
Temporal Database Architecture Enhancements

Michal Kvet
University of Zilina

Zilina, Slovakia
Michal.Kvet@fri.uniza.sk

Emil Kršák, Karol Matiaško
University of Zilina

Zilina, Slovakia
Karol.Matiasko@fri.uniza.sk

Abstract—Database systems used in the past were
characterized by storing only current valid states, which is not,
however, optimal for intelligent systems and applications.
Temporal paradigm allows us to delimit the object state with the
time validity regarding the modeled granularity. Temporal
systems are based on the extension of conventional approaches,
which do not provide powerful solutions. Database server
architecture is described with emphasis on the optimization
options to improve and shorten the data retrieval process. In this
paper, we attach significance to the migrated row, which forces
the system to load multiple data blocks from the database into the
memory. The solution, based on the evolution steps, is
implemented using the mapping module inside the memory of the
database instance.

I. INTRODUCTION
A core part of almost any current application and

information system comprising efficiency and intelligence is
just data. A number of data stored in the systems are still rising
over the decades. Data are commonly stored in the database,
which provides effective techniques for data handling,
manipulation, and processing. However, the most significant
data access performance parameter is just data retrieval
process. In the past, disc storage and complex hardware were
really expensive, therefore the number of data to be stored was
strictly limited. It meant, that only current valid data were
stored. Thus, any change in the data caused executing direct
Update statement and historical data were replaced with newer
ones. Another aspect was just impossibility for handling future
valid data, there was no space for future states recording. Later
and even now, the hardware possibilities are wide, prices are
relatively low and data management possibilities are easily
manageable, as well. Thus, the data amount is extremely rising
creating significant press for hardware and software techniques.
Nowadays, conventional database approach is being
continuously replaced with the sensorial data management and
each state is time delimited. Therefore, data tuple is bordered
with the time definition on an object or even attribute
granularity. In this paper, we propose extension module for the
data retrieval proposing more effective and reliable solution
with reference to actual solutions. Thanks to that, retrieval
process can be shortened. The ideal solution is to save all the
data in the memory with effective and fast access, however,
such solution is still mostly in a theoretical way because it
would require huge memory modules and continuous necessity
to extend them, whereas data amount is rising. Another aspect
is just reliability, accessibility, but mostly security. It must be
covered with the metadata forming characteristics on memory
data to provide the possibility to reconstruct data after any
failure. Cloud can only partially solve the problem.

Current relational database systems are characterized by the
instance forming memory structures and database. Data are
permanently stored in the database and manipulated in the
memory. If there is any change (Insert, Update or Delete),
particular metadata (original and new image of the tuple) is
stored in the log file of the physical storage. Thanks to that,
after any failure, it is possible to reconstruct states and
therefore the entire database. Database memory structures are
determined to provide fast access. Naturally, memory capacity
is commonly smaller than the whole database, thus it is
necessary to load data into memory, as well as to write changed
blocks back into the database. Whereas data are not always
accessible in the memory, it is necessary to provide a fast and
reliable approach to locating data in the database – on the
physical file system. The easiest way is to scan the whole
database with an attempt to find particular data. Such approach
is, however, very naive, because system formed on this
assumption would be inappropriate, too time-consuming with
poor performance, effectivity, and reliability.

Therefore, index access layer has been proposed. This paper
deals with the extension of the index structure to remove the
impact of the fragmentation and data block relocation. The aim
is to lower a number of I/O operations, to ensure, that required
data are actual, in the data block, we assume.

II. CONVENTIONAL AND TEMPORAL DATABASE
Most data stored in the database during the last years were

characterized by storing only current valid states for the
application domain. Tuples, properties, and characteristics,
however, evolve over the time and if there was a change, non-
actual data were replaced. However, everything has its
evolution in time, its history and future, as well. Therefore,
changes monitoring can be progressive allowing data
evolution monitoring, creating prognoses, better decision
making, etc. The significant aspect is just the security. When
all data spectrum is stored, there is no problem to reconstruct
any data image during defined timepoint or interval. The aim
of the temporal definition is to provide complex information
about the object state during the defined period with emphasis
on changes. Thus, it was necessary to extend conventional
paradigm, respectively to create a new one. With such
definition, the data amount significantly rises. On the other
hand, process optimization, evolution management and
possibilities to predict problems, management and reactions
based on real historical data are really powerful [10], [12].
Thanks to that, it reduces application domain costs and
increases decision efficiency. The second aspect is, however,
performance. The fact, that we have data over the whole time

