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Abstract—Convolutional Neural Networks (CNN) is the 
promising tool for solving task of image recognition in computer 
vision systems. However, the most known implementation of 
CNNs require a significant amount of memory for storing 
weights in training and work. To reduce the resource costs of 
CNN implementation we propose the architecture that separated 
on hardware and software parts for performance optimization. 
Also we propose to use Residue Number System (RNS) arithmetic 
in the hardware part which implements the convolutional layer of 
CNN. Software simulation using Matlab 2017b shows that CNN 
with a minimum number of layers can be quickly and 
successfully trained. Hardware simulation using FPGA Kintex7 
xc7k70tfbg484-2 demonstrates that using RNS in convolutional 
layer of CNN allows to reduce hardware costs by 32% compared 
with the traditional approach based on the binary number 
system. 

I. INTRODUCTION

Convolutional Neural Networks (CNN) is the promising 
tool for solving task of image recognition. The idea of CNN is 
based on human vision system. The brain performs 
successively a number of recognition tasks, for example, 
recognizing a familiar face in an unfamiliar environment. 
CNN-based algorithms are widely used in embedded machine 
vision systems which includes the solution of handwriting 
recognition problems [1], face detection [2], locating [3] and 
object recognition [4]. Neural networks have a number of 
advantages that distinguish them among approaches to solving 
problems of artificial intelligence. The main of them are 
parallelization of information processing and self-learning 
ability, i.e. creating of generalizations [4]. The most known 
CNN realizations require a significant amount of memory for 
storing weights in training and work [1], [5], [6]. This makes 
the problem of searching for minimalistic realizations of CNN 
relevant. 

The idea of using artificial neural networks for visual 
information processing was proposed in [1] to solve a problem 
of automation of digit handwriting recognition. The 
architecture proposed in this article was called the 
Convolutional Neural Network (CNN) and its main feature 
was union convolution layers and multilayer perceptron. The 
evolution of this scientific idea and the development of 
computer technology have led to the fact that at present the 
theory of CNN and its practical application methods are 

developing along the path of an extensive increase in the 
number of layers of CNN. This leads to a high computational 
complexity of the implementation of such systems. For 
example, The architecture of network [7] showing the best 
image recognition result of ImageNet database in 2010 
consists   about 650000 neurons, 60 million custom settings 
and requires 27 gigabytes of disk space for training. In [8] 
presents the development of Google, which showed the best 
image recognition result of ImageNet in 2014. For image 
recognition this CNN performs over one and a half billion 
computing operations. This motivated Google to develop a 
special tensor processor to optimize the performance of this 
CNN [9]. In conclusion, modern CNN architectures are 
resource intensive, that severely limits their wide practical 
application.One of the way to improve CNN performance is 
hardware implementation [10 - 13]. 

The promising tool for performance improvement of CNN 
is the Residue Number System (RNS) arithmetic. The method 
using Sobel filters in convolutional layer of CNN and its 
FPGA hardware implementation by using RNS was proposed 
in [14]. Authors demonstrates increasing of device speed and 
reduce hardware costs compared by Binary Number System 
(BNS) realization. The disadvantage of method proposed in 
[14] is fixing the coefficients of the convolutional layer which 
significantly slows down the training time of CNN. To 
overcome the shortcomings of the approach from [14] we will 
present in this paper the architecture of CNN which separated 
on hardware and software parts. We propose to use RNS in the 
hardware part which implements the convolutional layer of 
CNN. We will demonstrate area-efficiency of the proposed 
approach by hardware modeling using FPGA Xilinx.  

The article should contain the following structural 
components: Convolutional Neural Networks, background on 
RNS, CNN architecture and training, simulation results and 
conclusions. 

II. CONVOLUTIONAL NEURAL NETWORKS

A CNN consists of an input and an output layer, as well as 
multiple hidden layers. The hidden layers of a CNN consist of 
convolutional layers, pooling layers, fully connected layers 
and normalization layers. In this article we will use the feature 
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extraction part consists of alternating spatial convolutional 
layers and max pooling layers [5]. 

