
RDF Graph Visualization Tools: a Survey

Francesco Antoniazzi
INFN CNAF and University of Bologna

Bologna, Italy

francesco.antoniazzi@unibo.it

Fabio Viola
University of Bologna

Bologna, Italy

fabio.viola@unibo.it

Abstract—Semantic Web technologies are increasingly being
used for the development of Future Internet applications, mainly
due to the impressive growth of the Internet of Things research
area. This spread pushes for effective and efficient ways to
visualize the content of RDF ontologies and knowledge bases.
Several strategies can be adopted to visualize semantic data
and one of this consists in exploiting the graph representation
intrinsic in the RDF model. In this paper, we propose a survey
of the main tools for the graphical visualization of triples (being
them terminological or assertional statements) exploiting a graph
representation.

I. INTRODUCTION

The Semantic Web [1] movement was born to transform

the Web from a repository of human-readable information,

to a world wide network of machine-understandable data. To

achieve the scope, multiple protocols were introduced: RDF

(Resource Description Framework) [2] allows to represent all

the information as a set of triples (i.e., subject, predicate,
object) where resources are univocally identified through URIs
(Uniform Resource Identifiers). Ontologies represented ac-

cording to RDFS (RDF Schema) [3] and OWL (Web Ontology

Language) [4] bind meanings to RDF terms (with a set of

rules expressed through RDF). Finally, SPARQL Query [5]

and Update [6] languages allow to respectively retrieve data

from the Knowledge Base (KB) and update it.

Semantic Web technologies are gaining momentum, due to

the wide spread of two strongly linked research areas: context-

aware computing [7] and the Internet of Things (IoT) [8].

Context-aware computing is aimed at developing applications

able to adapt to changes in the environment and often exploits

semantics to model the context with a high expressive power.

The IoT is instead a world-wide network of interconnected and

uniquely addressable objects, based on given communication

protocols [9]. It is characterized by heterogeneity of the

involved devices and by a multitude of protocols born with

different aims [10]. For this reason, IoT applications are almost

always compared to vertical silos [11] where the interoper-

ability is a challenging task. In this scenario, Semantic Web

technologies are often considered as interoperability enablers

that allow to bridge different applications by means of a

semantic representation of the involved entities.

Then, also thanks to context-aware computing and IoT, the

number of applications exploiting Semantic Web technologies

is costantly increasing, as demonstrated by LOV (Linked Open

Vocabulary) [12], an innovative observatory of the semantic

vocabularies ecosystem. Vandenbussche et al. in [13] describe

the impressive growth of the repository: less than 100 on-

tologies in March 2011, more than 500 as of June 2015 (as

of September 2018, the number is growth up to 650). Given

the high spread of semantic applications, it is essential for

both developers and users to have efficient tools to visualize

ontologies as well as to explore semantic KBs.

Before going further, it is important to clarify two of the

key concepts that we will rely on in the rest of the paper

and that we already mentioned: ontology and knowledge

base. Among the multiple definitions of ontology available

in literature, we rely on the one provided by Noy et al. in

[14]: an ontology is a formal explicit description of concepts
in a domain of discourse (classes), properties of each concept
describing various features and attributes of the concept and
restrictions. Since an OWL/RDFS ontology is represented as
a set of RDF triples, we refer to these triples as terminological

statements (or T-Boxes). All the triples defining and specifying

class instances are instead known in literature as assertional

statements (or A-Boxes). A-Boxes and T-Boxes form the

knowledge base.

In the rest of the paper we will consider the visualization

of data from two (possibly overlapping) points of view:

visualization of ontologies and visualization of RDF triples

represented according to a given ontology. While the first

is aimed at grasping the relevant concepts of an application

domain, the second is mostly aimed at a practical inspection of

data (e.g., for debug purposes). In both cases it is important to

be able to dominate the complexity of a very high amount of

data by means of proper visualization strategies and effective

filtering mechanisms.

In this paper, we survey the available software aimed at

providing a graphical visualization of semantic knowledge

bases containing either terminological or assertional data.

We focus only on the tools adopting the graph metaphor to

represent data (other possible graphical representation methods

are briefly presented in Section III).

The rest of the paper is organized as follows: in Section II,

an overview of the existing surveys on the visualization of

semantic knowledge bases is proposed. Section III introduces

the background for this work and motivates the need for a

new survey in this research area. Section IV presents the

main tools for the visualization of Semantic Web datasets. For

tools still actively developed and/or widely used, this paper

also proposes examples based on information retrieved from

DBpedia. In Section V, all the features of the analyzed tools

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

are summarized. Eventually, in Section VI, conclusion are

drawn.

II. RELATED WORK

The graphical representation of information is a topic that

has been addressed in various ways by research, since it is a

matter of algorithms and user interface theory simultaneously,

and, as pointed out in [15], nowadays also of Big Data.

Literature is rich in surveys and explorations of visualization

methods for information represented according to Semantic

Web technologies. The Semantic Web, in particular, relies

on the graph theories for what concerns the viewing of

knowledge, which is a topic well covered by surveys like [16].

However, the actual investigation of the Semantic content,

most of the time, is centered on the usage and integration

of ontologies in applications, like in [17] and [18]. Semantic

content visualization, on top of them, is a particular research

topic that tries to overcome the difficulties that arise at devel-

opment time when direct usage and integration is required.

In their survey [19], Katifori et al. point out the need

for studies in the visualization field a t t he v arious l evels of

usage of semantics: design, organization and navigation into

resources. Similarly is done by Mutton et al. in [20], where the

complexity of graph drawing is examined keeping in mind that

there is implicit information hidden in a graph topology that

cannot be easily observed from a plain textual representation.

Another work, in this sense, is [21] by Wiens et al., in which

the ontology view is split into three levels of understanding:

global, filtered and more specific bu t fu lly detailed.

The main discussion of those works, however, is the on-

tology: a complete outline of methods is given, but the full

content of the RDF knowledge base is out of the scope.

In [22], Bikakis et al. propose a description of the major

requirements and challenges that should be addressed by

modern exploration and visualization systems for Linked Data

and propose a list of the state of the art approaches. Differ-

ently from the present work, they propose a comparison of

tools offering different visualization types (i.e., bubble charts,

charts, circles, graphs, maps, pies, parallel coordinates, scatter

plots, streamgraphs, treemaps, timelines, trees) and the focus is

mainly on Big Data applications. Akrivi et al. in [23] propose

a comparison of four visualization methods (i.e., Ontoviz,

Jambalaya, TGVizTab and Class Browser) characterized by

different approaches. In [24], an interesting study is performed

with the aim to explore pros and cons of the available tools

on a real use case.