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

spectrum does not automatically mean, that they are usable on
a daily basis, that they are quickly and reliably accessible.
Temporal paradigm is characterized by the extension of the
object identifier. Primary key, as the unique identifier of the
tuple (row), does not contain only object definition, but the
time validity, as well. Fig. 1 shows the principles of the
temporal model extension. Uni-temporal table extends primary
key of the conventional approach with one pair of the time
attributes expressing validity interval, which can be modeled
with various time characteristics – closed-closed or closed-
open time interval. A special solution is based on only one-
time attribute – in that case, each newer state delimits the
validity of previous one. The bi-temporal approach uses two-
time spectra – validity and database time reflection. In general,
the multi-temporal solution can be used with a various number
of time spectra – validity, time locality, database time, reliable
time, etc. The proposed solution is robust, can manage states
anytime – historical, current and future valid data, as well.
Defined model is object-oriented – validity defines the whole
image of the data tuple.

Fig. 1. Conventional and object level temporal model

In 2016, more precise granularity model has been proposed
(Fig. 2). In that case, validity defines the attribute value, not
the whole object. The main advantage is significant size
demands reduction with no duplicate values. Systems and
applications communicate either with a layer with actual states
or with a temporal layer providing an image at the time. It is
not possible to access in actual values directly because of the
security reasons.

Fig. 2. Column-level temporal architecture [15]

The core part is the temporal manager described in [14].

Any temporal solution, however, provides a significant
extension of the data to be processed and stored. Therefore, it
is inevitable to store and retrieve them effectively.

III. PHYSICAL DATABASE ARCHITECTURE – TECHNICAL
BACKGROUND

Database server consists of two entities – the instance and
the database. The instance is formed by the memory structures
and processes, the database is defined by the physical files on
the disc storage. Although they are physically separated, they
must be interconnected to be usable, otherwise, they are
unworthy of the data access from the other systems. In
principle, the instance is created sooner, afterward, the
connection is created using the mounting process during
startup. If the process of the creating connection fails, the
database cannot be opened and data are not available. There are
several types of architectures, like single instance, Real
Application Clusters (RAC), Streams, Data Guard or Cloud in
a distributed environment - approach principles are the same
[2], [16]. Client-side defines user process, which requires
server listener to create a specific process on the server side for
communication. Server-side can process requests from the
client side and apply them to the database using background
processes. Fig. 3 shows the components for the single instance
database.

Fig. 3. Communication principles in single instance architecture [2]

The performance aspect of the system covers also instance
memory structures. Advanced techniques in the newer
versions of the database systems can provide self-
administering solutions of the memory structures by relocating
memory on demands. Each database instance must consist of
three database structures – Database buffer cache, Log buffer
(small, a short-term staging area for change vectors before
they are written to the redo log on the disc. It consists of
change vectors – modification applied to the data. Redo log
ensures, that data will never be lost. Whenever any data
portion is changed, particular change vector is created and
written to the log. Thus, by applying change vectors to any
backup, it is possible to reconstruct database) and Shared pool.
For the temporal data retrieval, it is an important to box,
whereas data must be always loaded into memory before the
processing. Optional structures are Large pool, Java pool and
Streams pool, which are not, however, part of our
optimization.

Database buffer cache is core part of the processing –
work area for the SQL statement execution. When dealing
with data, connected sessions do not access and change direct
data on the discs. Particular data blocks are first copied into
this memory structure. Moreover, after the processing,
changed data blocks are not immediately copied back into the

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 122 --

database files, but remain in the memory, if possible. Thus, the
size of such cache is significant. From the point of view of the
performance, the ideal solution would be, if all data could be
accessible directly from the memory. However, as described
sooner, it would require really significant demands on the
hardware. If the data amount is rising, memory demands
would be sooner or later unsustainable. Moreover, the process
of loading during the startup can last too much time.
Sequential writing before a shutdown would be a problem, as
well. And we are not talking about the recovery process in
case of a system crash. Data in the files, as well as memory
structures, are formatted into fixed-sized blocks. Usually, size
of the block is 8kB or its multiplies (performance impacts and
dependencies on the block size definition can be found in [14],
[15]).Thus, ideally, but the realistic option for the size of the
buffer cache is determined by storing often accessed data [16],
[18]. As we will highlight in this paper, core part is formed by
the indexes and their improved access and performance
solutions. Background processes load and unload data blocks
into and from the memory based on demands. It is necessary
to distinguish between clean and dirty blocks. Clean buffer
block can be rewritten immediately, if necessary (such block
has been used only for data retrieval). In comparison with a
dirty block, it must be copied into the database before the
replacing with another block. Thus, if there is a requirement to
obtain new block for data copy, current database management
systems look for the clean block sooner. In our opinion, such
solution is not optimal. Therefore, in this paper, we extend
optimizer manager by newer approach technique.

