
A Hardware-in-Loop Simulation of DC Microgrid
using Multi-Agent Systems

Diana Rwegasira1 2, Imed Ben Dhaou3 6, Aron Kondoro1 2, Amleset Kelati1 5, Nerey Mvungi2, Hannu Tenhunen1 5
1 KTH Royal Institute of Technology in Stockholm (SWEDEN)

2 University of Dar es Salaam (TANZANIA)
3 College of Engineering, Qassim University (SAUDI ARABIA)

5University of Turku (FINLAND)
6University of Monastir (TUNISIA)

dianasr@kth.se, phd.imed.bendhaou@ieee.org, kondoro@kth.se, smleset@kth.se, nhmvungi@udsm.ac.tz, hannu@kth.se

Abstract—Smart-grid is a complex system that incorporates
distributed control, communication, optimization, and
management functions in addition to the legacy functions such as
generation, storage, and control. The design and test of new
smart-grid algorithms require an efficient simulator. Agent-
based simulation platforms are the most popular tools that work
well in the control and monitoring functionalities of the power
electric network such as the microgrid. Most existing simulation
tools necessitate either simulated or static data. In this paper, we
propose a hardware-in-loop simulator for dc-microgrid. The
simulator reads the power generated by the PV panels and the
battery SoC using Raspberry PI. A physical agent that runs on
Raspberry PI sends the real-time data to a dc-microgrid
simulator that runs on a PC. As a proof of concept, we
implemented a load-shedding algorithm using the proposed
system.

I. INTRODUCTION

The new revolution in the power industry systems is
nowadays sustained by the integration of ICT technologies
along with smart sensors and algorithms. Smart-grid integrates
distributed energy resources through microgrid systems [1]. A
basic solar PV-microgrid is composed of a controller, storage
units, micro sources and loads as seen in Fig.1.

In the DC-microgrid systems, the control part aims at, for
instance, matching supply and demand, controlling and
monitoring the storage units (battery banks), and the switching
between islanded and grid-connected modes. Several control
techniques for the DC-microgrid have been proposed such as
fuzzy control [2], and the multi-agent system, MAS.

In the literature, various control algorithm using MAS have
been proposed [1]. However, the efficiency of those
algorithms has been assessed using measurement. The design
of contemporary dc-microgrid necessitates the integration of
simulation, data-acquisition, and communication protocols.

Future electrical systems will be composed of DC voltage
distribution and DC appliances. Several implementations of
DC networks have been achieved and worked successfully for
different purposes. The success of these applications is due to
the advantages of DC microgrid networks such as efficiency,
energy saving, power quality and reliability. In terms of
energy saving a large percent of the AC loads can be saved by
eliminating the AC-DC conversion losses in the distribution

system [3]. Other advantages include easy isolation of the
grid under a fault, better stability, and the needless for phase
detection [4].

Fig. 1. Microgrid Architecture

Smart microgrid requires infrastructure in order to acquire,
process, transfer and provide information extracted from the
physical world. These include distributed smart nodes and
smart appliances that can interact among themselves and
produce an output. The work of [5] and [6] compared smart
grid implementation from China, US, and Europe and came up
with six technologies to adhere to. These are: (i) Real-time
data management, planning and visualization technology, (ii)
Integration of power grid and renewable Energies technology
(iii) Power system security monitoring, fast simulation,
intelligent decision-making and comprehensive defense
technology, (iv) Intelligent protection and control of the power
grid based on power electronics technology, (v) Energy
Storage technology and application and (vi) Advanced asset
management technology.

The development of the DC-microgrid needs the design
and test of various techniques, algorithm, and platforms. To
reduce the cost of development, simulations are the only way
to go. The development of simulators for the smart grid, in
general, received lots of attention both in academia and
industry [7]. The authors of [8] argued that load control is the
most appropriate scenario that can be used to develop a smart
grid simulator.