Along with tools, plain text formats for the Semantic Web

are also subject to evolution over time. Recently, for instance,

JSON-LD (standing for JSON for Linked Data) was introduced
in the Semantic environment [25] as a new format graph-

equivalent to represent part of a resource graph. The official

JSON-LD W3C website [26], among all the material, offers

also the opportunity to compare a few different visualizations

obtained from any JSON-LD formatted file.

The Linked Data (LD) concept, described in [27], is a

more recent research direction on Semantic Web applied to

web resources. LD are constantly growing in size and new

data repositories, that come also from governmental sources,

which demonstrates their increasing importance. The final goal

is to have LD both machine and human understandable, and

therefore, they are an important test bench for any RDF graph

visual exploration technique. Peña et al. in their work [28]

intent the description of the available methods to deal with

LD access and, in particular, the visualization.

III. BACKGROUND AND MOTIVATION

Accessing and understanding the content of a database is

hardly ever a negligible task for programmers. When data

is stored in a relational database, the views are obtained by

transforming into a table the output of a query written in one of

the various flavors of the SQL language. Smart-written queries

on equally smart-built databases can efficiently perform a lot of

calculations over data, as well as outline special and complex

relationships even between apparently distant entries. There-

fore the know-your-data principle, typical of Data Mining and
Big Data theory, is in fact a more general and solid base

from which to start any data-related implementation, though

implying sometimes great study effort from the developer in

the initial phase of software creation [29]. It is, as a matter

of fact, common knowledge that frequently programmers have

to spend more time in organizing and reformatting their data

more than in the actual programming logic.

As of September 2018, this Survey aims to show to the

readers the tools currently available to exploit in an effective

and possibly easy way the Semantic Web. Therefore, the focus

of the paper is the observation of their overall usability and

capabilities in the complex task of analyzing and understand-

ing the content of a knowledge base. For this reason, both the

ontological statements (T-Boxes) and the instances (A-Boxes)

have to be included in the discussion, which is a missing point

in the previous similar works, as we outlined in the Related

Works Section.

A. Representing data in the Semantic Web

The appearance of the Semantic Web in the panorama of

information technology gave ways more than a simple new

tool to explore the Web, but a new interpretation of the

resources available on the Internet. Through the SPARQL lan-

guage and the Resource Description Framework, the Internet

network is considered as a whole a special database whose

resources are interconnected in a labeled directed graph. The

main idea of the Semantic Web, therefore, is to exploit the

concepts of Uniform Resource Identifier, e xplained i n [1], to
bind resources through triple-based statements (i.e., the already

mentioned subject-predicate-object triple). Any connection is

in that fashion not a simple reference as hypertext linking

is, but contains in addition the information given by the

inner content of the resources. Then, according to W3C

recommendations [30], the Semantic Web in the end takes the

form of a graph, where both the contents and the statements

contribute to the overall meaning. Table I shows what kind of

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 28 --

TABLE I SEMANTIC TRIPLE COMPOSITION WITH AN EXAMPLE

Subject Predicate Object Example

URI URI URI ns:Francesco foaf:knows ns:Fabio
literal ns:Francesco foaf:firstName "Francesco"
blank node ns:Francesco foaf:knows _:X

blank node URI URI _:X foaf:knows ns:Francesco
literal _:X foaf:firstName "Francesco"
blank node _:X foaf:knows _:Y

TABLE II LISTING 2 SPARQL OUTPUT TABLE

?p ?count

<http://purl.org/dc/terms/subject> 13
rdfs:seeAlso 101
<http://purl.org/linguistics/gold/hypernym> 2
DBpedia2:precededBy 42
DBpedia2:author 93
DBpedia2:publisher 21
DBpedia2:books 101
foaf:isPrimaryTopicOf 1

item can be subject, object or predicate in a semantic graph,

with a reader-friendly example based on foaf ontology [31].

A few considerations are needed, however, when we start

discussing about the possibility to store information in a

semantic graph. In fact, a few critical points are present, and

have to be highlighted. First of all, as it is depicted in [32],

without regulations, the semantic graph is doomed to chaos,

i.e. to an unpredictable information taxonomy. The solution

to this issue is the ontological description of knowledge, that

consists in the formal definition of all the classes, relationships

and statements that can be present in the graph. Once the

programmers agree on the ontology, there is no uncertainty on

how the data is organized. All the information needed to query

the graph is stored in an OWL file, standing for Web Ontology

Language. OWL is, according to W3C, a “semantic markup

language for publishing and sharing ontologies”, and has been

widely used to define a ll s ort o f o ntologies a nd vocabularies

(which are smaller ontologies): an interesting repository, in

this field o f s tudy, i s t he L inked O pen Vocabularies website

which has been already presented in the Introduction.

A second critical point is connected to the dimension of

the graph, which can be considerable not only when we are

discussing about web-located knowledge bases like DBpedia,

or the Internet itself, but also in smaller applications exploiting

RDF and SPARQL. To make an example, let us perform the

query of Listing 1 to DBpedia.

As of September 2018 the output of the query, which is

a simple request to count all the classes that “The Lord of

the Rings” resource belongs to, is equal to 25. Clearly, far

from a naive and optimistic expectation of a few outputs

similar to :Book, :Novel and so on. Listing the actual

values consequently results in a 25-rows table that outlines

the evidence of the hidden complexity in the results analysis,

PREFIX rdf: <http://www.w3.org/1999/02/..>
PREFIX dbp: <http://dbpedia.org/resource/>
SELECT (count(?o) as ?count)
WHERE {
dbp:The_Lord_of_the_Rings rdf:type ?o

}

Listing 1. SPARQL query to all classes parent of the resource
dpb:The_Lord_of_the_Rings

even in simple situations. The complexity grows considerably

if we proceed querying on the following level (Listing 2).

PREFIX rdf: <http://www.w3.org/1999/02/..>
PREFIX dbp: <http://dbpedia.org/resource/>
SELECT ?p (count(?t) as ?count)
WHERE {
dbp:The_Lord_of_the_Rings ?p ?o.
?o rdf:type ?t
FILTER (?p != rdf:type)

}

Listing 2. SPARQL query to every link (except rdf:type) with
dpb:The_Lord_of_the_Rings as origin, and the destination’s class

The query available in Listing 2 with the variable ?count
outputs the number of links of type ?p outgoing from the

resource dbp:The_Lord_of_the_Rings, except from
rdf:type links, that can be viewed by performing the query
in Listing 1.