IV. OWN SOLUTION – BUFFER CACHE BLOCK MANAGEMENT
Our solution is based on separating block types – indexes

are always on the memory. State management is a bit more
complicated. When dealing with temporal management during
a big time frame with many updates, it is not possible, or even
used to store and evaluate all the data on the daily basis. The
validity of the state and time definition delimits the priority of
the tuple to be placed in the memory. The volatility of the
temporal object means, that historical images may lose
meaning and value over the time, therefore they are
consecutively removed from the evaluation. Such
characteristics and properties are also temporal and can evolve
over the time.

A. Shared pool – existing principles
The shared pool is a complex structure, which consists of

these components:

library cache,
data dictionary cache,
PL/SQL area,
result cache.

In most database systems (including Oracle database
system used in the evaluation), size of the structure is
dynamic, limited by initial parameters. Library cache is
a memory for storing recently executed code in its parse form,
which is directly executable. It contains the technique to
obtain requires data – access parameters, indexes, steps to be
done, the order of table joins, etc. [1], [3], [4].

B. Shared pool structure – our own approach
Principles of the Library cache management is too strict.

Although two approaches exist now – exact and similar for
comparing statements to form them into the structure server
can evaluate them with existing parsed code. Such approach,
is, however, not enough for the temporal definition. It does not
cover time execution spectrum with emphasis on the
frequency of changes, a number of changes, reliability,
stability, and precision. Our own solution removes the time
sphere from the SQL statement and stores parsed version with
the universal time delimitation. It means, that it is time length
independent with the assumption, that index structures, and
optimized access is used. Thanks to that, if different time
spectrum is used, but referencing the same object or object
group, already stored parsed version can be used. Principles
are shown in the Fig. 4. The first part is based on parsed
version definition – time spectrum is removed followed by the
parsing process. The result is stored in the library cache. When
another SQL statement is defined, first of all, time spectrum is
evaluated based on the frequency of changes, number of data
in the result set. If there is a recommendation for optimized
data access (index structure, etc.), database manager looks for
prepared parsed version. If it exists, it will be used, otherwise,
the first part is used with the aim to create a new parsed
version.

Fig. 4. Statement evaluation and hash value comparison

As already mentioned, size of the library cache is not
unlimited, thus it is necessary to evaluate parsed versions,
which will be removed and replaced with new parsed images.
Database systems use Least Recently Used (LRU) approach.
For each parsed code, time of the last usage is stored, thus it is
easy to find the victim code to be removed. Such solution is,
however, also inappropriate, for temporality modeling. First of
all, the quality criterion should be highlighted – the number of
times, the particular statement has been evaluated to be
covered by an existing parsed version with reflection to the
complete number. The second aspect is just the assumption for
soon usage and time, the parsed version is in the memory. We
also focus on the complexity of the evaluation process – time
and size demand to obtain parsed versions. In the temporal

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 123 --

environment, most Select statements are really complex
finding dependencies and correlations between object states
over the time. Therefore, versions to be removed from the
library cache are pre-calculated based on mentioned aspects.
Reliability of the parsed version is compared to time spectrum
definition, in our solution. Before the parsed object removal
itself, it is worth to evaluate a number of times, the parsed
code has been used, complexity and frequency of such usage.
Thanks to that, it can be reloaded based on assumptions or
defined rules (e.g. some statistical and report evaluations are
always launched at the end of the week or month, thus it is
useful to have parsed version already in the memory). When
the parsed code is removed from the memory, it can be
optionally stored in the disc space. In our solution, we add
specific database tablespace storing compressed versions of
the parsed code. When unloading into memory, it is de-
compressed to original form. However, we must mention also
the timeliness and worthiness of the parsed version. Whereas
the data specification, number, and frequency of changes is
continuously changing and data amount is rising, it is
necessary to evaluate, whether the parsed version is still actual
and provides an effective tool for data accessing and
consecutive retrieval. Therefore, we extended our solution and
provide several parameters, which can be set. It can be either
defined for the whole database, object or even attribute
granularity can be used. It is delimited by the number of newer
states, elapsed time from the point of parsed version definition
or a number of times, particular parsed version has been
transferred to the disc and back (Fig. 5).

Fig. 5. Packing, unpacking, and renewing

In this approach, it is strictly essential to keep object
statistics actual.

C. Data dictionary cache – existing and own solution
Data dictionary cache is often defined as a row cache. It

deals with object definitions, table descriptions, indexes and
many other metadata. Keeping these definitions in the memory
provides direct and immediate access when evaluation and
parsing should be done.