The work described in [9] focused on agent-based
simulation framework using Repast S and included load

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

shedding technique. While the framework is efficient, it lacks
the real-time capabilities. This work focuses on describing an
HIL simulation for the DC-microgrid using JADE physical
agent and Repast S. The rest of the paper is organized as
follows: Section II discusses related work. Section III provides
motivations for load shedding framework. Section IV
describes the implementation. The results are then presented in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

The efficiency and resiliency of electric power supply to
serve critical and non-critical facilities are of high importance
in today’s life. Instead of building large electric power grids
and high capacity transmission lines, an intelligent microgrid
(or smart grid) can be deliberated as a promising power supply
alternative and serve the purpose. A multi-agent approach to
design different applications for the power system can be used
to test distributed algorithms for intelligent control and
monitoring of the configuration implementation into real
systems[10]. In order to achieve the desired results, the
realistic idea is to simulate advanced multi-agent using
simulation tools with proper configuration strategies. These
tools can be simulated as either a single tool, combination of
two or more simulation tools or including the hardware part
with simulation tools.

Previously researchers have done overwhelming work on
the simulation of smart microgrid systems in the control,
communications and demonstrated the advantages of
simulations [7] and [8]. A comparison between four simulation
tools is reported in [11] . The research by [12] proposed a two-
layer framework that comprised of a control layer that with the
agent-based control and a functional layer where the physical
infrastructure is rivaled. In this case, the control layer can be
implemented with any simulation tools such as GridLAB-D,
NetLogo, and Repast while on the physical layer can be
supported by other MAS tools like JADE. Also, [13]
introduced the JADE and Repast framework for simulating
enterprise adding value network for analyzing the management
performance. The objective was to make the payment
operations to be beneficial to the process with better
functionalities. The results of the model explored the
advantages of modeling the systems using two platforms to
render the context more realistic. Likewise, [14] used the same
approach and come up with the same results though for this
the version used for Repast was more flexible compared to
that in [13]. Also, this was specifically targeted for airport
simulation for autonomous transport service. Other factors
focused was scheduling and synchronization of new agents in
the system, and registration of it in the environment. So far,
the combination of the tools have been done with JADE and
Repast and this is due to their comparison as described in
Table 1 by [15] and [16].

Hardware in Loop (HiL) simulation for smart microgrid
system control is another way that has recently become
popular for different applications in the power systems for
realization between the controller and the real system. The fact
that hardware control makes IoT achievable, then the need to
simulate also is more important.

TABLE I. JADE AND REPAST COMPARISONS

JADE REPAST
Distributed Yes No
Simulation tools No Yes
Scalability Limited High
Open source Yes Yes
Agent Execution behaviors multi-thread

Event-driven
Asynchronous

Scheduler Single-thread,
tick driven Synchronous

Interaction Yes with FIPA ACL Yes through Method calls
and shared resources

Ontologies Yes No

III. THE RATIONALE FOR LOAD SHEDDING FRAMEWORK

Combining two MAS platforms provides flexibility and
efficiency of the systems. The research done by [13]
developed the framework by integrating Repast and JADE for
supply chain VAN. Another work by [14] developed a
framework using Repast S and JADE for airport simulations.
Both works successfully but did not include a mechanism on
how to integrate the framework with IoT interfaces (hardware
in loop: HIL) to provide a mechanism of interfacing devices
for automatic control purposes.

A solar charge controller or a regulator is an embedded
system, which is responsible for regulating the DC power
coming from the PV panel that goes to the battery. The block
diagram of a typical solar charge controller is shown in Fig. 2.

The regulator acts as a microcontroller that implements the
regulation algorithms, e.g. MPTT. The regulator engenders
many functions, some of which are: metering, protection
against reverse current and overcharging, load control, and
temperature compensation.

Fig. 2. Block diagram of a typical regulator

In this work, the reasons behind the use of solar charger
controller are due to the following attributes: (i) to regulate the
voltage from the solar panel, (ii) to monitor the voltage to the
battery and (iii) to stop block reverse current at night.
Furthermore, the generated power along with the battery SoC
will be monitored and controlled by JADE platform while the
load shedding simulation will be implemented in the Repast
platform. In this manner, by using smart devices connected to
the microcontrollers, data can be sent by JADE platform to the
Repast S for simulation.