The direct outcome after running the queries in the Listings

1 and 2 is given by the possibility to observe the available

variability of results and to look for their meanings. The output

of those simple SPARQL queries highlights, for instance, that

the “Lord of the Rings” resource is individual of at least 25

classes which we expect to have a specific meaning and a

description of their own. Going further with the latter query,

moreover, the number of elements connected to the resource

is even more increasing, both as connectivity spread, and

in diversity of ontological classes involved. In general the

description of all those resources can be as pragmatic as

an algorithm, or philosophical, or mathematical. However, it

is clear that without the Semantic Web it would be hardly

achievable to obtain such a multi-layered description of a

resource, apart from using natural language. In fact, when

it comes to exploit the tools of Semantic Web, a frequent

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 29 --

feeling is that it is not possible to reuse previously available

data, because it would imply to understand completely all

the resources, all the classes, and all the ontologies that are

standing behind. According to [33], expressiveness, in this

situation, is a bottleneck for Semantic Web.

This is where visualization tools for the semantic graph

come to help: they provide a step by step approach to the

knowledge base that, together with filtering techniques, and

the possibility to see the contents, are useful to go through

the relevant concepts.

B. Possible visualizations
As we said in the previous Subsection, the most frequent

way to produce a view of a database is the tabular repre-

sentation. This is a possible solution also for queries made

in SPARQL language to RDF triple stores like Blazegraph,

Fuseki and Virtuoso. The view of a SPARQL SELECT is a

direct consequence of the number of variables concerned by

the inquire: i.e., the number of variables in the SELECT clause
is the same as the number of columns contained in the results.

To be more precise, to obtain the column number either (i) it

is necessary to count the variables queued after the SELECT
keyword, like in listings 1 and 2; or (ii), variables have to

be obtained from the WHERE clause, as in the SELECT *
WHERE {...} case.
The drawbacks with table views are, unfortunately, already

quite visible when the number of rows reaches as little as few

dozen entries. Aside from the fact that there is not a group

view of the overall query result, the table often is required

to contain more than one row for the same conceptual entity.

This happens for instance when a resource is connected to

another via more than one predicate, or when it is connected

to different objects, through the same predicate.

In such situations, the result table can contain not only

plenty of lines with the same meaning disturbing the overall

understanding of the query output, but also, as already said, a

high number of columns. Moreover, some entries in the table

can also be empty, as an effect of OPTIONAL statements

in the query. Detecting particular cases, in sparse and large

tables, becomes a time-consuming and error-prone task in

those situations. On the other hand, a few workarounds are

available in SPARQL language to crunch into a single line

the occurrence of multiple table lines for a single concept, but

they usually imply slowing down the performances, and have

the effect to concatenate the values into strings. That is, we

lose the possibility to check if they are represented as IRIs,

literals, or blank nodes.

The multi-table approach is a graph visualization technique

that tries to address the problem of having limited control

over the complete data table. Let’s consider a query selecting

all triples in the RDF store: SELECT * WHERE {?a ?b
?c}, and let’s suppose that in the store only 5 distinct

resources might correspond to the ?b variable. With this

background a full-table approach would return an n = 3
column table, where n is the number of variables. Instead

a multi-table approach would outcome with 5 smaller tables,

one for each one of the ?b resources, each of them built up of

n−1 = 2 columns. An interesting work about the complexity
of translation from SPARQL to other languages, included table

view, was provided by Chebotko et al. in [34]: among all the

contributions, this paper perfectly shows the complexity of a

multi-table approach.

Finally, last but not least, the RDF knowledge base represen-

tation can be performed through a labeled graph visualization.

Although the RDF concept is defined for directed graphs,

in most of the cases the label is sufficient to get at view

time the direction of the connection. This allows the usage of

algorithms for undirected graphs. Nevertheless, the drawbacks

of this approach are also related to the knowledge base

dimension, as the understanding of contents is tightly bound

to the possibility of identify paths and node types easily and

effectively. In the next Subsection a few techniques for graph

drawing available in literature are presented.

C. Graph drawing algorithms

There is a complex relationship between the domain of

the semantic application, the tool that is being used, and

the algorithm that is implemented to visualize the graph. To

make an example, let’s consider a knowledge base in which

information about some people is stored. If the application

working on the knowledge base is not interested in literal

terms, the sight of the graph would be effectively simplified

and clearified by just removing all the links towards literal

terms, e.g. names, surnames and birth dates.

In other RDF triple stores more than one unique ontology

may have been used to define resources, exploiting for instance

simultaneously the foaf ontology and the Dublin-Core on-

tology (DC) [35]. If an application is interested only in the

foaf-related connections, and in a small part of the DC’s,
there would be no use in trying to represent everything.

A full description of all the algorithms available for graph

drawing is out of the scope of this paper. In this Section,

nevertheless, a brief overview of a few works available in

literature is given, before proceeding in Section IV to the

analysis of the tools.

A complete theoretical overview of the main algorithm logic

available to draw graphs is given by Kobourov in [36]. Spring

algorithms and their variations for instance are explained: they

usually aim to reproduce an aesthetically pleasant view, even

if their best performance is obtained in most of the cases when

the graph has less than 40 vertices. However, as it has been

said, the semantic graph is definitely a l arge g raph, o r very

large, and for this reason it demands particular approaches

that imply multiple scale algorithms. Nodes organization is

not necessarily done on a plane: possible alternatives are to

dispose them on a sphere or other geometrical objects. In [37]

more than one plane is used, which can be a technique also

to represent the evolution of data over time. How to show in

an effective way dynamic evolution of contents in a graph is

also the topic of survey [38] by Beck et al.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 30 --

IV. GRAPH VISUALIZATION TOOLS

This Section proposes a detailed analysis of the main tools

for the visualization of RDF knowledge bases and ontologies.

We focus on the tools providing a graph visualization of RDF

statements. The tools presented in this Section are reported in

alphabetical order.

A. CytoScape

Cytoscape [39] is a tool for network data integration, anal-

ysis and visualization. Support to Semantic Web technologies

is provided by a set of extensions hosted on CytoScape’s

App Store, such as General SPARQL, SemScape and Vital

AI Graph Visualization. General SPARQL allows to navigate

semantic web KBs through an extensible set of pre-defined

queries. The plugin is pre-configured to retrieve and visualize

data from public endpoints (e.g., Reactome, Uniprot, HGNC,

NCBI Taxonomy, Chembl). SemScape supports the interac-

tion with remote SPARQL endpoints by means of SPARQL

queries. In this way, CytoScape can be employed to visualize

the results of a query. Vital AI Graph Visualization is not

limited to semantic databases, but provides access also to SQL

and NoSQL databases as well as Apache Hadoop instances.

