
Unleashing Full Potential of Ansible Framework:
University Labs Administration

Abstract—The proliferation of virtualization coupled with the
increasing power of industry-standard servers and the availability
of cloud computing has led to a significant increase in the
number of servers and end stations that need to be managed
with or without an organization. At this point, data center
orchestration and configuration management tools come into
play as in many cases. System administrators manage groups
of identical servers or end stations (physical hosts or virtual
machines) which run identical applications and services. They are
deployed on virtualization frameworks within the organization,
or running as cloud or hosted instances in data centers. In this
paper, we consider building up new layer for the utilized Ansible
orchestration tool. In the realized scenario, more than 10 labora-
tories at Brno University of Technology were utilized to test our
developed framework in case of remote management. To bring
the introduced functionality closer to system administrators, an
universal web application enabling them to do the configuration
changes via the smart devices (e.g., smart phones and tablets)
was created and thoroughly tested.

I. INTRODUCTION

While it is still not completely clear, what the Internet of
Things (IoT), Machine-to-Machine (M2M), Vehicle-to-Vehicle
(V2V), and other types of communication in future wired and
mobile systems will become in the end [1], [2], one point
is apparent – in the current Information and Communication
Technologies (ICT) market [3], [4], the need for agile and
reliable techniques capable of shortening the software devel-
opment cycle as well as multi-platform software development
is a must [5]. Software Defined Networks (SDNs) and Network
Function Virtualization (NFV) enable virtualization and cloud-
ification to execute (virtualized) functions as software modules
(plugins) under the control of a single orchestrating entity or
multiple in case of hierarchical deployment [6], [7].

The above mentioned trend, where the software is used
for planning that reduce the space, time and efforts between
the software development and operations in real scenarios
as well as the technical and organizational gap between
mentioned types of research teams has been introduced as
DevOps [5], [8]. The DevOps aims to improve communication,
collaboration, and integration between software developers
(Dev) and IT operations professionals (Ops). As the part of
the DevOps, certain actions take over standard tools from
software development area e.g., code version systems or code-
revision management to manage what is these days known
as Infrastructure-as-Code (IaC) [9], [10], [11]

. Therefore,

the goal of the IaC is to provide system administrators with
the ability to manage knowledge and experiences of plenty
of subsystems from one place instead of traditional approach
where each sub-system has its own dedicated administrator.

Against the background, in this paper, we introduce a
platform for efficiently managing large-scale university labs
infrastructure, with minimal input from developers or local
administrators. In our case, the Ansible tool which was de-
veloped to simplify complex orchestration and configuration
management tasks has been chosen. The platform (framework)
itself has been written in Python and allows users to script
commands in YAML Ain’t Markup Language (YAML) as
an imperative programming paradigm. To unleash the full
potential of Ansible platform, we build upon the available
sources and extend Ansible by an extra layer which allows to
manage the university labs from both local and public network
infrastructure. To bring the developed functionality closer
to sysadmins, a universal web application has been created,
which enables to do the configuration changes via using the
smart devices (e.g., smart phones and tablets). At the end,
the whole platform was extensively tested at Brno University
of Technology (BUT), Czech Republic in selected university
laboratories where physical hosts and virtual machines with
different operating systems and software configurations were
utilized.

The remainder of this paper is structured as follows. In
Section II, we take closer look at the description of Infrastruc-
ture as Code. Going further, Section III presents university
lab scenario located at BUT, Czech Republic. Within this
section, the utilized configuration management tool Ansible
is described together with examples of used syntax. Newly
created platform for remote management of university labs is
detailed in Section IV. Finally, concluding remarks together
with lessons learned are drawn in Section V.

II. INFRASTRUCTURE AS CODE

Infrastructure as Code represents the management of net-
work infrastructure (e.g., virtual machines, load balancers, and
connection topology) in a descriptive model, using the same
versioning as DevOps team uses for source code [13]. Like
the principle where the same source code generates the same
binary, an IaC model generates the same environment every
time it is applied, see Fig. 1. Therefore, IaC stand for a
key DevOps practice and is heavily used in conjunction with
continuous delivery.