The integration of platforms with devices that have IoT
capabilities provides a realistic communication between
platforms and hence the results can be realistic, easily

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 233 --

visualized and interpreted. Fig. 3 describes the basic
architecture of the framework with respect to the scenario. The
power source (for this case is a solar panel with the charger
controller) will be implemented in JADE and the Raspberry
Pi will measure and send the data to the Repast
engine.

Fig. 3.Hardware-in-loop for simulating load shedding techniques

IV. HARDWARE, JADE & REPAST FRAMEWORK
IMPLEMENTATION

The design and implementation of an autonomous system
depend on several aspects such as control algorithm used,
simulation environment, agent communication languages and
security of the system. MAS has been used as a solution on
accomplishing different scenario and implementations of real
systems and thus, the need of the simulation framework is
significant to test the visibility. To accomplish the simulation
framework, the two stages where done as described in this
section.

A. Platforms Interfacing (JADE and Repast)

In this paper, the JADE version used is 4.5.0 and Repast
Simphony version used is 2.4 in our implementation process.
Both will be operated on one PC under the same java
programming language. The application of the distributed
platform to run one container in the Raspberry PI and another
container (the main container) on the PC have been
implemented both on JADE platform. The main container is
responsible for keeping the repository of all intelligent agents
of the platform.

The Remote Method Invocation (RMI) has seen in Fig. 4 is
the class method used for integration between JADE and
Repast to allow an object running in one Java virtual machine
to invoke methods on an object running in another machine.
These have been done with the following steps to achieve it:

i. Create and compile an interface that specifies the
methods that will have remote access

ii. Compile a class that implements remote
interface in (i)

iii. Create the stub class using rmic tool

iv. Compile a server class that requested an object
from the remote server using its hostname and
the unique identifier of the object and then casts
the object to the interface type from (i)

v. Then start the bootstrap rmi registry in the server
side and execute the server class on the machine
that the client named it.

vi. Execute the client class on the machine.

 Fig. 4. Remote Method Invocation Approach

Each implemented interfaces extends the Remote class on
the RMI java package. Both PanelAgentPresentation and
RegisterAgentToEnvironment classes implemented class
UnicastRemoteObject for them to be accessed remotely. Class
RegisterAgentToEnvironment was used for registering a
remote JADE agent to the Repast environment and class
PanelAgentPresentation was used to represent JADE agent on
the Repast environment.

PanelAgentPresentation contains all the methods which the
Repast engine will need to inform the agent on the changing
environmental parameters and obtaining values on the JADE
agents. This uses a method like schedule for informing JADE
agent on the current Repast environment.

On the JADE application, two classes and one interface
were implemented. One class called SolarAgent extends Agent
class on jade.core package (special package for JADE
applications) and the other class called AgentPresenter which
is used by the remote Repast application for remote access
calls. AgentPresenter implements PanelAgentInterface the
same interface implemented by the repast’s
PanelAgentPresentation. The function of the SolarAgent class
is to read repast environment through schedule method and to
act based on the information it gets from repast.

Fig. 5 describes the class diagram for the overall
interactions of the hardware and the software platforms upon
achieving load shedding technique whereby both will run with
Java programming language.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 234 --

Fig 5 Class Diagram for the framework implementation

B. Hardware in loop interfacing

The Raspberry PI is a small computer on a single
integrated circuit that is designed specifically for embedded
applications. It has evolved through several versions that
feature variations in memory capacity and peripheral device
support. The model has featured with a Broadcom system on a
chip (SoC), an integrated ARM compatible central processing
unit and on-chip graphics processing unit. Its processor speed
ranges from 700 MHz to 1.2 GHz; onboard memory ranges
from 256 MB to 1 GB RAM for Pi 3 version. The selected
version in this work is Raspberry PI 3.