To the best of authors’ knowledge, this tool only allows the

visualization of data compatible with the BioPAX format.

B. Fenfire

Fenfire [40] was a tool for the visualization and editing

of RDF graphs aimed at an interactive exploration of the

graph. Authors face the problem of scalability by limiting

the exploration of the graph to one thing at a time. The

visualization in facts, diplays only one central node and

its surroundings. The central node, at the beginning of the

exploration is selected exploiting the foaf:primaryTopic
property (if present), otherwise is selected by the user. The

nodes surrounding the central one (named focus) are placed
on the plane according to a simple strategy: on the left, all the

nodes being subjects of the statements linking to the focus. On

the right, those being objects of the statements. Development

of Fenfire stopped in 2008.

C. Gephi

Gephi [41] is a very powerful tool designed to represent

not only semantic graphs, but every kind of graph or network.

Support to RDF graphs is provided by two external plugins,

VirtuosoImporter and SemanticWebImport (this one developed

by INRIA). Gephi is able to retrieve data from SPARQL

endpoints (through REST calls) as well as to load RDF files.

Gephi supports filtering the KB through SPARQL queries. The

look of the graph visualized by Gephi is fully customizable,

in terms of colors and layouts; moreover the tool supports

grouping similar nodes and this helps achieving better results

when dealing with very complex graphs. As regard exporting

the graph, Gephi is the tool that supports the highest number

of file formats for exporting the graph. Among these, it is

worth mentioning csv, pdf and svg.

In Figure 1 we can see a view of the graph that Gephi is able
to retrieve from DBpedia by using the SPARQL CONSTRUCT
available in Listing 3. The tool performs the representation
very quickly, and implements various possible algorithms to
build the graph. Unfortunately, as it can be seen, it is quite
difficult t o g et t he overall i dea o f t he c omposition. Although
there is the possibility to add the labels of nodes and edges,
the output is not reader-friendly, and the research in it is a
rather impossible task. A practical example can be observed
also in Fig. 2, where we highlighted the nodes related to the
novel “The Black Cauldron” by L. Alexander. Eventually, a
number of statistical functions can be applied to the network,
like the Network Diameter, the Density and the Average Path
Lenght: the only problem is that they have, as for the Authors’
knowledge, very limited use when applied to a Semantic
Graph.

Fig. 1. Gephi [41] is capable to query DBpedia and show the result graph. The
Figure is the output of CONSTRUCT in Listing 3 (see Appendix). According
to Gephi’s logger, the triples represented in this graph are 6529

Fig. 2. With Gephi [41] some nodes can be highlighted, to help the user
to go through the knowledge base. When the number of edges and nodes is
high, however, it’s not easy to outline the information. The nodes in red are
related to L. Alexander’s novel “The Black Cauldron”

D. GLOW

Glow [42] is a visualization plugin for the ontology editor

Protégé. Force-directed, Node-link tree and Inverted radial tree

are the three layout algorithms provided by GLOW. The items

are arranged automatically with every layout, and cannot be

moved. The tool is able to represent a set of ontologies and

optionally their individuals. To the best of authors’ knowledge,

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 31 --

this tool is not developed anymore. No information about the

license could be found.

E. IsaViz
IsaViz [43] is a 2.5D tool for the visualization of RDF

graphs originally developed by E. Pietriga (INRIA) in collabo-

ration with Xerox Research Centre Europe. IsaViz, as the name

suggests, is based on GraphViz [44] and allows importing and

exporting from/to RDF/XML, Notation 3 and N-Triple files.

The result of the visualization can be also exported as a png or
svg file. In the Graph view it is possible to select resources

and access a textual list of properties (this view is named

Property Browser). A third view is named Radar and presents
an overview of the graph, since the graph view may contain

only a portion of it. Finally, it is worth mentioning the search

tool provided by IsaViz, whose results are highlighted one by

one in the graph view. Unfortunately, the last development

version of this tool dates back to 2007.

F. Jambalaya
Jambalaya [45] is a Protégé plugin for the visualization

of ontologies. Jambalaya is characterized by the integration

of the SHriMP (Simple Hierarchical Multi-Perspective) [46]

visualization technique, designed to improve the user experi-

ence in browsing, exploring, modelling and interacting with

complex information spaces. This technique, originally born

to help programmers understanding software, was applied

to Protégé to build a powerful visualization of classes and

relationships. The tool proposes a nested graph view and the

nested interchangeable views. Nesting is used to represent

the sub-class relationships among classes as well as the link

between classes and their instances (different colors allow to

distinguish between classes and instances). Jambalaya also

provide an easy way to search for items in the ontology.
Despite being an interesting tool developed with support

from the National Center for Biomedical Ontology (NCBO),

Jambalaya is not developed anymore.

G. LOD Live
LOD Live [47] is a web-based tool for the incremental nav-

igation of Linked Data available on a selected SPARQL End-

point (e.g., DBpedia). Endpoints can be configured through

a JSON map of their parameters, similarly to what happens

in Tarsier [37]. The purpose of this tool is to demonstrate

that the powerful Semantic Web standards are also easy to

understand; the aim is to foster the spread of Big Data.

Every resource drawn by LOD Live is surrounded by a set

of symbols representing different kinds of relationship (e.g.,

direct relations, group of direct relations, inverse relations and

group of inverse relations). The incremental navigation, joined

to the ability of the tool to group properties allows to draw a

very clean graph. No support for statistics or advanced filtering

(e.g., based on SPARQL) is provided. To the best of our

knowledge, directly exporting the graph is not possible. In

Figure 3 it is shown how LOD Live performs a similar task

as the one in Figure 2: exploring data is easier, but there is

no way to perform requests like the one in Listing 3.

Fig. 3. To use LOD Live [47] a resource must be fixed. Then, the knowledge
related to the resource can be expanded as shown. Like in Figure 2, the
example here is based also on L. Alexander’s novel “The Black Cauldron”

H. Ontograf

Ontograf [48] is one of the visualization tools provided by

the famous ontology editor Protégé. The tool allows to build

a custom visualization of the ontologies loaded in Protégé by

iteratively enabling or disabling the desired classes. Ontograf

proposes a grid layout (with classes sorted in alphabetical

order), a spring layout and a (vertical or horizontal) tree layout.