Suppose that the CNN input receives an image I  consisting 
of R  rows,  columns and D  layers. This means that the 
CNN input can be described as a three-dimensional function  

),,( zyxI , where Rx0 , Cy0  and Dz0 are 
spatial coordinates, and an amplitude I  at any point with 
coordinates ),,( zyx  is pixel intensity at this point. The 
procedure for obtaining feature maps in the convolutional 
layer can be represented in the form: 

1 1 1

, ,
0 0 0

( , ) ( , , )
n n D

f i j k
i j k

I x y b W I x i y j z k ,      (1) 

where fI  is the feature map, kjiW ,,  are 3D-filter coefficients 
for processing D  two-dimensional arrays and b  is bias [14]. 
The procedure for obtaining feature maps is shown 
schematically in Fig.1. 

Fig. 1. The procedure for feature maps obtaining 

CNN typically use a large number of filters in the 
convolutional layer. This leads to a sharp increase in the 
amount of data within the network. Max pooling layer of is 
used to reduce this volume. Fig. 2 shows schematically the 
max pooling procedure by using m m  filter mask and 
stride m . The output of this layer transfers to the input of the 
recognition classifier, which is organized as the traditional 
multi-layer perceptron neural network. 

Fig. 2. The max pooling procedure for feature map 

As an experimental base, we developed a CNN for 8 
patterns recognizing in the sample image database of the 
University of Illinois [15]. Image classes from that dataset are 

shown in Fig. 3. Fig. 4 shows example of images from one 
class. The images size of database was unified to 192256
pixels using the Adobe Photoshop CS6 software by the bicubic 
interpolation algorithm. 161 images from database were used 
for CNN training. 

Fig. 3. Image classes from database [15] 

We set the main goal of minimizing the structure of the 
CNN. For this purpose, we tried to use the minimum possible 
number of CNN layers. In addition, we used the RNS 
arithmetic instead of traditional binary arithmetic, where it was 
possible. 

III. BACKGROUND ON RNS 
In RNS, numbers are represented in the basis of mutually 

prime numbers 1,..., nm m , gcd , 1i jm m , ji  called 
modules. The product of all RNS modules 1 2 ... nM m m m  is 
called the dynamic range of the system. Any integer 
0 X M  can be uniquely represented in RNS as a vector 

1 2, ,..., nx x x , where mod
i

i im
x X X m  in accordance 

with Chinese Remainder Theorem (CRT) [16]. 

The addition, subtraction and multiplication operations in 
RNS are defined by formulas 

1
1 1 ,...,

n
k km m

A B a b a b ,               (2) 

1
1 1 ,...,

n
k km m

A B a b a b .                    (3) 

Equalities (2) – (3) show the parallel nature of RNS, free of 
bitwise shifts. Thus, the advantages of representing numbers in 
RNS can be represented as follows [17]. 

Choosing moduli set is an important issue in RNS design. 
Special type of moduli set 1 22 , 2 1,..., 2 1npp p  allows to 
use high-speed algorithms for addition, multiplication, forward 
and reverse conversion [18], [19]. 

A. Binary to RNS conversion 
We consider a special moduli set 1 22 , 2 1,..., 2 1npp p . It 

is necessary to calculate the remainder of the division by each 
of the moduli to conversion a number into RNS [16]. 

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 113 ----------------------------------------------------------------------------



Fig. 4. Example of images belong one class from database [15] 

The operation of calculating the remainder of the division 
by modulo 2 p  is just reading of p  least significant bits of the 
number. Calculating the remainder of the division by modulo 
2 1p  is more difficult. Let 1 2 0 .g gX X X X  is an g -bits 

original number. It can be divided into /s g p  parts of p
bits width. To this end we complete X  from the right to 0 to 
the dimension 'g s p , now ' 1 ' 2 0' g gX X X X . Then 

0 1 1 0,.., ,pY X X X , 1 2 1 1,.., ,p p pY X X X , ... , 

' 1 ( 1) 1 ( 1),.., ,s g s p s pY X X X  are the parts of 'X . The number 
'X  can be represented as 

2
0 1 2' 2 2 ... 2p p sp

sX Y Y Y Y . Transformations using 
number-theoretic properties give the following chain of 
equalities: 

2
0 1 22 1 2 1

2
0 1 22 1 2 1 2 1 2 1 2 1

' 2 2 ... 2

2 2 ... 2

p p

p p p p p

p p sp
s

p p sp
s

X Y Y Y Y

Y Y Y Y

2
0 1 1 1 2 2 22 1 2 1 2 1

0 1 12 12 1 2 12 1

2
2 2 2 1 2 1 2 1

2 2 ...