The Raspberry PI was connected by Ethernet cable with
the IP address: 130.237.202.152 to get internet connection as
seen in Fig. 6. It was also installed with Java Development
Kit (JDK) to run Java applications as both JADE and Repast
use java programming language. On this java application,
agent class was implemented using JADE.jar library which
acted as a remote container (responsible for receiving groups
of the embedded remote agents) running on different host to
support the functionality of solar panel (power source), i.e. be
able to read the values from sensors. This library is found on
JADE platform. The remote container has several attributes
which combine both solar panel and solar charger controller.
These include power control and distribution to the loads,
battery charging and discharging. Three applications were
installed in Raspberry PI namely Main.java for running the
application, Raspberry.java extends implementation of
JadeAgentInterface which contains the remote methods and
Sun.java used to calculate the solar illumination intensity and
report back to JADE agent.

The following is the call flow used in the process:

When repast application starts it first creates the RMI
registry of repast and then it creates an instance of
RegisterAgentToEnvironment class and then bind this
instance to the RMI registry of repast.

Fig 6 Raspberry PI connectivity

On the other hand, when JADE agent application it
created its own RMI registry and then bind the
SolarAgent instance to its registry. It then starts to look
up for the RegisterToEnvironment instance from Repast
registry and calls the method registerAgent to register
the SolarAgent instance on Repast environment.

The Raspberry application starts by creating it registry
and then binding its Raspberry PI instance on it RMI
registry.

On each tick of the Repast simulation, it call the
method schedule on JADE agent to inform on JADE
agent on the time change. At the same, when the JADE
agent is scheduled for the first time it looks for the
Raspberry remote instance and set it up ready on the
SolarAgent instance;

When Repast simulation runs on each new tick, it
schedules the JadeAgent and then calls the method
getSunIllumination from Raspberry via JadeAgent.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 235 --

V. RESULTS AND DISCUSSION

The scenario of our problem has been demonstrated with the
simulation of the loads and the power supply. Fig. 7 shows the
solar agent scheduled to generate the power for the three
houses. This will be changing based on the power values
inserted/or generated from the PV panels.

Fig. 8 describes the communications between agents in the
proposed framework. The Raspberry PI was accessed remotely
by the JADE agent to collect the instantaneous value of the
power (available or generated). The main container contains
one agent, i.e solar for this scenario but it is possible to
implement more agents based on the problem simulated.

The use of the microcontrollers with the integration and
software platforms have provided the ping results on response
time as seen the in Fig. 9 with maximum and minimum
latency. In addition, the memory footprint in the PC that
integrates the Jade and Repast occupies approximately 720KB
when running with 100 ticks upon simulation.

Fig. 7. JADE Agent GUI with one instance of SolarAgent

The power consumption on the Raspberry pi was
approximately 250mA when simulating the results with less
than 200 ticks but with increasing tick counts the device seems
to become slow on responding to the simulation.

Fig. 8. (a) Raspberry PI application remotely accessed, (b) jade agent represent the solar agent and charger controller, (c) Three load agents simulations in the
Repast and (d) The supplier power generated in the Repast platform

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 236 --

Fig. 9. Response time

The implementation of the framework can be in a
distributed manner whereby the microcontrollers with Jade can
be in different places with another PC running the platform
and another PC running Jade and Repast for simulation.
Therefore, the large-scale usage, it is easy to have different
microcontrollers connected to the solar panels and charger
controller and able to send data to the PC for simulation and
monitoring purposes. Table II summarizes the features on the
comparison of our proposed framework and the previous
works.

TABLE II. COMPARISON OF PROPOSED AND EXISTING FRAMEWORK

work Real-
time
data

Technologies IoT
capability

Flexibility

[12] Yes GridLab D Limited No

[13] No Repast, Jade Limited No

[14] Yes Repast, Jade Limited No

This
work

Yes Repast, Jade,
Raspberry pi

Unlimited Yes

VI. CONCLUSION

In this paper, we proposed a mixed simulation system for a
DC-microgrid. The system is implemented using multi-agent
systems: JADE and Repast S. The JADE agent runs on a
Raspberry PI with the task of controlling and monitoring the
charge of the battery. The Repast S agents are implemented on
a personal computer with the task of implementing the load-
shedding algorithm. The load shedding is one the control
system approach used to prove the concept of the idea. The
importance of this framework can be applied in any control
activities such as fault detection and self-healing as long as the
functional algorithm is well defined. Further research will be
on the extension of the hardware device to include smart
devices such as Arduino with smart sensors to control

voltages, current, temperature, etc., for critical and non-critical
loads.