Individuals of a class can be visualized in its tooltip, but this is

uncomfortable when dealing with a high number of assertional

statements. Ontograf allows to export the visualized graph as

a png, jpeg, gif or dot file. This tool exploits the layout library

provided by Jambalaya.

Fig. 4 shows a graph created with OntoGraf using the

DBpedia ontology. Classes work and written work were
initially selected. Then, a double click on the latter allowed

to expand it and visualize all the subclasses (solid blue line),

and all the classes linked to it by means of an object property

(dashed lines).

The last version of Ontograf dates back to April 2010, but is

still included in the last stable version of Protégé (the 5.2.0, as

of September 2018). The tool is useful to select and visualize

(a small number of) classes from the ontologies loaded in

Protégé and the existing relationships.

I. OntoSphere

OntoSphere [49] is one of the two tools (the other is Tar-

sier [37]) that proposes a three-dimensional visualization of the

graph. The rational behind OntoSphere is that exploiting a 3D

space it is possible to better arrange items. Moreover, the 3D

visualization is quite natural for humans and the exploration

can then be more intuitive. Colors allow to easily convey

information about the different nature of represented items.

OntoSphere is aimed at representing both terminological and

assertional statements. Four scene types are proposed to fulfill

different requirements. The RootFocus scene shows all the
concepts and their relationships on a sphere. The TreeFocus
scene draws the tree originating from a concept, while the

ConceptFocus scene proposes a view containing all the

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 32 --

Fig. 4. A portion of the DBpedia ontology visualized in Ontograf [48]

items linked to a concept. The tool is aimed at domain experts

dealing with the development and review of ontologies, as well

as novice users that wants to understand the represented data

and the links among concepts. OntoSphere is a standalone

applications, but can also be run inside Protégé and Eclipse.

The last version on the source code repository is dated 2008,

so the development stopped ten years ago.

J. OWLViz

OWLViz [50] is a plugin for Protégé that enables the

incremental visualization of the classes in the class hierarchy.

As the name suggests, this tool, like IsaViz, is based on

the famous library GraphViz developed by the AT&T and

allows exporting the visualized graph as png, jpeg and

svg. Through OWLViz is easy to visualize classes and is-a
relationships. OWLViz is not developed anymore, but is still

included in the last version of Protégé (September 2018).

K. Paged Graph Visualization

Paged Graph Visualization (PGV) [51] is a Java software

for the visualization of RDF graphs. It is based on [52], a

high performance RDF storage. With PGV, the exploration

starts from a point of interest and then incrementally includes

more data. Such point of interest can be selected interactively

from a list or using a complex SPARQL query. Then, it is

drawn in the center of the graph using the color green, and its

direct neighbors are shown as blue rectangles placed around

it. Literals on the other hand, are represented with the white

color. The user is able to explore nodes by double-clicking on

them: explored nodes are then displayed in green, while edges

connecting explored nodes are depicted in red.

Deligiannidis et al. [51] declare that the tool’s strength relies

in helping the user willing to explore data without knowing

the exact information and graph patterns he is looking for,

while in other situation a standard visualizer could be more

appropriate.

To the best of authors’ knowledge, this tool is not developed

anymore.

L. RelFinder

RelFinder [53] is a web tool developed using Adobe Flex

and can be tried using the web instance linked in the homepage

of the project (configured to access DBpedia). RelFinder

differs from the other tools proposed in this survey, since it is

aimed at visualizing all the paths connecting two resources. So,

its purpose is to answer a very specific question, rather than

providing a tool for the free exploration of the knowledge base.

The tool supports filtering to increase or reduce the number

of relationships shown simultaneously. It also implements a

smart drawing algorithm to reduce overlapping and the user

is allowed to move and pin items. To the best of authors’

knowledge, this tool is not actively developed but the online

instance is still available for tests on the DBpedia endpoint.

Fig. 5 reports an example of this application where all the

paths between two DBpedia resources, i.e, “JRR Tolkien” and

“The Lord of the Rings”, are shown. Fig. 6 shows the filtering

panel proposed by RelFinder to show/hide elements in the

visualization. Paths can be filtered by length, class of the RDF

terms, property and connectivity level.

M. Tarsier

Tarsier [37], is a tool developed by the authors of the

present paper. It is a software for the interactive exploration

of an RDF graph in a three-dimensional space, aimed at the

visualization of small and medium-sized knowledge bases.

The main contribution of the tool is the introduction of the

metaphor of semantic planes that group RDF terms sharing

a common concept. The purpose of the tool is threefold: 1)

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 33 --

Fig. 5. RelFinder [53] showing all the paths from “JRR Tolkien” to “The
Lord of the Rings”

Fig. 6. RelFinder [53] filtering panel

Tarsier can be used as a support for didactic (e.g., to help

newcomers to deal with Semantic Web technologies); 2) It is

useful to figure out the nature of a new KB for developers (i.e.,

activity known as “sensemaking” [54]) ; 3) It allows debugging

of semantic knowledge bases.

Tarsier retrieves data from SPARQL endpoints. The initial

knowledge base can be determined through a SPARQL Con-

truct query: this pre-filtering stage allows to efficiently interact

also with very large knowledge bases (e.g., DBpedia [55],

that contains more than 6.6M entities). Tarsier proposes a

classification of all the RDF terms among classes, resources,

blank nodes, literals, object and datatype properties. This

grouping is exploited by Tarsier’s web interface to provide

a set of controls for advanced filtering: through them, the user

is allowed to toggle visibility of items or to move them across

semantic planes.

An example of Tarsier is shown in Figg. 7 and 8. Tarsier

was set up to retrieve data from DBpedia, and in particular to

extract all the fantasy books published between 1900 and 2018

and their authors. While Fig. 7 shows the unfiltered knowledge

base, in Fig. 8 is shown one of the peculiarities of Tarsier: the

semantic planes. Two semantic planes were created over the

main knowledge base to extract respectively books and one

of the authors, i.e., Marion Zimmer Bradley. In this way, it is

easy to notice how this instance of the class foaf:Person
is linked with the rest of the graph.

Fig. 7. Tarsier [37] showing the graph of all the fantasy books published from
1900 to 2018 and their authors. This subgraph is retrieved from DBpedia

Summarizing, Tarsier is a tool for the three-dimensional

multi-planar visualization of small/medium-sized knowledge

bases with advanced filtering mechanism based on the multiple

selection of RDF terms or SPARQL queries.