IaC evolved to solve the problem of environment drift
in the release pipeline. Without IaC, research or system
teams must maintain the settings of individual deployment
environments/sub-systems. Over time, each environment be-

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

TABLE I A [12]

Chef Puppet Ansible SaltStack CloudFormation Terraform

Code Open Open Open Open Closed Open

Cloud All All All All AWS only All

Type Config Mgmt Config Mgmt Config Mgmt Config Mgmt Orchestration Orchestration

Infrastructure Mutable Mutable Mutable Mutable Immutable Immutable

Language Procedural Declarative Procedural Declarative Declarative Declarative

Architecture Client/Server Client/Server Client-only Client/Server Client-only Client-only

comes a snowflake, that is, a unique configuration that cannot
be reproduced automatically. Inconsistency among environ-
ments leads to issues during deployments. With snowflakes,
administration and maintenance of infrastructure involves man-
ual processes which are hard to track and contributes to errors.
Going further, idempotency is a principle of Infrastructure
as Code – it is the property that a deployment command
always sets the target environment into the same configuration,
regardless of the environment’s starting state. Idempotency is
achieved by either automatically configuring an existing target
or by discarding the existing target and recreating a fresh
environment.

Fig. 1 Infrastructure as Code (IaC) data distribution

Accordingly, with IaC, maintenance teams make changes
to the environment description and version the configuration
model, which is typically in well-documented code formats
e.g., JavaScript Object Notation (JSON). The release pipeline
executes the model to configure target environments. If the
team needs to make changes, they edit the source, not the
target. Therefore, IaC enables DevOps teams to test an applica-
tions in production-like environments early in the development
cycle. These teams are expected to provision multiple test en-
vironments reliably and on demand. Infrastructure represented
as code can also be validated and tested to prevent common
deployment issues before it is rolled out to the production
environment.

A. Orchestration Tools
Today, if you search for “infrastructure as a code” you

will probably end up with a list of the most popular configu-
ration management tools i.e., Chef, Puppet, Ansible, SaltStack,
CloudFormation, and Terraform [12]. All of the mentioned
tools are open source, backed by large communities of con-
tributors, and work with many different cloud providers

.

Chef, Puppet, Ansible, and SaltStack are all “configuration
management” tools, which means they are designed to install
and manage software on existing servers/end stations. Fur-
thermore, CloudFormation and Terraform are “orchestration
tools”, which means they are designed to provision the servers
themselves – leaving the job of configuring those servers to
other tools. These two categories are not mutually exclusive, as
most configuration management tools can do some degree of
provisioning and most orchestration tools can do some degree
of configuration management. But the focus on configuration
management or orchestration means that some of the tools are
going to be a better fit for certain types of tasks. Putting it all
together, Table I shows how the most popular IaC tools sum
up.

III. UNIVERSITY LAB SCENARIO

This section details the practical usability of the Ansible
framework for the orchestration of computer labs located at the
Faculty of Electrical Engineering, Department of Telecommu-
nications, BUT, Czech Republic. The basic options (modules,
playbooks, roles) will be described, followed by a specific
example we have created.

A. Intended Scenario
In the faculty’s premises, a large number of computer

classrooms is used for the teaching and research, which
according to the purpose of teaching includes sets of physical
and virtual machines with different operating systems and
different software equipment and settings. However, some
settings and applications are common to all of these cases. We
developed a scenario that would unify the administration of
such classrooms and save considerable amount of time spent
on the maintenance of these classrooms. The scenario must
be capable of orchestrating all the stations located in the se-
lected laboratory, which is composed of stations with different
mainstream operating systems: (i) Windows 10; (ii) Windows
7; (iii) Ubuntu 16.04; (iv) Debian 8. It also has to be able
to install and uninstall various programs: (i) Microsoft Office;
(ii) Putty; (iii) Wireshark; (iv) Mozilla Firefox; (v) Google
Chrome; (vi) Microsoft Visual Studio, and (vii) Total Com-
mander accompanied by their latest updates. In addition,
several system operations must be enabled: (i) Displaying
information and status of stations; (ii) restarting and shutting
down stations; (iii) creating users; (iv) creating and deleting
a file; (v) installing system updates. The selected settings
will be implemented with the usage of a remote management
framework Ansible.

