
Design Of Specialized Storage for Heterogeneous
Project Data

Olga Kalyonova, Nurbek Akparaliev, Ivan Perl
ITMO University

Saint-Petersburg, Russia

ovkalyonova@corp.ifmo.ru, n.akparaliev@gmail.com, ivan.perl@corp.ifmo.ru

Abstract—This article describes an approach for designing a
storage system that will allow persistence of large number of
heterogeneous entities, used to describe software development
process in various process supporting tools (bug trackers, repos-
itories, wiki engines, etc). Goal of this work is to extract core
semantics essences from entities like issues, code commits, builds
in continuous integration systems and others and persist them
together in one indexable, integrated and searchable systems
disregarding from which tool each of them came from. Taking
into high level of variety in data shapes and forms, requirement
to perform complicated cross-entities queries and potentially high
volumes of data - designing a storage for such systems turns into
a challenging task.

I. INTRODUCTION

Nowadays the software development takes control of new
positions in various fields of activity ranging from a cash
register system development for stores to high-tech fault-
tolerant solutions for aerospace equipment. In terms of modern
solutions, reasons for data storage are growing rapidly every
day, because it is important and necessary[1]. Data is the
important information such as the records of the clients,records
of the company’s finances, particulars of the project and much
more. All of the current records trend to place a lot of
prominence on the IT infrastructure that serves and store sit.
There are several causes why to store data[4]:

1) Optimize a cooperation. For example, cloud storage is
a perfect instrument for immediate data exchange.The
option to give access to multiple people makes this
service a perfect tool for both distant and in-house
work.

2) Create a backup for files to prevent accidental dele-
tion.

3) Storing an information in a specific form, for in-
stance, storing daily regime depending on the season
or marks on the map.

A. The problems of information glut in the software develop-
ment industry

However, storing data in the database itself does not give all
the advantages that the modern software development industry
would like to have. In the life of many software projects, there
may be crisis situations due to too much poorly organized data.
The growth and evolution of any software project inevitably
leads to an increase in the number of artifacts that accompany
the development process. In the event that no preventive
measures are taken to organize the design data, the following
problems may arise:

1) Difficulties in project management, clumsiness.
2) Unpredictability of terms and increase in the number

and cost of risks.
3) Staff flow due to a project that is too difficult to

understand.
4) Overstating the threshold of entry into the project,

which aggravates the hiring of new staff after their
outflow.

5) Increase the overhead of tasks.

As you can see, simply storing project data in a normal
database will solve these problems quite difficult. According to
IBM [5], at the moment the business is experiencing explosive
growth in the volume of information, which is approximately
45% per year. It is important to note that only 20% and the
notion of structuring does not mean that it is somehow used
to analyze and control the process.

In the software development industry, it is most important
to focus on the following cases when analyzing design data
for qualitative improvement of software development processes
and reducing the risks associated with information singularity:

1) Forecasting and an auxiliary estimation of time for
the decision of a problem at planning. It is generally
believed that the work takes all the time allotted to
it and even more. Nevertheless, effective planning
of both short-term and long-term tasks is extremely
important for the comfortable and effective develop-
ment and stable growth of project quality. Effective
planning also helps to prevent economic risks.

2) Prioritizing tasks and tracking their status. As a rule,
modern software projects usually specify a certain
amount of tasks, which must be polled for a particular
period of time. However, there are frequent situa-
tions where the importance, and hence the sequence
of tasks is not known: insufficiently mature project
management or the customer can not distinguish the
main thing and indicates to all tasks the maximum
priority. Unfortunately, this approach only irritates the
developers and does not help to cope with their tasks,
and therefore - increases the risks.

3) Building a transparent and manageable process. Fre-
quent are the situations when the project is developing
too quickly and the practices of project management
do not have time to evolve with it. This leads to a
decrease in the effectiveness of the project. At the
same time, if management makes timely notice, it
will be natural to improve the process. The projected
process based on the chosen methodology should

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



be as transparent and natural as possible for both
the team and the leadership in order to reduce the
overhead of team time and improve the understanding
of the development vector and the current state for
each participant in the program project. This aspect
becomes especially relevant when the number of
project team members increase 7 people and more.