N. TGVizTab

This is yet another visualization plugin for the ontology

editor Protégé. TGVizTab [56] designed to be lightweight and

support both T-Boxes and A-Boxes visualization. TGVizTab

relies on TouchGraph, an open source Java environment aimed

at creating and navigating network graphs in an interactive

way. The tool supports exporting the graph in an XML file,

to be loaded in other TouchGraph applications. The graph is

drawn using the spring layout: similar nodes are drawn close

to each other. TGVizTab, like other tools (e.g., Fenfire), asks

the user to select a focal node among classes and instances to

generate the graph. Then, the user is able to further modify the

graph by right-clicking on the represented nodes: in this way

the so-called Node Menu is shown, containing four options

(i.e., expand, collapse, hide, view). Then TGVizTab allows to

incrementally build the desired visualization

O. VOWL

VOWL (Visual OWL) [57] is available as a web-based tool

(WebVOWL [58]), a plugin for Protégé (ProtégéVOWL [59]),

a tool able to directly interact with Linked Data endpoints

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 34 --

Fig. 8. Tarsier [37] showing two semantic planes over the main knowledge
base: one showing books, the other (the topmost) showing the author Marion
Zimmer Bradley

(LD-VOWL [60]), and as a visual query language tool

(QueryVOWL [61]). In this paper, we will refer to the web

based version, WebVOWL. As the name suggests, software

in the VOWL toolkit are designed to graphically represent

ontologies. They propose a force-directed graph layout. The

basic representation rules adpoted by VOWL consists in:

• Classes are depicted using circles where the color de-

pends on the type: light blue for OWL classes, purple

for RDFS classes, dark blue for those imported by other

ontologies, gray for deprecated classes.

• OWL object and datatype properties are represented with

black solid lines with, respectively, light blue and green

labels, while RDFS properties have purple labels.

• Relationships subClassOf are depicted with a dashed
line.

The graph drawn by VOWL can be exported as an svg
image or as a json file. A click on a node or edge allows

visualizing the associated metadata and statistics. Statistics

also report the number of individuals of the selected class, but

unfortunately this is the only information about individual that

is possible to obtain using VOWL. As regards filtering, VOWL

provides a basic support to filters that allows to show/hide

object/datatype properties, solitary classes, class disjointness

and set operators.

VOWL is actively developed and an online instance is

available. As the tool is designed for ontologies, importing the

output of the CONSTRUCT in Listing 3 results in representing
only the two rdf:type relationships. The other tools are still

being developed and at the moment do not allow to perform

a customized request to DBpedia.

Fig. 9. Overview of the DBpedia ontology in WebVOWL2 [58]

Fig. 10. WebVOWL2 [58]: Close-up on two of the classes defined in the
DBpedia ontology

V. SUMMARY

Table III summarizes the main features of the analyzed

software. Columns of the table are:

• Software – reports the name of the software;
• T-Boxes – this column tells if the tool supports the

visualization of terminological statements;

• A-Boxes – this column shows if the tool supports the
visualization of assertional statements (and can then be

used to explore a knowledge base, rather than just on-

tologies);

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 35 --

• Statistics – a boolean field showing if the tool provides
or not statistics on the visualized data;

• Filtering – filtering allows to show/hide elements in the
visualization according to a set of user-defined criteria.

Filtering can be implemented in very different ways (e.g.,

SPARQL queries, or UI controls to select classes, just to

name a few). This column indicates whether the related

tool provides at least one filtering mechanism.

• Editing – This paper surveys visualization tools for

semantic data, but some of them also offer editing func-

tionalities. This column states whether or not the related

tool supports the manipulation of the ontology/knowledge

base;

• Standalone – Many of the surveyed tools were born as
plugins for the ontology editor Protégé. Other can be run

as standalone software. This column tells if the related

software is embedded in other tools or is a standalone

application.

• Plugin – Not all the presented tools were born to visualize
semantic knowledge bases. Then, some of them need

additional plugins to achieve this task.

• Domain – This column contains the specific domain (if
any) where the related application can be applied.

• Reference – This column reports the reference number
of the paper(s) describing the tool.

Table IV summarizes information about the entities that

started the development of the tool, the license and the current

status of the project.

VI. CONCLUSION

This paper presented an analysis on the current status of

the tools for the visualization of ontologies and knowledge

bases exploiting a graph representation. Results of this study

contrast with the wide spread of Semantic Web technologies:

in fact, among the 15 software surveyed by the authors, only

5 are still active. It is also worth noting that 6 of them are

available as visualization plugins for the popular ontology

editor Protégé. Advanced filtering through SPARQL queries

is provided, to the best of our knowledge, only by Gephi and

Tarsier. Future work will consist in the analysis of other tools

exploiting different representations with a detailed set of use

cases for their evaluation.

APPENDIX

In Listing 3 we report the SPARQL CONSTRUCT query

adopted in the practical examples shown in this Paper.

ACKNOWLEDGEMENTS

The work presented in this paper is being developed at the

Advanced Research Center on Electronic Systems Ercole De

Castro (ARCES), University of Bologna, 40125 Bologna, Italy.

REFERENCES

[1] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource
identifier (uri): Generic syntax. Technical report, 2004.

[2] Ora Lassila, Ralph R Swick, et al. Resource description framework (rdf)
model and syntax specification. 1998.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/...>
PREFIX rdfs: <http://www.w3.org/2000/...>
PREFIX rdf: <http://www.w3.org/1999/...>
PREFIX : <http://dbpedia.org/resource/>
PREFIX dbpo:<http://dbpedia.org/ontology/>
CONSTRUCT {
?book rdf:type dbpo:Book;
dbpo:literaryGenre :Fantasy_novel;
dbpo:author ?author;
dbpo:releaseDate ?date;
rdfs:comment ?comment;
rdfs:label ?label;
dbpo:numberOfPages ?num;
foaf:isPrimaryTopicOf ?topic.

?author rdf:type foaf:Person }
WHERE {
?book rdf:type dbpo:Book;
dbpo:literaryGenre :Fantasy_novel;
dbpo:author ?author.

?author rdf:type foaf:Person.
?book rdfs:comment ?comment;
rdfs:label ?label;
dbpo:numberOfPages ?num;
foaf:isPrimaryTopicOf ?topic.