Logical schema of site is depicted in Fig. 2, where the
communication infrastructure is specified. Stations are dissem-
inated according to the membership to laboratory, operating
system and classroom type. Depending on the design, the cor-

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 145 --

responding application software package and its configuration
is defined.

Fig. 2 Scenario of management laboratories with different operating
systems

B. Implemented features
The requirements for installation of different types of

application were specified as well as operations the intended
scenario has to meet. This subsection details the configuration
steps that were used to fulfill these needs.

As mentioned above, Ansible framework works on client-
server topology, therefore the Ansible server application needs
to be installed. To do so, a system with a Unix or Linux
operating system that contains Python in version 2.6 and
higher

is necessary. The installation itself was done
from a general repository which contains appropriate
packages in all major distributions. Further it was necessary
to configure Ansible Server to communicate with remote
hosts:

• Because the Ansible was primarily developed for the
Linux machines management, no additional configu-
ration was needed on Linux hosts and the communi-
cation settings was rather simplified. The SSH (Secure
Shell) protocol was used. To establish communication
between Linux machines, a pair of ssh keys (private
and public) was required. Ansible server has a pair of
these keys, which represents the identity of the given
server and allows the initialization of encrypted con-
nection. The ssh-keygen command is used to generate
this key.

• To establish communication with Windows hosts, the
group vars directory with the windows.yml file was
created on the server specifying the configuration for
SSH service required to establish server connection
with Windows operating systems. It was assumed that
each host station has an administrator account with
the same name and password. This step is related to
the configuration of remote stations towards Windows.
These can be managed if WinRM (Windows Remot-
ing) service is properly configured and a valid self-
signed certificates are created. The service itself pro-
vides communication between the server and the man-
aged station. The HTTPS protocol (Hypertext Transfer
Protocol Secure) is connected to port 5986, which
enables encrypted communication. These necessary
settings can be executed by running the configuration
script located on Ansible web pages [14]. The most
important aspect of Windows systems configuration

is the presence of Powershell console. The minimum
version of Powershell compatible with Ansible is 3.0,
which is supported on Windows 7 and newer.

After that, groups of managed computers were defined. As
Ansible did not use its pre-installed guest agents to perform its
tasks, no further installation was required. The hosts intended
to be managed must be specified in the inventory located
in /etc/ansible/hosts file which may look like as follows
in Listing 1. The listing shows four machines in two class-
room groups independent of the used operating systems. Each
machine can be a member of several groups.

Listing 1: Ansible inventory example

[laboratory-networking]
lab1host1 ansible_ssh_host=192.168.1.1
lab1host2 ansible_ssh_host=192.168.1.2

[laboratory-cryptography]
lab2host1 ansible_ssh_host=192.168.2.1
lab2host1 ansible_ssh_host=192.168.2.2

Once the communication chain is set, scripts for remote
management could be created. The rudiments of these scripts
are modules, playbooks and roles as depicted in Fig. 3.

• Playbook is the file containing the order of the com-
mands, composed of aforementioned modules and is
represented by a YAML file.

• Roles are complex structures that include tasks, mod-
ules, handlers and files. Role is composed of a direc-
tory that has sub-directories which contain a main.yml
file, which specifies the sequence of operations to be
performed.

• Modules are simple scripts focused on simple system
actions. They can be run as a single command or as
a part of more complex scripts, called playbooks.