2 2 1

2 1 ... 2 1

p p p

pp pp

p p p

p p

sp p
s s s

p sp
s s

Y Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y

0 1 2 0 1 22 1 2 1 2 1 2 1 2 1
... ...p p p p psY Y Y Y Y Y Y

2 1psY . In this way we obtain 

2 1
' pX 0 1 2 2 1

... psY Y Y Y .  (4) 

That is, the calculation of the remainder of the division by 
modulo 2 1p  is addition of p -bits numbers by 

modulo 2 1p . To add by modulo 2 1p  we use tree of end-
around-carry carry-save adders with modulo 2 1p  Kogge-
Stone adder proposed in [18]. 

B. RNS to Binary Conversion 
The most common method to achieve equivalent weighted 

number from residues is using the CRT [20]. Computing 
weighted number X  form its RNS representation, i.e. (x1, x2,
…, xn), based on the moduli set {m1, m2, …, mn} is as follows: 

1

1 i

n

i i im
i M

X M M x                           (5) 

where /i iM M m  and 1

i
i m

M is the multiplicative inversion 

of iM  modulo im  for 1, 2, ,i n . In order to implement  
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CRT, the remainder of the division by a large number, i.e. M,
is required, and implementation of this operation in hardware 
results in increase of area and delay. 

The modification of the Chinese remainder theorem using 
fractional values, namely approximate CRT, introduced for the 
first time in [21] to perform sign-detection and division in 
RNS. The effective hardware design of this approach is based 
on compression technique of summands and Kogge-Stone 
adder modulo 2N  is proposed in [22]. We used that method to 
implement the RNS to Binary converter in this article. 

C. Convolution in RNS 
RNS is most effective when performing calculations that 

contain only operations of addition and multiplication. This 
can be seen from formulas (2) and (3). Formula (1) shows that 
convolution operation in CNN uses only these operations. This 
means that RNS may be very effective for hardware 
implementation of CNN convolutional layer. Unfortunately, 
the difficulty of performing a comparison operation in RNS 
does not allow to expect its successful application in max 
pooling layer and multi-layer perceptron neural network parts 
of CNN. This motivated us to propose an approach to 
partitioning CNN architecture between hardware and software 
parts. We propose to use hardware circuit for RNS realization 
of CNN convolutional layer and to use software calculations in 
remaining layers of CNN. 

The coefficients kjiW ,,  and bias b  from formula (1) in the 
trained CNN are constants. This means that convolution circuit 
must implement multiplication by constants with the 
summation of the results. Since we suggest using 
modules 1 22 , 2 1,..., 2 1npp p  in RNS that multiplication by 
a constant can be implemented very effectively using the 
technique described in [15]. We use that approach for 
hardware implementation of CNN convolutional layer. 

IV. CNN ARCHITECTURE AND TRAINING

We proposed to use the CNN architecture presented in Fig 
5. The input of CNN is an RGB image of size 192256 , the 
first two layers are responsible for identifying the features of 
the image. The first two layers produce convolution operation 
by 8  filters, the size of filter mask is 333 , with stride 3 .
The result of calculations of the first layer is 8  feature maps in 
size 6485 . The second layer performs 22  max pooling 
operation with stride 2. 8  feature maps in size 3242  are the 
outputs of the second layer and connected to the inputs of the 
last two layers which are responsible for the image 
classification. The third layer consists of 10  neurons, and 
fourth one consists of 8 neurons, each of them corresponds to 
a certain class. 

The convolutional operation takes most part of working 
time in network. To increase speed of work we split up the 
architecture of CNN on hardware and software parts.  The 
convolutional layer is implemented in hardware on FPGA by 
using calculations in RNS. Because comparison operation and 
non-lineal activation function are difficult to implement in 
RNS so the max pooling layer and the fully connected network 
are realized in software part. 

Neural Pattern Recognition Toolbox performed the CNN 
training in Matlab R2017b. Calculations were made on PC 
with CPU Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz, 
4.00GHz, memory of RAM volume 16,0 GB and 64-bit 
operation system Windows 10. 161 images belonging to 8 
different classes were used for training [15]. The neural 
network was trained for 30 iterations during 57 seconds. Fig. 6 
shows a graph of the learning process generated by Matlab 
software. The results of work of CNN are shown in Fig. 7. 

