
Evaluation Of Optimization Control Parameters in
Multi-Leveled Cloud Platform

Dmitrii A. Zubok, Tatiana V. Kharchenko, Aleksandr V. Maiatin, Maksim V. Khegai
ITMO University

St. Petersburg, Russia
{Zubok, Kharchenko}@mail.ifmo.ru, {mavr.mkk, MaksimKhegai}@gmail.com

Abstract Cloud platforms demand the highest performance
available. To achieve this different optimization methods were
proposed and tested. Each method has its own set of parameters
and settings. While consolidating them into one single hierarchy
leads to increase in performance, this consolidated method is also
more complex. Thus, it is almost impossible to foresee which
parameters should be configured and which values they should
have without a real testing environment. However even with such
an environment a set of experiments need to be performed. Those
experiments provide comparison data, allowing determine values
for such parameters. In this paper such experiments were
performed and values were gathered which will help to properly
configure the consolidated method and gain increase in
performance for the system.

I. INTRODUCTION

Cloud platforms have become an integral part of present life.
Since their creation they were actively researched and
developed, leading to many solutions based on clouds, such as
Infrastructure-As-A-Service or Software-As-A-Service models.
Those models however, demand performance and stability
during their functioning. Most often they use virtualization and
several physical servers with a host system to implement some

impossible to provide decent performance in terms of long run:
some virtual machines will unavoidably slow down during the
work. There are a lot of researches made in this direction. For
example, in [1] Son, Hak and Young Yeom propose use of fast
storage devices in order to improve cloud platform data access.
To improve calculation performance in [2] authors try to
improve performance by combining modeling and search
based paradigms.

In general there are three often mentioned methods of
increasing processing power and optimizing server load.

Such methods include:
Live migration of Virtual Machines
Migration of applications (services) to another virtual
machine.
Incoming jobs scheduling

A. Live migration

Live migration is used when resources of one physical
server are not enough to keep virtual machines performance on
a decent level. The method consists of simply moving a virtual

machine to another physical server, however, without stopping
it or disconnecting a client from it. That means that downtime
of the service is minimal and only occurs at the moment of
swapping to a migrated virtual machine. Everything in the old
machine will be copied to the new one, including memory and
storage. The method has few disadvantages:

often or even with a few virtual machines at the same
time.
It loads the network and can decrease data exchange
performance
For a proper work it demands a physical server that can
afford running the migrated virtual machine

Performance tests on live migration were performed by
Akoush et al in [6] and the optimizations were researched in
[8].

B. Migration of applications

Migration of applications is similar to migration of virtual
machines in a way that it serves as a mean to decrease load on a
physical server. However the difference is that applications
may not only be migrated to another virtual machine on another
physical server but also on another virtual machine on the same
server. That helps balancing the load by migrating some

used if there is no virtual machines that can run this
application. This may be solved by preinstalling all necessary
for an application components in all virtual machines and
saving it as a template. A way to migrate web-applications by
serializing it and reconstructing on a target device was
presented in [7]. In [9] authors apply live-services migration to
a wireless cloud to increase performance.

C. Incoming jobs scheduling

Before a job is sent to be processed, the load may be
optimized by the system by deciding which virtual machine
should process a job. This happens in background, with the
system having a jobs queue and a working algorithm that
constantly checks status of each virtual machine. If
performance of one virtual machine becomes too low for it to
be able to process a new job, then it is sent to another, less
loaded machine. Jobs scheduling was properly explained in [3]
and [4]. This method is good for long term execution as it need
additional data and statistics to optimize the load.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

A different method is to use all three listed methods,
consolidating them into one single hierarchy. This was partially
described and implemented in [5]. All three methods are used

a set of testing scripts (intellectual agents) which check the
current performance was created. The main controller decides

However, tests for applications and virtual machines
migration need additional data in form of threshold values to be
used in checking. This is done by checking performance of a
virtual machine that performs migrations. The optimization
algorithm also needs to decide if overall performance while
migrating is not significant and that system will benefit from
migration at all. For example if jobs stream is distributed then
at some moments there will be increased intensity in jobs
income, thus decreasing performance. The system needs to

enough resources to keep performance level at optimal level
and an optimization algorithm needs to be run.

The three methods as have been said are consolidated and
separated to different layers. Each of them when started will
decrease performance for a certain amount of time and thus
needs to be started only when there are obvious benefits from
doing so. The determination of moments when a next level is in
order to be involved is not an easy task and cannot be decently
solved by analytics only. So instead experiments are needed to
determine performance at each level which will then be used as
threshold values. Another problem is in testing environment
itself. Simulation environments such as AnyLogic are not
enough for this task since there are a lot of parameters that
cannot be modeled with a decent accuracy. As a result a need
to build a real testing platform with real hardware and software
occurs.