Project

Playbook PlaybookPlaybook

Role Role Role RoleRole

Task

Task

Task

Task

ModuleModule

Module Module

Fig. 3 Structure of Ansible scripts

Playbook is a file containing the commands to be executed
on that host. It also defines the host guest group in which the
tasks are run. Tasks utilize modules for unattended installation
of applications on target operation systems. The following
command executes the Playbook.

ansible-playbook run-example-playbook.yml

The Playbook can have a tremendous amount of information
about the host station. If the playbook has to be as simple
as possible, you can use a role. Ansible roles help to divide
repeatable scripts into separate units. This makes it easy to
read and allow the use of other necessary files, such as .sh,
.ps, .conf, .msi and other scripts.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 146 --

Roles are ways of automatically loading certain files, tasks,
and handlers based on a known file structure. Certain role
is composed of a directory that has a sub-directories which
contain a main.yml file. It, same as a playbook, specifies the
sequence of operations to be performed. Before the installation
itself, it is necessary to determine which type of the operating
system will be installed. Another requirement is the availability
of the repository application at the manufacturer’s site. The last
condition is to select available modules from [15] to meet the
set of defined requirements.

Modules allow to control machine system resources, such
as services, packages, files, permissions, etc. An example of a
module for getting system information from a guest host may
be as follows

ansible -i hosts windows -m setup

The most important module used in intended scenario,
is module win chocolatey [16], which allows to install and
uninstall any application for Windows. Structure of module
for Mozilla Firefox installation is shown in Listing 2.

Listing 2: Install Win app via Chocolatey

win_chocolatey: # module name
name: firefox # parameter name
state: present # parameter state

The name parameter specifies the name of the application
to be installed. The state parameter represents desired state of
the application. Here, the present parameter defines that the
application should be installed. A summary of the remaining
parameters is available on the Chocolatey web pages [16]. The
Chocolatey module allows installation of large applications
but some of them are available only on the manufacturer’s
pages. This is also the case when applications from Microsoft
are installed. For such applications it is necessary to define
the exact URL on which the .msi or .exe file is needed to
install the application. To install the application on Windows
from the web or local store, the win package module is used.
The showcase [17] playbook for installing applications from
different sources is given on Listing 3.

Listing 3: Install Win apps from different sources

name: Install applications
hosts: windows
tasks:

Install app via Chocolatey
- name: Install Wireshark

win_chocolatey:
name: wireshark
state: present

Install app via MS Store
- name: Install MS Visual Studio

win_package:
path: "https://.../vstudio.exe"
product_id: "{DE0-...8B-3638}"
state: present

Download app from URL
- name: Download the MS Office

win_get_url:
url: http://.../office2010.msi
dest: C:\....\office2010.msi

Install app from local source
- name: Install MS Office

win_msi:
path: C:\...\office2010.msi
state: present

Registers are checked before installing the application. If
the keys within the registry entry were set, the application
will not be installed as it proves that the same version of
the application is already installed. Applications with different
versions can be installed adjacently.

As for Windows and Linux, not all applications are exe-
cutable on the target operating system. For Linux distribution,
an application such as Microsoft Office or Visual Studio IDE

will not be installed.
Before installing an application on Linux systems, it is
necessary to determine which distributions will be used.
Each distribution uses different installation tool or package.
To install the application on CentOS, the apt module is used,
which is similar to win chocolatey for Windows. The apt
module allows the administrator to install the application,
the .rpm package, and also update the distribution. The apt
module for installing Mozilla Firefox follows in Listing 4,
syntax is similar to win chocolatey module.

Listing 4: Install Linux app via apt

apt:
name: firefox-esr-llOn-cs
state: present

After application installation or during regular mainte-
nance, remote reboot or shutdown might be required. For
this feature win reboot and win shell modules are utilized
for Windows and Linux, respectively. The win reboot module
represents the Powershell command to restart the station. To
restart Linux stations, the shell module is used to directly trans-
fer shell commands for restarting or shutting down machines.