FILTER langMatches(lang(?label), "EN")
FILTER langMatches(lang(?comment), "EN")
FILTER (isIRI(?author))
FILTER (xsd:integer(?num) > 200)
OPTIONAL {
?book dbpo:releaseDate ?date .
FILTER (?date > 1900)
FILTER (?date < 2018)
FILTER (isLiteral(?date))
FILTER (datatype(?date) = xsd:integer)

}
}

Listing 3. SPARQL CONSTRUCT that identifies in DBpedia the Fantasy-genre
books written between 1900 and 2018 having more than 200 pages

[3] Dan Brickley, Ramanathan V Guha, and Brian McBride. Rdf schema
1.1. W3C recommendation, 25:2004–2014, 2014.

[4] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004.

[5] Eric Prud, Andy Seaborne, et al. Sparql query language for rdf. 2006.
[6] Paul Gearon, Alexandre Passant, and Axel Polleres. Sparql 1.1 update.

W3C recommendation, 21, 2013.
[7] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark

Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In International symposium on handheld and
ubiquitous computing, pages 304–307. Springer, 1999.

[8] Kevin Ashton et al. That internet of things thing. RFID journal,
22(7):97–114, 2009.

[9] Alessandro Bassi and Geir Horn. Internet of things in 2020: A roadmap
for the future. European Commission: Information Society and Media,
22:97–114, 2008.

[10] Nitin Naik. Choice of effective messaging protocols for iot systems:
Mqtt, coap, amqp and http. In Systems Engineering Symposium (ISSE),
2017 IEEE International, pages 1–7. IEEE, 2017.

[11] P. Desai, A. Sheth, and P. Anantharam. Semantic gateway as a service

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 36 --

TABLE III SUMMARY OF THE FEATURES OF THE TOOLS FOR THE VISUALIZATION OF SEMANTIC KNOWLEDGE BASES.

LEGEND:� = YES,� = NO, � = PARTIAL,� = MULTIPLE OPTIONS AVAILABLE, ? = UNKNOWN,− = N OT APPLICABLE

Software T-Boxes A-Boxes Statistics Filtering Editing Standalone Plugin Domain Reference

CytoScape � � � � � � General SPARQL,
SemScape,
Vital AI

Biology [39]

Fenfire � � � � � � − General [40]
Gephi � � � � � � SemanticWebImport,

VirtuosoImporter
General [41]

Glow � � � � � � − General [42]
IsaViz � � � � � � − General [43]
Jambalaya � � � � � � − General [45]
LOD Live � � � � � � − General [47]
Ontograf � � � � � � − General [48]
OntoSphere � � � � � � − General [49]
OWLViz � � � � � � − General [50]
PGV � � � � � � − General [51]
RelFinder � � � � � � − General [53]
Tarsier � � � � � � − General [37]
TGVizTab � � � � � � − General [56]
VOWL � � � � � � − General [57]–[59]

TABLE IV INFORMATION ABOUT DEVELOPERS, DEVELOPMENT

AND LICENSES. LEGEND:� = YES,� = NO, ? = UNKNOWN

Software Developed by License Active Reference

CytoScape CytoScape Consortium GPL � [39]
Fenfire University of Jywäskylä and Digital Enterprise Research Institute of the National

University of Galway
GPL � [40]

Gephi Gephi Consortium GPL � [41]
Glow Erasmus University Rotterdam ? � [42]
IsaViz INRIA in collaboration with Xerox Research Centre Europe GPL � [43]
Jambalaya Chisel Lab (University of Victoria) Individual � [45]
LOD Live lodlive.it MIT � [47]
Ontograf Stanford Center for Biomedical Informatics Research LGPL � [48]
OntoSphere Politecnico di Torino LGPL � [49]
OWLViz University of Manchester LGPL � [50]
PGV LSDIS Lab and Computer Science (University of Georgia), Kno.e.sis Center (Wright

State University)
? � [51]

RelFinder Visualization and Interactive Systems (University of Stuttgart), Agile Knowledge Engi-
neering and Semantic Web (University of Leipzig), Interactive Systems and Interaction
Design (University of Duisburg-Essen)

GPL � [53]

Tarsier Advanced Research Center on Electronic Systems (University of Bologna) GPL � [37]
TGVizTab IAM Group (University of Southampton) GPL � [56]
VOWL Visualization and Interactive Systems (University of Stuttgart), Alexandru Ioan Cuza

University
MIT � [57]–[59]

architecture for iot interoperability. In IEEE International Conference
on Mobile Services, pages 313–319. IEEE, 2015.

[12] Linked open vocabularies (lov).
[13] Pierre-Yves Vandenbussche, Ghislain A Atemezing, Marı́a Poveda-

Villalón, and Bernard Vatant. Linked open vocabularies (lov): a gateway
to reusable semantic vocabularies on the web. Semantic Web, 8(3):437–
452, 2017.

[14] Natalya F Noy, Deborah L McGuinness, et al. Ontology development
101: A guide to creating your first ontology, 2001.

[15] Shixia Liu, Weiwei Cui, Yingcai Wu, and Mengchen Liu. A survey on
information visualization: recent advances and challenges. The Visual
Computer, 30(12):1373–1393, 2014.

[16] Ivan Herman, Guy Melançon, and M Scott Marshall. Graph visualization
and navigation in information visualization: A survey. IEEE Transac-
tions on visualization and computer graphics, 6(1):24–43, 2000.

[17] Jinghai Rao and Xiaomeng Su. A survey of automated web service
composition methods. In International Workshop on Semantic Web
Services and Web Process Composition, pages 43–54. Springer, 2004.

[18] Natalya F Noy. Semantic integration: a survey of ontology-based

approaches. ACM Sigmod Record, 33(4):65–70, 2004.
[19] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassi-

lakis, and Eugenia Giannopoulou. Ontology visualization methodsa
survey. ACM Computing Surveys (CSUR), 39(4):10, 2007.

[20] Paul Mutton and Jennifer Golbeck. Visualization of semantic metadata
and ontologies. In Information Visualization, 2003. IV 2003. Proceed-
ings. Seventh International Conference on, pages 300–305. IEEE, 2003.

[21] Vitalis Wiens, Steffen Lohmann, and Sören Auer. Semantic zooming for
ontology graph visualizations. In Proceedings of the Knowledge Capture
Conference, page 4. ACM, 2017.

[22] Nikos Bikakis and Timos Sellis. Exploration and visualization in the
web of big linked data: A survey of the state of the art. arXiv preprint
arXiv:1601.08059, 2016.