Our implementation extends such structure with recent
statistical information about object definition and
characteristics – a number of changes, the frequency of
changes. It is part of our extended statistic tool and

recalculated automatically or on demand. These statistics are
with regards to the time sphere evaluated during the SQL
statement.

V. BACKGROUND PROCESSES
Database instance consists of memory structures described

in the previous sections, but it is also formed by the processes
accessing, managing database, as well as processing and
managing communication with the users, to be responsive to
their requests. Each of the processes has its own significance,
meaning, and history. For purpose of this paper, we will
mostly highlight performance impacts of such processes and
our own methods for improvement.

System Monitor (SMON) is responsible for the mounting
and opening database. It manages the process of the startup
and interconnects the instance and database during the
mounting.

Process Monitor (PMON) is a process, which manages
user and server process by solving transaction problems if the
connection is lost. In the standard conventional environment,
PMON is not proactive. Simply, it does not detect, whether the
connection is still active or not. In temporal definition, such
paradigm is still valid. However, based on the experiments and
performance analysis, we came to the conclusion, that
temporal environment requires more strict solution [5], [6],
[7], [15]. Temporal data can be characterized by strong data
input stream and must deal with the conflicts, which lies in the
data lost, incorrect data or communication failure. In that case,
it is necessary to locate problems and try to recreate data
communication channel. It is done by dropping
communication between the existing server and a user process.
Fig. 6 shows the difference between existing conventional
approach and our designed temporal definition. In that case,
server cyclically sends the signal through which the
connection is controlled. Signal cycle is time dynamic and
depends on the frequency of the data flow, based on historical
data evaluation. Compare the solution with the Fig. 3 showing
original conventional definition.

Fig. 6. Temporal transaction session management extension

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 124 --

Database Writer (DBWn) is a process, by which data are
transferred from the memory into the physical database files.
Notice, that sessions cannot directly access the physical
database, nor change some data portions inside it. Database
Writer writes data from the memory to database in four
circumstances – no free space in the buffer cache, too many
dirty buffers, three-second timeout, and when there is
a checkpoint. Database systems have their own approach for
selecting buffers to be written and freed.

Our defined approach uses the autonomous decision-
making process as a support tool and extends the rules
ensuring that index structures are always available in memory.

Log Writer (LGWR) is a process, which transfers the
content of the log buffer into disc log files. Thus, it ensures no
data can be lost. In the temporal environment, we have
encountered a problem of speed and efficiency of the existing
solution. If the input data stream is strong, processing
bottleneck is just the log buffer and its background process
manager. Therefore, our approach detaches transaction and log
data by multiplying the a number of log segments in the
memory-forming groups. There can be several Log Writer
processes, each of them has its own log buffer data. A new
transaction is assigned to one Log process using Log manager,
thereby minimizing the amount of data to be transferred at the
end of the transaction. To get desirable performance
improvements, it is necessary to assign separate disc space for
each Log group handled by the separate controller, otherwise,
the problem would just be in another layer – moving data from
logs to the file system (Fig. 7).

Fig. 7. Data logging management

Checkpoint process (CKPT) is a process that moves all
data from the Buffer cache to the database. Its aim is to free all
blocks to create consistent database image in case of a
shutdown. In the past, it has been done regularly to minimize
time to reconstruct memory image after failure.

Manageability Monitor (MMON) is a core performance
process of the temporality. Its aim is to manage statistics about
the objects, to ensure, that they are correct and represent actual
states. It is strongly important to protect them and to guarantee
automatic refresh. Conventional and many temporal databases

use maintenance windows, usually planned at night, during
which the workload is lower. In our case, we had to think
about an extended solution. First of all, temporal databases
usually have a uniform workload, respectively there is no
significantly weaker input data stream, during which statistics
can be globally refreshed.

Therefore, we propose memory extension consisting of the
linear linked list, in which objects are sorted based on priority,
which is modeled by the number of changes in comparison
with actual states. For each object table, a number of rows are
stored in the statistics. The difference between stored and
current value defines the priority of the record in the linked
list. An object with the higher priority is recalculated (refresh
statistics) as the first. It is done periodically in the cycle,
however processing of the input data stream monitored and
resources are dynamically relocated to ensure, that input data
will be processed correctly with no significant delay.