When all the required applications are installed on the
system, user accounts creation is necessary. Ansible is able to
create user accounts for both Windows and Linux. It utilizes
win user for Windows and user for Linux. Both modules have
a number of settings, such as ensuring that the user is assigned
to the required group, or the password is changed or new one
is set. On Linux systems it is possible to create a private ssh
key for the created user.

In order to remove and uninstall the applications, it is
not necessary to use new module but the absent parameter
in configuration file is used, as follows in Listing 5.

Listing 5: Remove installed applications

Remove Linux app via apt
apt:

name: firefox-esr-llOn-cs
state: absent

Remove Win app via Chocolatey
win_chocolatey:

name: wireshark
state: absent

This setting performs desired operations i.e., application unin-
stallation and even deletion of files, folders or users.

The necessary step in managing the computer lab is in-
stallation of system updates. Updating the system is the most
important operation as the up to date system ensures robustness
and compatibility of HWwith SW. For updates, Ansible uses
the win update module for Windows and the apt module for
Linux. Windows OS allows to install only specific updates such

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 147 --

as security patches or application-specific hotfixes. If updates
are not specified, all of them will be installed.

IV. REMOTE MANAGEMENT OF IAC

In the previous section, remote management of host stations
via Ansible was tested. It was verified that Ansible is powerful
undemanding tool ensuring reliable management of small
but also extensive networks with stations utilizing various
operating systems, i.e., Linux or Windows.

Despite the fact that Ansible is easy to learn it still enforces
the user to use a terminal window for creating playbooks and
launching commands. Over the time, with growing number of
stations, this attitude becomes time-consuming and ineffective.
Moreover, the user is limited to connect via local network.
Otherwise the connection via VPN (Virtual Private Network) is
needed. It brings additional steps to the network management
like the need for another password and login procedure.

These drawbacks could be solved by web interface ac-
cessible through the external network providing management
over GUI (Graphical User Interface). Such user interface is
accessible via standard web browser through the specific URL.

The aforementioned approach requires the cooperation of
several technologies, see Fig. 4 including Ansible, web server
ensuring remote access through the HTTPS and web applica-
tion providing user interface.

A. MVC framework
Majority of the modern web application is written in

JAVA, ASP.NET (Active Server Pages) or PHP (Hypertext
PreProcessor) enhanced by framework extending their basic
capabilities [18]. Authors decided not to break the paradigm
and built the application on top of Spring framework written
in JAVA.

Spring is JEE (Java Enterprise Edition) framework de-
signed to relieve development of enterprise applications.
Framework is based on the modern principle of MVC (Model-
View-Controller) architectural pattern. It allows structuring of
the created application into logical and functional units in
accordance with its functionality. Each part of MVC model
ensures specific task [19].

• Model – represents Java object containing applications
data, i.e., username and password. Model is the only
part of the application directly communicating with
the database. Other parts of the system communi-
cate with the database through the model’s public
functions. This approach allows a high level of data
abstraction provided by the model.

• View – represents Java object which contains infor-
mation about graphical layout. From the perspective
of end-user, it is the only visible part of the system
as view provides the interpretation of data in the user
interface. Spring framework utilizes special files called
JSP (Java Server Pages) which allow transformation of
code written in Java into HTML web pages accessible
through the web browser.

• Controller – represents a bridge between model
and view thus it is the most important part of the
MVC pattern. When an incoming request occurs, the
controller has to acquire data from the model and
provide them to the view, which then ensures graphical
interpretation.

Fig. 4 Architecture of Ansible remote interface management

Fig. 5 depicts architecture of the Spring framework. The
example shows processing of HTTP request on /home page.
The main parts of the architecture are [20]:

• Dispatcher Servlet – represents main control point of
the application. Servlet ensures communication within
the application, process incoming HTTP requests and
generates HTTP responses.

• Handler Mapping – interface with a mechanism that
allows finding of proper controller attached to the
request address. In the aforementioned example the
handler is looking for controller attached to the /home
servlet.