In the present paper results of a research on performance of
each method are presented. This will help us to predict
performance changes and use this information to optimize the

 resources.

II. TESTING ENVIRONMENT

A. Platform description
To perform experiments, a simple testing platform was

built. It consisted of two physical servers with 2GHz CPU,
2048 MB RAM and 20GB of HDD each. Those servers ran
XEN hypervisor and supported operating-system-level
virtualization, meaning that virtual machines that were
deployed on servers share the kernel but have separate
resources. Linux Debian was chosen as host and guest system
for virtual machines. Each physical server has a controlling
virtual machine deployed at all times. As a way to exchange
data between virtual machines and physical servers,
RabbitMQ was used. This means that servers must be placed
in the same network, making connection from each virtual
machine to another possible. RabbitMQ is used only to send or
receive simple text data and d

machine data. This task is performed by XEN hypervisor. The
architecture of the platform is represented on fig 1.

On the figure 1, "Virtual Machine 1" and "Virtual Machine
3" are the controlling ones and have a controller inside.
"RabbitMQ Receiver" in each virtual machine is the only way
for them to connect to other machines, and can receive
messages from "RabbitMQ Streamer" and send messages
back. "RabbitMQ Streamer" works as a switch, connecting all
virtual machines into one single network. Physical servers
themselves are in the same network to be able to send virtual
machines and applications to each other.

To measure the performance each virtual machine has a
performance monitoring agent. Those agents are light-weight
processes that check performance and send data to the
controller on-demand. Storages for virtual machines and
applications serve as main storages for every physical server to
receive new machines and applications when in need of
deploying new ones.

Each virtual machine is a Linux Debian based XEN
container with a few components already preinstalled. They
include:

RabbitMQ
PHP5
MySQL server
Python interpreter

As of now PHP is the language the controlling scripts were
made with and is used to run them. Since some scripts are
supposed to work in background, they are executed as
daemons. Those scripts are made as lightweight and
performant as possible, to reduce overheads to the level where
their influence is almost nonexistent.

The infrastructure of the server is similar to previous one
we presented in [5] but simplified. One of the servers is the
main one, containing all controlling scripts. The second one is
an additional one, existing to receive migrated virtual machine
or application. It, however, runs a daemon that listens to
requests or commands from the main one. There are four main
scripts for experiments one script to generate load, one script
to control data exchange and one script dedicated to control
applications migration.

The testing platform as a whole allows to measure
performance on each optimization level and even all of them
at the same time. The measurements the platform does are not
merely for live migration.

B. Scripts description

1) VM migration: This script calls Xen migration function
and waits for an answer.

2) Application migration: This script starts an application
migration by sending a command to controller on another
machine.

3) Run experiments without load: This script runs
experiments without load several times, depending on

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 383 --

parameters set when running the script. The load generator is
turned off.

4) Run experiments with load: This script works the same
as the previous one but the generator is turned on.

Fig. 1. Testing platform architecture

5) Application Migration Controller: This controller uses
Data Exchange Controller internally. Essentially what it does
is it sends a data about which application and to which virtual
machine it should be migrated.

6) Data Exchange Controller:
to receive data, determine which virtual machine it should be
sent to, and send it, and runs in a controlling virtual machine

on each physical server. In case an answer is required, it waits
until it is received. When starting the script opens a messaging
thread for each ip address found in the system. Ip addresses
are added manually and are associated with each virtual
machine existing in the system. The messaging threads work
asynchronously and separately one from another, meaning that
messages can come and go without blocking other messages.
They also can come in a messages queue and stay there even if
receiving end is not working. They will be sent after a
connection is established. This behavior is defined in
RabbitMQ.

7) Load Generator: The load is simulated by making a
virtual machine calculate a function. The job to calculate the
function is generated with an intensity distributed by the
Poisson law. This creates a constant but controllable load
where we can change how intense the calculation of one single
job will be and how often those jobs will income. Since we

that comes is sent to a virtual machine immediately.

The built system contains only those
have anything else, thus minimizing chances of overheads and
giving us clearer results.

III. EXPERIMENTS

There were two sets of experiments performed:

Experiments without load
Experiments with load

Both experiments were done for two cases: migration of a
virtual machine and migration of an application. Each
experiment was performed 10 times and had 100 iterations.

A. Experiments without load
Experiments without load were performed to get base

values to compare other results with. Jobs generating script
was disabled and VM migration and applications migration
were tested. Next parameters were researched:

Time since process began
Downtime

-explanatory and
means how much time has passed since migration started.

running on virtual machine (or application that was migrating)

generated and sent to application without involving the jobs
generator. The only thing this job did was requesting any
answer from application.