Memory manager (MMAN) is an autonomous process that
reallocates memory between individual structures. Database
system Oracle goes even further and allows complete
automatic management (from 11g version). Although results
can be stored in the result cache memory structure, it is not
satisfactory, therefore particular data should be part of the
buffer cache. Fig. 8 shows the structure of our proposed
solution. The buffer cache is divided into three parts. The first
part stores index structure data, the second deals with the
temporal management tables. The third is just the original part
of the buffer cache consisting of clean and dirty buffers. Only
data from the third part can be relocated to the database and
replaced with the other data images. Thus, the status of the
buffer block can be divided in our solution into three parts:

clean (data block is not changed in comparison with
database image and can be removed from the
memory immediately),
dirty (data block is changed, therefore before
removal, it must be copied into the database),
protected (data block is locked and cannot be moved
away from the memory).

The protected block is always present in the memory from
the instance startup until the shutdown of the system.
Regardless the data are changed in the protected block, it
cannot be moved away from the database, although it
convenient to hold such blocks clean, therefore specific
Database Writer (DWprot) has been introduced by us, which
handles only protected blocks. Principles for data transferring
are the same as the standard Database Writer, however, it only
copies data, but particular objects must be also present in the
memory after the copying process.

VI. INDEX STRUCTURES
A database index is an optional structure, that can rapidly

improve the performance of the data retrieval by accessing
particular data tuples defined by the key path. It reduces total
processing costs, as well as improves the speed of the data
retrieval. In comparison with standard database approach,
where data are sequentially scanned, index access is based on
locating data using pointers to the physical database. Thus, the

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 125 --

main advantage is a quick data location possibility without the
necessity to search every database row, which can be even
located in multiple data files in many discs. The index is
created for the table based on attributes, which are covered by
the index. Theoretically, it is possible to cover all table
attributes in the index, however, it depends on the memory
structure size associated with the buffer cache. Thus, it is
recommended to cover only temporal management table,
which is performance significant, whereas data should be
time-sorted.

Fig. 8. Buffer cache management

As already mentioned, the index consists of direct attribute
values and pointers to the data file locating the whole row.
Moreover, there is a possibility not to index attribute values
directly, but they can be preprocessed using functions, which
must be, naturally, deterministic.

Current database systems covering also temporal
environment use mostly B+tree schema index (Fig. 9), which
maintains the efficiency despite frequent changes of records.
Other solutions are hash indexes, partitioning indexes, and
bitmap indexes. The special category covers domain indexes
and functional indexes. Performance comparison and
characteristics can be found in [8], [9], [19].

Fig. 9. B+tree index

B+tree index consists of a balanced tree in which each path
from the root to the leaf has the same length. In this structure,
we distinguish three types of nodes - root, internal node and
leaf node. B+tree extends the concept of B-tree by chaining
nodes at the leaf level, which allows faster data sorting. DBS
Oracle (used for experiments) defines the accessibility methods
of the two-way linked list, which makes it possible to sort
ascending and descending, too [9].

The leaf level of the B+tree index structure consists of the
ROWID, which characterizes the pointer to the database,
where the row physically resides.

A. ROWID
ROWID is a pseudo column returning address of the row.

In the past, it was formed as 8 bytes, nowadays; it has been
extended and consists of the 10 bytes [16]. It uniquely
identifies a row in the database and deals with these
categories:

data object number (1-32 bits),
the data file, in which the row resides (33-44 bits),
the data block in the file, in which the row is located
(45-64 bits) and
the position of the row in the data block (65-80bits).

It is the fasted way to access a single data row. On the
other hand, there is still space to optimize locating process and
to speed up performance. The temporal environment is
characterized by a various data stream, which is, however,
usually, powerful and consists of wide data range evolving
over the time. Data reliability and precision is also significant,
which means, that also attribute data types can be changed
based on data structure and precision. Thus, the row size is not
strictly defined mostly regarding the size of the whole row. It
is commonly extended over the time. If the row after the
change cannot be placed into the same position inside the data
file, another free data block must be found and such row is
placed into newer position. And that´s the problem. Index
structure locates data in the row, however, such data are not
placed there. Inside the particular block, which must be loaded
into the memory, is only a pointer to another block, where data
can be located, or it can even consist of only another pointer,
as well. Thus, performance is degraded, because index
structure does not point to the direct data row. Problem is
limited by the fact, that when data are updated, there is no
pointer from the database to the memory, thus ROWID cannot
be updated to reflect newer precise data location and position.
What does it mean? The answer is easy – it is necessary to
rebuild index periodically [11], [17]. Thus, if the performance
is degraded, it is convenient to recreate or rebuild the index. In
new database releases, it can be done online – the original
index is used till the new updated index is created. Afterwards,
the original one is dropped. On the first side, it can be
considered as the adequate solution, however, that´s not true
for the temporal environment. Data are changed rapidly and to
ensure the performance of the index, it would be necessary to
rebuild them continuously. It can be even said, that when a
newer version of the index is created, it is not even actual at
that moment because, during the creation (which can last
much time), data characteristics and amount are changed. The
solution must be, therefore, significantly more complex and
robust.