• View Resolver – receives the name of the requested
view to find and return the view object to render.

All components above are native part of the Spring frame-
work. Such an approach eases developer’s work who imple-
ments only model, view, and controller objects bundled with
the container via the Annotations. The remainder is handled
by Spring framework without developer intervention.

B. Created web application
Ansible in its free version does not provide users with

GUI (Graphical User Interface) therefore configuration is done
completely in a text console. However, this solution requires
perfect knowledge of all configuration commands. Beside this,
administrator has to be on the same network as Ansible server
or VPN (Virtual Private Network) connection to the local
network is needed. Those are the main reasons why the web
application with user interface was created.

The application is available through the web browser,
and it is divided into several subcategories according to its
functionality.

Access to the application is restricted via the login dia-
log. It is not possible to enter the application without valid
credentials. To ensure a high level of security, the application
is accessible only via HTTPS connection. It protects system
against MITM (Man in the Middle) attacks because transferred
data are encrypted with TLS (Transport Layer Security) proto-
col. After successful login, user is redirected to the home page

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 148 --

Fig. 5 Architecture of Spring MVC framework

that serves as a signpost to the next sections of the application
as it is depicted in Fig 6. Via the application, it is possible to
create new playbooks, edit playbooks, host files or delete the
records.

However, the crucial part of the developed application is
its ability to execute created playbooks on available hosts.
The system allows launching the whole playbook or even a
single command. Every playbook can be firstly launched in
check mode which serves as a test of syntax and functionality.
Application screen output is the same as from console, see
Fig. 7; thus the user is fully informed about current progress
and results. If it is not required to launch the whole playbook,
a single command can be launched from the menu.

As company or university could have more than one admin-
istrator, it is better to distinguish their access to the application.
Therefore, the created platform allows management of user
accounts. Security of user credentials is ensured by hashing
algorithm Bcrypt [21].

V. CONCLUSION

Today, the infrastructure design is the software life-cycle
phase that defines and configures the software infrastructure
needs for that software as well as the number and type
of physical hosts or virtual machines required. Infrastructure
design typically consists of many installation and configuration
scripts needed to, among others: (i) instantiate and link the
required machines (either physical or virtual) for the software
to run, (ii) install and configure the required software and
middle-ware for those virtual machines, (iii) instantiate and run
the needed ancillary services for the software to be operated.

Following the current trends known as Infrastructure-as-
Code, we have created new layer for the Ansible framework
which stands for the orchestration and configuration manage-
ment framework. Newly created layer for Ansible offers man-
agement of university labs at Brno University of Technology,
Czech Republic from local and public network. Also, the new
web interface has been created to simplify the configuration
of tasks which are performed on daily basis – the created
application is written in Java programming language utilizing
the Spring framework.

Fig. 6 The showcase of implemented actions within the main menu of
created BUT Ansible application

Fig. 7 Output of executed playbook which was chosen from predefined
list. As the playbooks are designed to be human-readable, information
about the operating systems are pro-vided

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 149 --

With the outlined goals accomplished, the management
of machines (physical or virtual) from both the internal
university network and public network was thoroughly tested
via the web-interface and as an output, it can be stated all
required software changes were successfully accommodated.
The created framework represents a convenient tool enabling
secured remote management and configuration of the selected
network or network parts.

ACKNOWLEDGMENT

The described research was supported by the National
Sustainability Program under grant LO1401. For the research,
infrastructure of the SIX Center was used.

REFERENCES
[1] J. Hosek, P. Masek, S. Andreev, O. Galinina, A. Ometov, F. Kropfl,

W. Wiedermann, and Y. Koucheryavy, “A SyMPHOnY of Integrated
IoT Businesses: Closing the Gap between Availability and Adoption,”
IEEE Communications Magazine, vol. 55, no. 12, pp. 156–164, 2017.