4) Tracking the process between related projects. As
follows from the previous point, the growth of the
project is related to the increase in project tasks, the
number of people involved in the project, and the
appearance of related projects. In a modern software
project, starting from the smallest one, from the
very beginning, there are links and dependencies on
external projects, and therefore development teams:
whether internal or external. In this regard, one of the
areas that require special attention are the processes
of interaction between teams and projects.

B. Problems in designing a project data store

When designing a project data warehouse designed to
improve the understanding of the processes of developing
software projects, the following problems may arise:

1) A large volume of hard-to-analyze heterogeneous
data.

2) The data can be located on a large number of sources
(task trackers, repositories, wiki and project docu-
mentation).

3) Some data for analysis can not be stored in the
database (due to size, format or corporate policies).

4) Necessity for each project to complete the logic of
data analysis from scratch as a separate application
to the database.

5) Overhead costs for administration of the project data
base.

6) To significantly improve the process due to data anal-
ysis, a highly skilled analyst (data scientist) is needed
to identify hidden dependencies and correlations.

II. REQUIREMENTS FOR THE STORAGE OF
HETEROGENEOUS DATA

A. Requirements based on problems

Based on the described problems, we formulate qualitative
and functional requirements for the storage of heterogeneous
data:

1) Quality:

a) It is designed for increasing and potentially
large amount of data.

b) Has the basic re-used logic.
c) Lets you access resources that are stored

outside the database.
d) Minimize the configuration parameters.
e) Retrieves data from external sources, which

by themselves do not have the functions of
connecting to the projected storage.

f) The data can be not full and fusion.

2) Functional:

a) Tracking process

Fig. 1. The structure of multimodal data

b) Help in prioritizing tasks by identifying
strongly and loosely coupled tasks.

c) The visibility of results calculated for end
users.

d) Tracking a given process by creating prac-
tices in the context of the selected software
development methodology.

e) The ability to analyze complex structures,
such as several related projects.

B. Multimodal data approach

Based on the nature of heterogeneous project data, for their
presentation and analysis we use the approach of multimodal
data.

This approach can be applied due to the fact that heteroge-
neous data includes the notion of heterogeneous data.[2] Under
multimodal object in this article we will understand an object
or process, which is described with various characteristics of
different modalities. Under modality we will on assume one
of more attributes which describe a specific characteristic of
an object. Set off characteristics of the same modality will
be called essential presentation. It is not mandatory that each
multimodal object exists in all modalities.

By their nature, heterogeneous objects are described with
number of attributes which are not compatible with each other,
for example colour, weight, price, and these characteristics
can be treated as modalities of this particular object. When
object has multiple modalities describing it, it can be called a
multimodal object.

Previously, a method for representing multimodal data was
developed [3]. The use of the multimodal data approach is
aimed at the first stage of the implementation of functional
requirements and allows:

1) Obtaining samples of complex objects, for example,
tasks. In the near approximation, this will allow you
to set an approximate estimate of time or complexity
for new tasks. This can also be used to construct
statistical samples or calculate the required resources.

2) Identify the cyclical dependencies in tasks. This
property can be used to prioritize tasks and track
interaction processes between teams. In some cases,

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 158 ----------------------------------------------------------------------------



it can be applied to solve the problem of multiple
dependencies in assemblies.

3) Check the correctness of the state of the object. For
example, if an object is in a certain state, then it must
have one or another artifact (build log if the assembly
was run or a report after running test scenarios if
the task is in the ”Tested” status). This ability will
allow validating the process of developing and adapt-
ing new project practices and software development
methodologies. In addition, this ability can indirectly
simplify the interaction between development teams.
In the example with test scenarios: if the task is
returned to the development, it will be useful to
immediately see the logs of the failed test scenarios.

4) Organize, present and analyze complex task struc-
tures. A common practice is to use Jira’s auxiliary
plug-ins (such as Structure) to organize complex
task hierarchies. Another example is the sequence of
assemblies of the branch project intended for solving
the problem.

C. Description of multimodal data approach

As already described above, the concept of multimodal
data assumes the existence of a set of objects, generalized by
specific characteristics. A set of such objects is shown in Fig.
1. One of the main goals of the multimodal data representation
method is to find the correlation in the data set and consists
of 4 main stages.

1) Data input. At this stage, data entry and initial data
cleaning are assumed. An example of initial data
cleaning is the removal of duplicate objects.