VII. OWN INDEX ACCESS APPROACH
The interconnection between index and database is just

ROWID, which does not guarantee the direct access to the
data. The migrated row in the temporal environment, where
the block holds the only pointer to another block, is

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 126 --

performance limitation and can strongly degrade the whole
performance. Our proposed solution is based on ROWID
updates and techniques to guarantee the right and direct access
without migrated row management limitation. To get the
complex image, it is useful to mention also the evolution of
our solution, to create a complex image. Problem is shown in
the Fig. 10. Index ROWID points to the row located in the
block B1, however, it is too full to cover the image of the row
after the update. Therefore, migrated row is created and a
particular object located in the block B2. To get the data, block
B1 is loaded into the memory at first, followed by loading
block B2. Thus, we needed two disc operations to get data.
However, in general, the number of disc operations can be
drastically higher.

Fig. 10. Migrated row

The first introduced solution was based on minimizing the
number of migrated row hops – for each operation, no more
than 2 operations would be required. It is ensured by storing
the address of the block, where the ROWID points. During the
evaluation and loading particular blocks, the final block is
interconnected to the original block, which is also shown in
the Fig. 11 – only block B1 and B4 must be loaded after the
processing (in comparison with original solution forcing the
system to load blocks B1, B2, B3, and B4. This is done only
during the data retrieval process, whereas the linking is only
one-directional. Highlight the situation, to get only one row, it
can occur many times, that it would even be necessary to load
tens of the block into the memory. Moreover, it requires to
find clean blocks in the buffer cache or even to make the
decision for selecting that one, which will be replaced with a
block to be loaded. The specific situation can occur, if block,
which actually holds particular object image, would be
replaced. The solution is performance better, however, does
not eliminate migrated row completely.

Later, our aim was to shift the solution to the upper level,
to ensure, that only one block will be loaded, to ensure, that
required data are in the block, where ROWID locates. And that
is a really complicated process and can be divided into two
separate stages.

Fig. 11. Own solution - interconnection

The first one is easier, however, less efficient. It deals only
with one index structure. During the data manipulation (Insert,
Update and Select statement), if the row is located using the
index, a new temporary pointer to the leaf node holding
particular ROWID is created. If the row is transferred to
another block, using such pointer, new ROWID is calculated
and stored. Fig. 12 shows the solution, which is not, however,
robust. In this case, several pointers to the same row can locate
different data blocks. Some of them are direct, some of them
use migrated row technique, whereas ROWID pointer is
changed only for one index. That is the consequence of the
fact, that system uses only one directional linked list. As we
can see in Fig. 12, index IND2 ROWID locator is updated, thus
it points to the block B4 – there is no migrated row. However,
it is not updated to the other indexes, they locate the original
position and migrated row exists for them.

Fig. 12. Own solution – interconnection and multiple indexes

We, therefore, propose other two solutions, which are
performance compared. The first is based on two directional
linked list, thus the database block additional structure points
to the memory based on particular ROWIDs (Fig. 13).
Naturally, it is created dynamically, if the data are accessed.
Whereas index is always loaded in the memory, if the database

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 127 --

server is active, pointers from the database are static. After the
system reloading, database pointers are automatically
deactivated during the mounting and opening process of the
database and instance. Fig. 13 shows the solution. Limitation
of the solution is just the process of the deactivation and
building process of the bi-directional linked list. It is necessary
to mention, that there can be several indexes, which can point
to the same database block, thus the reflection from the
database would require dynamic approach using a dynamic
array or linear linked list. Therefore, the second proposed
solution is based on an extension of the memory structure
using pointer layer. There is still deactivation process during
the instance startup, however, there is only one pointer from
the physical database. Individual pointers to the indexes are
located in the memory. Fig. 14 shows the implementation
principles using mapper module., which interconnects all
ROWID values from the indexes with the physical data
location provided from the database. There is no migrated row
problem, at all.

Fig. 13. Mapping database block into memory – database pointer position

Fig. 14. Mapping database block into memory – memory pointer position -
mapper

VIII.PERFORMANCE
Experiment results were provided using Oracle Database

11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production;
PL/SQL Release 11.2.0.1.0 – Production. Parameters of the
used computer are:

Processor: Intel Xeon E5620; 2,4GHz (8 cores),
Operation memory: 16GB (8 modules, DDR
1333MHz)
HDD: 500GB.