[23] Katifori Akrivi, Torou Elena, Halatsis Constantin, Lepouras Georgios,
and Vassilakis Costas. A comparative study of four ontology vi-
sualization techniques in protege: Experiment setup and preliminary
results. In Information Visualization, 2006. IV 2006. Tenth International
Conference on, pages 417–423. IEEE, 2006.

[24] V Swaminathan and R Sivakumar. A comparative study of recent

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 37 --

ontology visualization tools with a case of diabetes data. International
Journal of Research in Computer Science, 2(3):31, 2012.

[25] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and
Niklas Lindström. Json-ld 1.0. W3C Recommendation, 16, 2014.

[26] Json-ld playground.
[27] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The

story so far. In Semantic services, interoperability and web applications:
emerging concepts, pages 205–227. IGI Global, 2011.

[28] Oscar Peña, Unai Aguilera, and Diego López-de Ipiña. Linked open
data visualization revisited: a survey. Semantic Web Journal, 2014.

[29] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts
and techniques. Elsevier, 2011.

[30] Rdf 1.1 concepts and abstract syntax.
[31] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.91,

2010.
[32] Natalya Noy. Order from chaos. Queue, 3(8):42–49, 2005.
[33] A. Maedche and S. Staab. Ontology learning for the semantic web.

IEEE Intelligent Systems, 16(2):72–79, March 2001.
[34] Artem Chebotko, Xubo Fei, Cui Lin, Shiyong Lu, and Farshad Fotouhi.

Storing and querying scientific workflow provenance metadata using
an rdbms. In e-Science and Grid Computing, IEEE International
Conference on, pages 611–618. IEEE, 2007.

[35] Stuart Weibel. The dublin core: a simple content description model for
electronic resources. Bulletin of the American Society for Information
Science and Technology, 24(1):9–11, 1997.

[36] Stephen G Kobourov. Spring embedders and force directed graph
drawing algorithms. arXiv preprint arXiv:1201.3011, 2012.

[37] Fabio Viola, Luca Roffia, Francesco Antoniazzi, D’Elia Alfredo, Cris-
tiano Aguzzi, and Tullio Salmon Cinotti. Interactive 3d exploration of
rdf graphs through semantic planes. Future Internet, 10(9):36, 2018.

[38] Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. A
taxonomy and survey of dynamic graph visualization. In Computer
Graphics Forum, volume 36, pages 133–159. Wiley Online Library,
2017.

[39] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T
Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey
Ideker. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome research, 13(11):2498–
2504, 2003.

[40] Tuukka Hastrup, Richard Cyganiak, and Uldis Bojars. Browsing linked
data with fenfire. 2008.

[41] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. Gephi: an
open source software for exploring and manipulating networks. Icwsm,
8(2009):361–362, 2009.

[42] Walter Hop, Sven de Ridder, Flavius Frasincar, and Frederik Hogen-
boom. Using hierarchical edge bundles to visualize complex ontologies
in glow. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, pages 304–311. ACM, 2012.

[43] Emmanuel Pietriga. Isaviz: A visual authoring tool for rdf.
World Wide Web Consortium.[Online]. Available: http://www. w3.
org/2001/11/IsaViz, 2003.

[44] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North,
and Gordon Woodhull. Graphvizopen source graph drawing tools. In
International Symposium on Graph Drawing, pages 483–484. Springer,
2001.

[51] Leonidas Deligiannidis, Krys J Kochut, and Amit P Sheth. Rdf data
exploration and visualization. In Proceedings of the ACM first workshop

[45] Margaret-Anne Storey, Natasha F Noy, Mark Musen, Casey Best, Ray
Fergerson, and Neil Ernst. Jambalaya: an interactive environment for
exploring ontologies. In Proceedings of the 7th international conference
on Intelligent user interfaces, pages 239–239. ACM, 2002.

[46] M-A Storey, Casey Best, and Jeff Michand. Shrimp views: An interactive
environment for exploring java programs. In Program Comprehension,
2001. IWPC 2001. Proceedings. 9th International Workshop on, pages
111–112. IEEE, 2001.

[47] Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio.
Lodlive, exploring the web of data. In Proceedings of the 8th Interna-
tional Conference on Semantic Systems, pages 197–200. ACM, 2012.

[48] Sean Falconer. Ontograf protege plugin.

[49] Alessio Bosca, Dario Bonino, and Paolo Pellegrino. Ontosphere: more
than a 3d ontology visualization tool. In Swap. Citeseer, 2005.

[50] Matthew Horridge. Owlviz. Available on:
http://protegewiki.stanford.edu/wiki/OWLViz, 2010.
on CyberInfrastructure: information management in eScience, pages 39–
46. ACM, 2007.

[52] Maciej Janik and Krys Kochut. Brahms: a workbench rdf store and
high performance memory system for semantic association discovery.
In International Semantic Web Conference, pages 431–445. Springer,
2005.

[53] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann,
and Timo Stegemann. Relfinder: Revealing relationships in rdf knowl-
edge bases. In International Conference on Semantic and Digital Media
Technologies, pages 182–187. Springer, 2009.

[54] Enrico Motta, Paul Mulholland, Silvio Peroni, Mathieu dAquin,
Jose Manuel Gomez-Perez, Victor Mendez, and Fouad Zablith. A novel
approach to visualizing and navigating ontologies. In International
Semantic Web Conference, pages 470–486. Springer, 2011.

[55] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195,
2015.

[56] Harith Alani. Tgviztab: an ontology visualisation extension for protégé.
2003.

[57] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. Visu-
alizing ontologies with vowl. Semantic Web, 7(4):399–419, 2016.

[58] Steffen Lohmann, Vincent Link, Eduard Marbach, and Stefan Negru.
WebVOWL: Web-based visualization of ontologies. In Proceedings of
EKAW 2014 Satellite Events, volume 8982 of LNAI, pages 154–158.
Springer, 2015.

[59] Steffen Lohmann, Stefan Negru, and David Bold. The ProtégéVOWL
plugin: Ontology visualization for everyone. In Proceedings of ESWC
2014 Satellite Events, volume 8798 of LNCS, pages 395–400. Springer,
2014.

[60] Marc Weise, Steffen Lohmann, and Florian Haag. Ld-vowl: Extracting
and visualizing schema information for linked data. In 2nd International
Workshop on Visualization and Interaction for Ontologies and Linked
Data, Kobe, Japón, pages 120–127, 2016.

[61] Florian Haag, Steffen Lohmann, Stephan Siek, and Thomas Ertl.
Queryvowl: A visual query notation for linked data. In International
Semantic Web Conference, pages 387–402. Springer, 2015.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 38 --