2) Classification of the essential presentations within the
modalities. As a result of this stage it is supposed
to obtain hierarchical graphs for all modalities, as
shown in Fig. 2 (a). Particular attention should be
paid to the fact that the classifier must be specific
for each modality. Hierarchical modality graphs are
essentially directed graphs that can be reused when
adding new data. Each vertex of such a graph is an
essential representation of one or several multimodal
objects.

3) Calculation of height of a common parent. At the
entrance to this stage, hierarchical graphs of modal-
ities are transmitted. For each pair of vertices of the
graph, the altitude of the common parent is calcu-
lated by the max-minimal strategy (maximal from
minimal). Additionally, at this stage, the parameter
h can be specified, which limits the search height
of the common parent: if a value is reached and the
common parent is not found, the search stops and it
is considered that the common parent does not exist.
As a result of this stage, a table is created for each
modality, which reflects the values of the heights of
common ancestors for pairs of elements. Regarding
the storage of the values of pairs, one of the strategies
can be chosen:

a) The first strategy involves obtaining a table
of heights of essential presentations for each
modality separately. An example of obtaining
a height table for any modality Fig. 2(a) is

Fig. 2. Meta-data of multimodal data: a) - hierarchical graph of modality, b)
- first strategy of storing data of common parent height, c) - second strategy
of storing data of common parent height, d - table of coherence power.

shown in Fig. 2 (b). A distinctive feature of
this table is that the number of rows and
columns is equal to the number of essential
presentations, and this number can be quite
large. The second feature is the symmetry
with respect to the main diagonal. The table
constructed in this way, as we see, is anal-
ogous to the adjacency matrix. In the event
that we do not store duplicates, the table can
take the form of a triangular matrix.

b) The second approach is to build one table
for all modalities. This approach is shown in
Fig. 2(c). In this case, the number of rows of
the table is equal to the number of pairs of
objects, and the number of columns is equal
to the number of modalities. This approach
can provide an easier way to organize data,
so that adding new elements does not result
in the appearance of new columns. With
this approach, we do not store duplicates.
An additional advantage is the possibility of
buffering or paging the parts of a complete
table in contrast to a huge table of adjacency.

4) Calculation of coherence power. This step is per-
formed in order to identify strongly coupled mul-
timodal objects according to a given formula. The
result of the work of the stage is a table, similar
in structure to that shown in the Fig. 2(d). You can
determine the most related objects from this table by
minimizing the column number and maximizing the
value in the column. For example, the most strongly
related objects in Fig. 2(d) between objects 1 and 2.
The maximum value in a column in the simplest case
is equal to the number of modalities. As the column
number is increased from left to right, the binding
conditions are weakened and the associated elements
become larger: in this case, first a connection is added
between objects 1-3, 2-4 and 3-4, and then all the
others. After the second column, a graph can be
constructed as an Fig. 3.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 159 ----------------------------------------------------------------------------



Fig. 3. Resulted graph after second iteration

D. Features of the projected storage using the multimodal data
approach

Due to the fact that the multimodal data approach was
chosen for design of the heterogeneous data storage, we can
specify and detail the qualitative requirements for the designing
storage.

1) You should choose strategies for implementing the
method of multimodal data representation, which will
be designed for:

a) Not a static, but a dynamically increasing set
of data;

b) The number of objects can be significant.
Even if there are only 100 multimodal objects
in the set, for example, tasks, and approaches
and formulas will not be chosen correctly,
it can significantly increase the overhead of
both time and environment in which the
projected storage will unfold.

2) The implementation of the multimodal data repre-
sentation method should be implemented separately
and independently of the data being processed. Ex-
ceptions can be made only by the classifier, which
are connected separately depending on the modalities
being processed.

3) When developing the basic logic, it is necessary to
take into account that the multimodal object may
contain not the most essential presentation, but a
reference to it (depending on the modality settings).

4) Setting parameters such as hterm and wmin, as well
as formulas for calculating w, should be as transpar-
ent as possible from the user, and ideally hidden from
him.

5) An auxiliary module is needed to extract data from
external sources and transmit them to the first stage
of the multimodal data representation method.

6) Modalities should be configured in such a way as to
take into account the lack of data. The problem of
fusion data is partially solved in the first stage and
is completely solved by using the multimodal data
approach.

Functional requirements with a multimodal approach were
considered in section II-C.