Experiment characteristics are based on real environment
consisting of 1000 sensors producing data ten times for one
second. If the difference between consecutive values is lower
than 1%, such values are not stored in the database and
original value is considered as unchanged. Thus, based on our
environment, the average amount of new values is
approximately 1000 per second. Amount of data after one hour
is 3 600 000.

The performance experiments are based on the attribute-
oriented temporal solution. Comparison with other temporal
architectures (object-oriented, group, synchronization) can be
found in [13], [14], [15].

Five temporal models proposed in this paper have been
compared. The reference model is an attribute-oriented
temporal architecture (AOTA). The second approach (M2) is
based on Fig. 11 – migrated row is partially eliminated to
ensure, that original block is directly connected to the last one,
where the data tuple actually resides. There is an assumption
in the model M2, that only one index is defined and it is
always suitable. Such definition is, however, not possible to be
implemented in the real environment, therefore it is extended
in model M3 using several indexes (Fig. 12). Whereas there is
no pointer to the other indexes eliminating migrated row,
performance is worse.

Model M4 principles are shown in Fig. 13. There is a
mapping pointer structure, located in the database. After the
system reloading or startup, the structure is deactivated and
consecutively built again. Performance is evaluated after the
process of database pointer definition is completely done. One
block, in that solution, points to the whole set of the indexes,
which reference such row. The last model (M5) is a final step
of our optimization is used mapper structure located in the
memory. Thanks to that, access time is really low, whereas
mapper itself is located in the memory. Moreover, there is no
necessity to extend the database block rapidly, whereas it
consists of only one locator to the mapper structure.

Performance of the whole system is on the Table I
highlighting costs, CPU and processing time of the data
retrieval.

TABLE I. EXPERIMENT RESULTS

AOTA M2 M3 M4 M5
Costs 3447 3012 3127 2940 2781
CPU [%] 11 10 10 9 8
Processing
time [s]

52,3 46,5 48,9 44,1 42,6

As we can see, the best performance provides model M5.

Referencing the standard attribute oriented model (AOTA), M2
provides improvements 12,62%, model M3 lowers costs using
9,28%, the model M4 benefit is 14,70% and the last model M5
reflects improvements 19,32% for costs. Fig. 15 shows the
results for the costs in the form of a graph.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 128 --

Fig. 14. Performance Costs

When dealing with the CPU consumption, model M2 and
M3 requires one percent of the system resources less, model
M4 improvement is two percent and model M5 requires 8
percent of the system resources in total.

The significant performance aspect is just the processing
time expressed in seconds (tab. 1). AOTA requires more than
50 seconds for the processing, which is eliminated by the
migrated row problem separation in model M5 up to 42,6s,
which represents the improvement on 18,54% (reference
model is AOTA). Model M2 improves solution using 11,09%,
model M3 reflects 6,50% and model M4 reached the
improvement on 15,68%. The graphical representation is in
Fig. 16.

Fig. 15. Processing time results

IX. CONCLUSIONS
Current database systems are characterized by the great

data size to be managed. Many data objects are extended by
the validity timeframe forming temporal system. Nowadays,
many temporal models are available, highlighting the
granularity, which is based on, from the point of the whole
object, up to attribute granularity or group definition. Effective
data retrieval in the temporal environment forces to create a
new paradigm and extend current structures and approaches to
adapt new trends. This paper can be divided into two parts
with emphasis on the server architecture – instance and the
physical database. It describes the existing solutions,
management, and approaches and proposes new techniques to
improve performance on different levels. First, part is based on

the time spectrum identification after Select statement
definition to form the statement into pre-prepared parsed
versions, which require also statistics module extension to
ensure complex and reliable data evaluation. Transaction
management has been also extended to secure the system and
remove transaction connection identification, which can never
be completed successfully. Thanks to that, data locks are freed
sooner, system resources consumption is lowered, as well. The
main contribution of this paper is just the impact of the index
structure, by which the data block in the database can be
accessed fast. To get the data from the block inside the
database, it must be loaded into the memory area – Buffer
cache. Performance limitation is just the migrated row, which
forces the system to load data blocks, in which, however, data
are not located. In that case, pointers to other blocks are used,
particular blocks are consecutively loaded. In this paper, we
propose several solutions, which are performance described
and compared to the existing system. It describes the
principles and limitation of the migrated row supported by our
proposed techniques to improve solution and remove the
impact of migrated row. The first solution is based on the
simple interconnection of the migrated blocks, by which the
maximal level of the migration is two blocks. It is, however,
necessary to cover all the indexes in the systems locating the
same row, respectively block, which can be covered by the
definition of the mapper located in the database or memory.
The best solution is just provided by the memory mapper, by
which the costs, CPU and processing time can be reduced
significantly (based on experiments, costs are reduced by more
than 19%, processing time reflects the improvement on more
than 18%).