[2] S. Andreev, D. Moltchanov, O. Galinina, A. Pyattaev, A. Ometov,
and Y. Koucheryavy, “Network-assisted device-to-device connectivity:
contemporary vision and open challenges,” in European Wireless 2015;
21th European Wireless Conference; Proceedings of, pp. 1–8, VDE,
2015.

[3] E. Olshannikova, A. Ometov, Y. Koucheryavy, and T. Olsson, “Visu-
alizing Big Data with augmented and virtual reality: challenges and
research agenda,” Journal of Big Data, vol. 2, no. 1, p. 22, 2015.

[4] I. Farris, A. Orsino, L. Militano, A. Iera, and G. Araniti, “Federated
IoT services leveraging 5G technologies at the edge,” Ad Hoc Networks,
vol. 68, pp. 58–69, 2018.

[5] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional, 2015.

[6] Q. Duan, N. Ansari, and M. Toy, “Software-defined network virtual-
ization: An architectural framework for integrating SDN and NFV for
service provisioning in future networks,” IEEE Network, vol. 30, no. 5,
pp. 10–16, 2016.

[7] A. Basta, A. Blenk, K. Hoffmann, H. J. Morper, M. Hoffmann, and
W. Kellerer, “Towards a cost optimal design for a 5G mobile core
network based on SDN and NFV,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 1061–1075, 2017.

[8] G. X. Kolometsos, C. Xilouris, A. Rocha, J. F. Hidalgo, S. Siddiqui,
S. Castro, F. Vicens, and J. Martrat, “DevOps based service orchestra-
tion in 5G virtualised Networks.,”

[9] K. Morris, Infrastructure as code: managing servers in the cloud. ”
O’Reilly Media, Inc.”, 2016.

[10] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,
“DevOps: introducing infrastructure-as-code,” in Software Engineering
Companion (ICSE-C), 2017 IEEE/ACM 39th International Conference
on, pp. 497–498, IEEE, 2017.

[11] D. Palma and T. Spatzier, “Topology and orchestration specification
for cloud applications (TOSCA),” Organization for the Advancement of
Structured Information Standards (OASIS), Tech. Rep, 2013.

[12] J. O. Benson, J. J. Prevost, and P. Rad, “Survey of automated software
deployment for computational and engineering research,” in Systems
Conference (SysCon), 2016 Annual IEEE, pp. 1–6, IEEE, 2016.

[13] Y. Jiang and B. Adams, “Co-evolution of infrastructure and source code:
An empirical study,” in Proceedings of the 12th Working Conference
on Mining Software Repositories, pp. 45–55, IEEE Press, 2015.

[14] S. Thakur, S. C. Gupta, N. Singh, and S. Geddam, “Mitigating and
patching system vulnerabilities using ansible: A comparative study of
various configuration management tools for iaas cloud,” in Information
Systems Design and Intelligent Applications, pp. 21–29, Springer, 2016.

[15] L. Hochstein and R. Moser, Ansible: Up and Running: Automating
Configuration Management and Deployment the Easy Way. ” O’Reilly
Media, Inc.”, 2017.

[16] M. Balliauw and X. Decoster, “Automated Delivery,” in Pro NuGet,
pp. 179–214, Springer, 2013.

[17] M. Mohaan and R. Raithatha, Learning Ansible. Packt Publishing Ltd,
2014.

[18] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[19] D.-P. Pop and A. Altar, “Designing an MVC Model for Rapid Web
Application Development,” Procedia Engineering, vol. 69, pp. 1172
– 1179, 2014. 24th DAAAM International Symposium on Intelligent
Manufacturing and Automation, 2013.

[20] J. Sharma and A. Sarin, Getting started with Spring Framework: a
hands-on guide to begin developing applications using Spring Frame-
work. [S.l.]: CreateSpace, 2016. The book can be consulted by
contacting: EN-ACE-AMM: Pater, Lukasz Piotr.

[21] N. Provos and D. Mazieres, “Bcrypt algorithm,” USENIX, 1999.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 150 --