III. DESIGNING A STORAGE BASED ON REQUIREMENTS

A. Choosing a general idea

Let us now try to formalize the data essence with which
we are dealing:

1) First of all, these are the objects of the project data.
This is the most important component for the data

storage. These data are heterogeneous by nature.
Cases when the project data is homogeneous will be
considered as a special case of heterogeneous data.
Project data will be collected from various project
tools using a data collection module (pumps) and will
be distributed to separate entities as independent ele-
ments, that is, there will be no external relationships
between entities. For communication between entities
there will be a higher abstraction like the work item.

2) Multimodal project data objects. Such objects are the
union of a certain number of essential presentations.
As multimodal objects for working with project data,
we introduce the concept of a work item, which is a
meta-object that includes the essential presentations
for such modalities as repositories of various kinds,
task trackers, continuous integration servers, test re-
ports, etc. In addition, such an object may not be
characterized by artifacts of modality, such as, for
example, name and status. Essential presentations in
such modalities can be given externally or obtained
from other modalities. As mentioned earlier, it is
important to have a setting that allows missing values
of essential representations, or vice versa, to always
require them.

3) Meta-data of multimodal data approach. There are
three types of entities:

a) Hierarchical graphs of modalities, the num-
ber of which is equal to the number of modal-
ities. Depending on the implementation, in
some cases, when adding a new element, it
may be necessary to partially rebuild the tree,
but this will help to maintain the correctness
of data and calculations when adding a sig-
nificant part of new objects.

b) Table of heights of common parents. The
number of such tables can be equal to the
number of modalities, or 1, but with the
number of columns equal to the number of
modalities - this depends on the approach that
was chosen in Section II-C.

c) Table of coherence powers. Like the table
of heights of common parent choosing the
second strategy, the coherence power table
stores meaningful information in columns,
not in rows. The number of such tables can
vary depending on the chosen strategy:

i) Store one table and update the values
in it when applying the formula.

ii) Prohibit changes in the calculation for-
mula for binding forces and store one
table.

iii) Store all tables created when the for-
mula is changed.

In addition, it is important to remember the auxiliary mod-
ules, which were declared in the requirements of functional in
Chapter I-B (1) and quality (2).

1) Implementation of the logic of the method of rep-
resentation of multimodal data. A module with this
functionality should also support the ability to con-
nect classifiers that have a modality-specific imple-

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 160 ----------------------------------------------------------------------------



Fig. 4. The general structure of designing architecture

mentation.
2) Module for obtaining data from external sources

(pumps). This module will provide the ability to
obtain data for the processing of design data by
connecting to their sources, among which can be:

a) Bug trackers and task trackers (Mantis, Jira,
Trello, etc.);

b) Code repositories (SVN server, GitLab,
GitHub, Bitbucket);

c) Continuous integration servers (Jenkins,
Travis);

d) Documentation (documentation servers,
wiki, confluence).

3) User interface module. This module is extremely
important, because the storage and the results of
its analysis are aimed at reducing the threshold of
entry into the processing of design data and solving
problems with the need for a qualified scientist in
data analysis. In addition, the interface should be as
clear as possible in order to reduce the overhead of
user training and maximize team productivity through
the tool. The toolkit should simplify their work,
rather than create a new one. As the Agile Manifesto
states, the fundamental document of the most popular
methodology for Agile software development today is
”People are more important than tools”, and therefore
the tool being developed should be people-centered.

4) Under the hood of the user interface, we will ask
tricky queries to the database, that is, we will have
our own DSL query language. It allows to retrieve
entities in many different combinations.

Considering the data types described above and the ded-
icated modules, we will compile the architecture shown in
Fig.III-A.

Next to the data storage of essential presentations, auxiliary
storages are depicted, since some data cannot be stored in the
database, and possibly only where they already exist. In this
case, the database stores only pointers to where you can find
path with index to where you can find the required data.

B. Architecture overview

Based on the previously obtained data-based architecture,
it can be concluded that a system similar to the data warehouse
was developed. Consider this similarity in more detail. As a
rule, the data warehouse has the following properties:

1) Subject-Oriented. In this case, there is indeed a focus
on the given specificity, since the storage is projected
for a clearly described range of tasks and solutions
to these problems. However, the data storage can
be used in any software project without significant
changes in the architecture. This provision was stated
in paragraph II-D.

2) Integration. In the context of the data warehouse,
speech generally refers to the consistency of storing
heterogeneous data. In our case, this condition is
fulfilled by using the multimodal data approach.