ACKNOWLEDGMENT

This work is supported by the Swedish government through
the SIDA project. Appreciation also goes to the JADE and
Repast forums for the support.

REFERENCES
[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay,

“Microgrids,” IEEE Power and Energy Magazine, vol. 5, no. 4, pp.
78–94, 2007.

[2] R. B. Menon, S. B. Menon, D. Srinivasan, and L. Jain, “Fuzzy logic
decision-making in multi-agent systems for smart grids,” in 2013
IEEE Computational Intelligence Applications in Smart Grid
(CIASG), 2013, pp. 44–50.

[3] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero,
“An overview of low voltage DC distribution systems for residential
applications,” in 5th IEEE International Conference on Consumer
Electronics - Berlin, ICCE-Berlin 2015, 2016, pp. 318–322.

[4] K. Kurohane and T. Senjyu, “A Hybrid Smart AC / DC Power
System,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 199–204, 2010.

[5] Z. R. Z. Ruihua, D. Y. Du Yumei, and Y. L. Y. Liu, “New challenges
to power system planning and operation of smart grid development in
China,” in 2010 International Conference on Power System
Technology (POWERCON), 2010, pp. 1–8.

[6] S. . M. Tianshu Bi, S. Liu, S. M. M. Zhenyu Huang, and N. Hadjsaid,
“The implication and implementation of smart grid in China,” in
IEEE 9th International Conference on power Electronics and Drive
Systems, 2011, pp. 304–309.

[7] R. Podmore and M. R. Robinson, “The role of simulators for smart
grid development,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 205–
212, 2010.

[8] J. Nutaro, “Designing power system simulators for the smart grid:
Combining controls, communications, and electro-mechanical
dynamics,” IEEE Power Energy Soc. Gen. Meet., 2011.

[9] D. Rwegasira et al., “A framework for Load shedding and Demand
Response in DC Microgrid using multiagent systesm,” in 21st
conference of FRUCT Association, 2017, pp. 1–6.

[10] A. M. Kosek, O. Lünsdorf, S. Scherfke, O. Gehrke, and S. Rohjans,
“Evaluation of smart grid control strategies in co-simulation -
Integration of IPSYS and mosaik,” in Power Systems Computation
Conference, PSCC 2014, 2014, no. 4, pp. 1–7.

[11] A. Kondoro, I. Ben Dhaou, D. Rwegasira, A. Kelati, N.
Shililiandumi, and N. Mvungi, “Simulation Tools for a Smart Micro-
Grid : Comparison and Outlook,” in 21st conference of FRUCT
Association, 2017, pp. 1–7.

[12] A. Ferreira, P. Leitão, and P. Vrba, “Simulating smart grid using a
two-layer multiagent framework,” in IEEE International Conference
on Industrial Technology, 2015, pp. 2982–2987.

[13] M. J. Yoo and R. Glardon, “Combining JADE and repast for the
complex simulation of enterprise value-adding networks,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 5386, pp. 116–130, 2009.

[14] J. Görmer, G. Homoceanu, C. Mumme, M. Huhn, and J. P. Müller,
“JREP: Extending Repast Simphony for JADE agent behavior
components,” Proc. - 2011 IEEE/WIC/ACM Int. Conf. Intell. Agent
Technol. IAT 2011, vol. 2, pp. 149–154, 2011.

[15] H. L. Cardoso, “Multi-Agent Systems Software Platforms /
Frameworks.” FEUP-Universidade do Porto Faculdade de
Engenharia, pp. 1–38, 2017.

[16] J. P. C. Lopes and H. L. Cardoso, “From Simulation to Development
in MAS: A JADE-based Approach,” Int. Conf. Agents Artif. Intell.
(ICAART 2015), pp. 1–12, 2015.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 237 --