An example of filter mask from convolutional layer is 
shown in Table I. For the hardware implementation, we 
quantized the values by 12 bits. The obtained filter coefficients 
are also given in Table I. 

Fig. 5. The proposed CNN architecture 
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Fig. 6. The CNN training report from Matlab software 

Fig. 7. Results of work of CNN  

VI. SIMULATION RESULTS OF CONVOLUTIONAL LAYER 
HARDWARE IMPLEMENTATION

Hardware simulation was implemented on FPGA Kintex7 
xc7k70tfbg484-2 in Xilinx Vivado 16.3. We used “High 
Performance Optimized” modeling parameter for simulations. 
The goal of simulation was comparison the usage of BNS and 
RNS. 

The convolution operation was simulated by different 
modules of the form 2 p  and 2 1p . The results are presented 

in Table II and Fig. 8. and shows that circuit delay varies from 
8,721 ns to 16,035 ns. 

Taking into account the values of the quantized filter 
coefficients, and the need to represent negative numbers in 
RNS we obtained the condition 278970M  for RNS 
dynamic range. Use of this condition as well as data from 
Table 2 allowed us to choose two moduli sets 5 6 82 1, 2 1, 2
and 3 4 5 72 1, 2 1, 2 1, 2  for simulation of full RNS system 
containing Binary to RNS converter, RNS convolution and 
RNS to Binary converter. 
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TABLE I.  AN EXAMPLE OF 3D-FILTER MASK FROM CONVOLUTIONAL LAYER 
OF TRAINED CNN 

Layer Filter mask Quantized filter 
mask 

R

0.008708132 -0.01040934 0.00319623

0.01531038 -0.01347609 0.006832784

0.02441053 0.003114703 0.008579108

36 -42 14
63 -55 28

100 13 36

G

-0.008610572 -0.01240873 -0.00146828

0.006109328 -0.005821416 -0.0116995

0.001523695 0.01010766 -0.02120716

-35 -50 -6
26 -23 -47
7 42 -86

B

-0.00484508 0.0003131653 0.003700315

0.00084957 -0.01582666 -0.02015062

-0.00416168 -0.004977863 0.003042456

-19 2 16
4 -64 -82

-17 -20 13

Bias -0.000331978 -1 

Fig. 8. Delay of convolution operation for different moduli values 

TABLE II. DELAY OF CONVOLUTION OPERATION FOR DIFFERENT MODULI

Moduli Delay, ns 

22 1 8.721 
32 1 9.378 
42 1 12.983 
52 1 14.496 
62 1 14.917 
72 1 16.035 

72 12.960 
82 14.994 

Taking into account the values of the quantized filter 
coefficients, and the need to represent negative numbers in 
RNS we obtained the condition 278970M  for RNS 
dynamic range. Use of this condition as well as data from 
Table 2 allowed us to choose two moduli sets 5 6 82 1, 2 1, 2

and 3 4 5 72 1, 2 1, 2 1, 2  for simulation of full RNS system 
containing Binary to RNS converter, RNS convolution and 
RNS to Binary converter. 

Simulation results obtained by using BNS and RNS are 
presented in Fig. 9. Simulation shows that using RNS with 
moduli set 5 6 82 1, 2 1, 2  allow to reduce hardware costs 

by 32% and using moduli set 3 4 5 72 1, 2 1, 2 1, 2  by 
29.5% compare with BNS. This allows us to conclude that the 
use of RNS for CNN convolutional layer hardware 
implementation is more effective in area compared to BNS 
implementation. 

Fig. 9. Simulation results of convolutional layer hardware realization: (a) delay; (b) number of occupied LUTs. 

VII. CONCLUSIONS

The paper presents a method of hardware implementation 
of CNN for pattern recognition using computations in RNS. 
The minimalistic CNN configuration includes the 
convolutional layer, the max pooling layer and the recognition 
classifier, which is organized as the traditional multi-layer 
perceptron neural network. The hardware simulation of 
convolution operation showed that using the proposed method  

based on RNS with special moduli allows to reduce hardware 
costs by 32% in comparison with BNS implementation. A 
generalization of this result to cases of large filter masks 
requires further practical investigations. The research results 
may be applied in the area-efficient development of video 
surveillance systems, for recognition of handwriting, faces, 
objects and location. 
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