An experiment to check calculation performance without
migration was also performed. The values are needed to
compare with calculation performance with migration later.

B. Experiments with load
Experiments with load showed us how much processing

time each task requires while processing jobs at the same time.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 384 --

Next parameters were researched:

Time since process began
Downtime
Calculation performance while migrating

The first two parameters are the same as before. And the
third one is needed to get actual performance changes while
migrating.

IV. RESULTS

The results are presented on figures 2 12. After gathering
the values were filtered by using moving average method.
"Average" values used here to show tendency in changes were
gathered by applying the filtering several times.

The calculation time without load was measured to have

give us any information. The result is presented on fig. 2 and
the average time is 3000ms. The "Average" values show the
tendency of performance and it is obvious that with time
performance stabilizes around average value.

Fig. 2. Calculation time without load and with application migration

The migration time is, as supposed, higher with VM
migration, staying at average on 175000ms. The time when
migrating application is significantly lower, at 7500ms, as can
be seen on figures 3 and 4. Tendency in application migration
time here is slowly decreasing, however in VM migration it is
increasing.

Fig. 3. Application migration time without load

Fig. 4. VM migration time without load

The downtime with VM migration is also a little higher but
mostly the same as with application migration, they are at
average 4600ms and 3800ms relatively. Those can be seen on
fig. 5 and 6. Tendency in both cases is increasing.

Fig. 5. Downtime while migrating application without load

Fig. 6. Downtime while migrating VM without load

Calculation time when migrating was supposed to be much
higher, however the results were quite optimistic. With
application migration held, at average, at 4300ms, while with
VM migration it held at 7100ms with occasional peaks at
7900ms. This may be explained with some overheads due to
system processes working. The results are presented at fig. 7
and 8. Tendencies in both cases are increasing.

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 385 --

Fig. 7. Calculation time with application migration

Fig. 8. Calculation time with VM migration

Application migration time with load stayed mostly at
37000ms and VM migration time stayed at 500000ms at
average, with peaks at 600000. The explanation is that while
copying big chunks of data the time is not always constant due
to different factors like system load or network load. The
results can be seen at fig. 9 and 10. Tendencies are increasing,
however, slowly than in case of migration without load.

The downtime however was higher with VM migration,
almost at 7500ms with peaks at 8200ms. While migrating an
application the time was at 4300ms. Fig. 11 and 12 show this.
Tendencies are around average values.

Fig. 9. Application migration time with load

Fig. 10. VM migration time with load

Fig. 11. Downtime while migrating application with load

Fig. 12. Downtime while migrating VM with load

As a result the next comparison table was formed:

TABLE I. COMPARISON OF EXPERIMENTS RESULTS

No load (ms) With load (ms)
VM

Calculation
performance 7100

Migration time 175000 500000
Downtime 4700 7500

App
Calculation
performance 4300

Migration time 7500 37000
Downtime 3700 4300

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 386 --

V. CONCLUSION AND FUTURE WORK

The results of the experiments will allow us to properly
compare performance of our system after optimizations
described in our later work are done. As of now the results
show that there performance do
migrating a virtual machine or an application, which leads to a
conclusion that there may not be much overheads during the
optimization process. Tendencies that were gathered during
migration with load also support this.

In the next work experiments with all levels of
optimization working will be performed as well as
improvements to the platform will be done.

ACKNOWLEDGMENT

This work was partially financially supported by the
Government of Russian Federation, Grant 074-U01. The
presented result is also a part of the research carried out within
the project funded by grant #15-07-09229 A of the Russian
Foundation for Basic Research.

REFERENCES

[1] S. Yongseok, H. Hyuck, Y.Y. Heon,
, Proceedings of the 8th ACM International

Systems and Storage Conference, May 2015
[2]

Yves Generic cloud platform multi-objective optimization
29th Annual

ACM Symposium on Applied Computing, Mar. 2014
[3] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai,

-266.
[4] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai,

-based approach in the scheduling of jobs processed by

Engineering and the Semantic Web, vol.518, 2015, pp. 273-282.
[5] D. A. Zubok, T. V. Kharchenko, A.V. Maiatin, and M. V. Khegai,

-Leveled Hierarchical Control to Optimize Workload of a
Service-
- 284.

[6]
Predicting the Performance of Virtual
MASCOTS'10, Aug 2010.

[7] K. Jin-woo, M. Soo-mook, "Web application migration with
closure reconstruction", Proceedings of the 26th International
Conference on World Wide Web, April 2017, pp 133-142

[8] S. Sangeeta, C. Meenu

[9] M. Andrew, W. Shiqiang, K.L. Kin, J.K. Bong, S. Theodoros, "
Live Service Migration in Mobile Edge Clouds", IEEE Wireless
Communications 99, August 2017

__PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

-- 387 --

