila er al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28-37, 2001.

O. Lassila, R. R. Swick et al., “Resource description framework (rdf)
model and syntax specification,” 1998.

P. E. Patel-Schneider, P. Hayes, 1. Horrocks et al., “Owl web ontology
language semantics and abstract syntax,” W3C recommendation, vol. 10,
2004.

A. Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis,
S. Harris, K. Idehen, O. Corby, K. Kjernsmo et al., “Sparql/update:
A language for updating rdf graphs,” W3c member submission, vol. 15,
2008.

E. PrudHommeaux, A. Seaborne et al., “Sparql query language for rdf,”
W3C recommendation, vol. 15, 2008.

J. Honkola, H. Laine, R. Brown, and O. Tyrkko, “Smart-m3 information
sharing platform.” in ISCC, 2010, pp. 1041-1046.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, no. 2, pp. 114-131, Jun. 2003. [Online]. Available:
http://doi.acm.org/10.1145/857076.857078

R. Baldoni, M. Contenti, and A. Virgillito, The Evolution of
Publish/Subscribe Communication ~Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 137-141. [Online]. Available:
http://dx.doi.org/10.1007/3-540-37795-6_25

D. G. Korzun, S. I. Balandin, V. Luukkala, P. Liuha, and A. V. Gurtov,
“Overview of smart-m3 principles for application development,” in
Proc. Congress on Information Systems and Technologies (IS&ITI1),
Conf. Artificial Intelligence and Systems (AIS11), vol. 4, 2011, pp. 64—
71.

D. Zaiceva, 1. Galov, and D. Korzun, “A blogging application for smart
spaces,” in Proc. 9th Conf. of Open Innovations Framework Program
FRUCT and Ist Regional MeeGo Summit Russia—Finland, 2011, pp.
154-163.

D. G. Korzun, I. V. Galov, and S. I. Balandin, “Proactive personalized
mobile multi-blogging service on smart-m3,” CIT. Journal of Computing
and Information Technology, vol. 20, no. 3, pp. 175-182, 2012.

D. G. Korzun, I. V. Galov, A. M. Kashevnik, N. G. Shilov, K. Krinkin,
and Y. Korolev, “Integration of smart-m3 applications: Blogging in
smart conference,” in Smart Spaces and Next Generation Wired/Wireless
Networking. Springer, 2011, pp. 51-62.

D. Korzun, I. Galov, and S. Balandin, “Development of smart room ser-
vices on top of smart-m3,” in Open Innovations Association (FRUCT),
2013 14th Conference of. 1EEE, 2013, pp. 37-44.

A. Smirnov, A. Kashevnik, S. I. Balandin, and S. Laizane, Intelligent
Mobile Tourist Guide. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 94-106. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-40316-3_9

A. Smirnov, A. Kashevnik, A. Ponomarev, N. Shilov, M. Schekotov, and
N. Teslya, “Recommendation system for tourist attraction information
service,” in 14th Conference of Open Innovation Association FRUCT,
Nov 2013, pp. 148-155.

D. Korzun, I. Galov, A. Kashevnik, and S. Balandin, “Virtual shared
workspace for smart spaces and m3-based case study,” in Proceedings of
15th Conference of Open Innovations Association FRUCT, April 2014,
pp. 60-68.

PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. S. Vdovenko, S. A. Marchenkov, and D. G. Korzun, “Enhancing the
smartroom system with e-tourism services,” in 2015 17th Conference
of Open Innovations Association (FRUCT), April 2015, pp. 237-246.

D. G. Korzun, I. Nikolaevskiy, and A. Gurtov, “Service intelligence
support for medical sensor networks in personalized mobile health
systems,” in Conference on Smart Spaces. Springer, 2015, pp. 116—
127.

A. Smirnov, A. Kashevnik, N. Teslya, S. Mikhailov, and A. Shabaev,
“Smart-m3-based robots self-organization in pick-and-place system,” in
Open Innovations Association (FRUCT), 2015 17TH Conference of.
IEEE, 2015, pp. 210-215.

D. G. Korzun, A. M. Kashevnik, S. I. Balandin, and A. V. Smirnov, “The
smart-m3 platform: experience of smart space application development
for internet of things,” in Conference on Smart Spaces. Springer, 2015,
pp. 56-67.

L. Roffia, F. Morandi, J. Kiljander, A. DElia, F. Vergari, F. Viola,
L. Bononi, and T. S. Cinotti, “A semantic publish-subscribe architecture
for the internet of things,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 1274-1296, 2016.

F. Morandi, L. Roffia, A. DElia, F. Vergari, and T. S. Cinotti, “Redsib:
a smart-m3 semantic information broker implementation,” in Proc. 12th
Conf. of Open Innovations Association FRUCT and Seminar on e-
Tourism. SUAI, 2012, pp. 86-98.

D. Manzaroli, L. Roffia, T. S. Cinotti, E. Ovaska, P. Azzoni, V. Nannini,

357

[30]

[31]

[32]

[33]

[34]

and S. Mattarozzi, “Smart-m3 and osgi: The interoperability platform,”
in Computers and Communications (ISCC), 2010 IEEE Symposium on.
IEEE, 2010, pp. 1053-1058.

A. D’Elia, F. Viola, L. Roffia, P. Azzoni, and T. S. Cinotti, “Enabling
Interoperability in the Internet of Things:” International Journal on
Semantic Web and Information Systems, vol. 13, no. 1, pp. 147-167, jan
2017. [Online]. Available: http://www.igi-global.com/article/enabling-
interoperability-in-the-internet-of-things/172427

F. Viola, A. D’Elia, L. Roffia, and T. S. Cinotti, “A modular lightweight
implementation of the smart-m3 semantic information broker,” in 2016
18th Conference of Open Innovations Association and Seminar on In-
Sformation Security and Protection of Information Technology (FRUCT-
ISPIT), April 2016, pp. 370-377.

I. V. Galov, A. A. Lomov, and D. G. Korzun, “Design of semantic
information broker for localized computing environments in the internet
of things,” in 2015 17th Conference of Open Innovations Association
(FRUCT), April 2015, pp. 36-43.

F. Viola, A. DElia, D. Korzun, I. Galov, A. Kashevnik, and S. Ba-
landin, “The m3 architecture for smart spaces: Overview of semantic
information broker implementations.”

D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical
mashups in the web of things,” in Networked Sensing Systems (INSS),
2009 Sixth International Conference on. 1EEE, 2009, pp. 1-4.