In the future, we would like to extend the solution by index
grouping and mapping. We assume, that it would not be
necessary to define own mapping structure, but it would be a
direct part of the index reference. We will also attempt to
eliminate the need for deactivation and rebuild the mapping
structure after next database system startup.

ACKNOWLEDGMENT
This publication is the result of the project implementation:
Centre of excellence for systems and services of intelligent

transport, ITMS 26220120028 supported by the Research &
Development Operational Programme funded by the ERDF
and Centre of excellence for systems and services of intelligent
transport II., ITMS 26220120050 supported by the Research
& Development Operational Programme funded by the ERDF.

This paper is also supported by the following project:
"Creating a new diagnostic algorithm for selected cancers,"
ITMS project code: 26220220022 co-financed by the EU and
the European Regional Development Fund.

"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU

PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 129 --

REFERENCES
[1] K. Ahsan, P. Vijay. “Temporal Databases: Information Systems”,

Booktango, 2014.
[2] L. Ashdown. T. Kyte “Oracle database concepts”, Oracle Press, 2015.
[3] G. Avilés et all. “Spatio-temporal modeling of financial maps from a

joint multidimensional scaling-geostatistical perspective”, 2016. In
Expert Systems with Applications. Vol. 60, pp. 280-293.

[4] R. Behling et all., “Derivation of long-term spatiotemporal lanslide
activity – a multisensor time species approach”, 2016. In Remote
Sensing of Environment, Vol. 136, pp. 88-104.

[5] C. J. Date, N. Lorentzos, H. Darwen. “Time and Relational Theory :
Temporal Databases in the Relational Model and SQL”, Morgan
Kaufmann, 2015.

[6] M. Erlandsson et all., “Spatial and temporal variations of base cation
release from chemical weathering a hisscope scale”. 2016. In Chemical
Geology, Vol. 441, pp. 1-13

[7] J. Janá ek and M. Kvet, “Public service system design by radial
formulation with dividing points”. In Procedia computer science
[elektronický zdroj], ISSN 1877-0509, Vol. 51 (2015), pp. 2277-2286

[8] T. Johnston. “Bi-temporal data – Theory and Practice”, Morgan
Kaufmann, 2014.

[9] T. Johnston and R. Weis, “Managing Time in Relational Databases”,
Morgan Kaufmann, 2010.

[10] A. Kadir and N. Adnan, “Temporal geospatial analysis of secondary
school students´ examination performance”, 2016. In IOP Conference
Series: Earth and Environmental Science, Vol 37, No. 1.

[11] M. Kvassay, E. Zaitseva, J. Kostolny, and V. Levashenko, “Importance
analysis of multi-state systems based on integrated direct partial logic
derivatives”, In 2015 International Conference on Information and
Digital Technologies, 2015, pp. 183–195.

[12] M. Kvet and J. Janá ek, “Relevant network distances for approximate
approach to the p-median problem. In Operations Research Proceedings
2012: Selected Papers of the International Conference of the German
operations research society (GOR)”, Leibniz Univesität Hannover,
Germany, Springer 2014, ISSN 0721-5924, ISBN 978-3-319-00794-6,
pp. 123-128.

[13] M. Kvet, K. Matiaško, “Transaction Management in Temporal System”,
2014. IEEE conference CISTI 2014, 18.6. – 21.6.2014, pp. 868-873

[14] M. Kvet, K. Matiaško, „Temporal data Group Management“, 2017.
IEEE conference IDT 2017, 5.7. – 7.7.2017, pp. 218-226

[15] M. Kvet and K. Matiaško, “Uni-temporal modelling extension at the
object vs. attribute level”, IEEE conference UKSim, 20.11 – 22.
11.2014, , pp. 6-11, 2013.

[16] D. Kuhn, S. Alapati, B. Padfield, “Expert Oracle Indexing Access
Paths”, Apress, 2016.

[17] S. Li, Z. Qin, H. Song. “A Temporal-Spatial Method for Group
Detection, Locating and Tracking”, In IEEE Access, volume 4, 2016.

[18] Y. Li et all., “Spatial and temporal distribution of novel species in
China”, 2016. In Chinese Journal of Ecology, Vol. 35, No. 7, pp. 1684-
1690.

[19] A. Tuzhilin. “Using Temporal Logic and Datalog to Query Databases
Evolving in Time”, Forgotten Books, 2016.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 130 --