3) Time-variant and Nonvolatile. In the context of the
task being solved, it was decided not to comply
with these provisions due to the lack of storage of
the historical sequence of data - it should be the
same for the selected development process - and even
vice versa: there is a great need for up-to-date data.
Refusal of these requirements will also help to reduce
the overhead of maintaining the environment of the
developed storage.

4) Summarized. In this case, the development store
will provide significantly more functionality than the
summable sections of the stored data.

C. Selecting the types of specific data storage

When the general architecture of the data storage was
designed, and it became clear that independent storage of
various parts in separate stores under the control of the meta-
platform is supposed to be independent, it is necessary to
define specific types of data storage for each kind of entities
defined in Chapter III-A. When selecting the storage type, we
will pay extra attention to the following parameters:

• Model of work with data;

• Target data type;

• Possibilities for profiling and not targeted storage of
data, if it does not correspond to data entities directly;

• Scaling options;

• Availability of implemented databases of a given type
and specialization.

To date, there are quite several different types of databases.
Among them we distinguish the following:

1) Relational databases (SQL)[13]

• Advantages: commonly used database, a lot of
capabilities(ex. for loop and functions), easy
to maintain

• Disadvantages: very slow database, requires a
lot of effort to adjust a database, consumes a
lot of memory and CPU time

2) NoSQL[14]

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 161 ----------------------------------------------------------------------------



• Advantages: elastic scaling, sizable data, flex-
ible data models, cost effective(allows to pro-
cess and store more data at a much lower
cost), requires less management on entities,
very fast database

• Disadvantages: no advanced expertise

3) The graph storage[15]

• Advantages: flexibility, deep fast search, in-
dexing

• Disadvantages: processing high volumes of
transactions, not good at handling queries that
span the entire database, not optimized to
store and retrieve business entities

4) Column Databases[16]

• Advantages: this database is good at queries
that involve only a few columns, aggregation
queries against vast amounts of data, column-
wise compression

• Disadvantages: this database is not good at
incremental data loading, online transaction
processing usage, queries against only a few
rows.

Evaluating the pros and cons, NoSQL with high speed and
reliability best fits to store data in our work items storage and
in essential presentation storage, and Column-based database
greatly fits to place multimodal meta-datas in storage.

To store essential presentation and work items we have
chosen NoSQL database for the following reasons:

• project meta-data items weigh a few kilobytes, so it is
better to store them in random access memory(RAM).

• for flexible schema, as we want to aggregate infor-
mation from different systems, like JIRA and Trello,
entities will have dynamic properties.

Comparing RAM with solid state drive(SSD) and hard disk
drive(HDD), if we need access time with the smallest millisec-
onds, our only choice is RAM. SSDs also match this criterion,
but only in terms of seek time. However, in typical work-
flow, to process a single user request, not one, but several seek
operations are often needed, and then, due to some additional
requirements, there may be extra requests to disk. Additionally,
random access to slow storage is more costly, and sequential
access to slow storage is cheaper. Thus, slow storages are made
for sequential access. To reiterate, if we need to sequentially
access massive datasets and are satisfied with speed of 100
MB/s, the most cost-effective storage is an HDD. It’s 10 times
slower than RAM with respect to sequential access time, but
100 times cheaper as well. This means that in terms of bytes,
we could buy 10 times more free HDD space than RAM with
the same total throughout. In most cases, It’s important to note
that we are talking only about our situation here. If you operate
on a bigger scale, the price may have a higher priority. Just
the same, modern NoSQL databases store data in RAM.

Based on this, it is logical to store data in RAM and
HDD or SSD will be a place where you can periodically drop
the state so that you can reboot the server or upgrade it. To
solve this problem, modern NoSQL databases like Redis or
Tarantool provide WAL and Snapshot mechanisms to maintain

the integrity of the database, first to store in a single file all
queries that change database and to prevent an accumulation
of this transaction log file, then make a snapshot to save a copy
of database in hard disk. Server can be crash in an unexpected
time, and all data can be recover from log file and last snapshot.

To store data, first we should choose a data model.
There are a lot of types of models like key-value, column-
based, document-oriented, graph based and so on, in terms
of heterogeneous project data, when some of our entities
are constant, other are flexible, key-value data model greatly
fits our needs. Key-value pairs map nicely to programming
language data types, so each NoSQL database creators tries
to put a connector to most common high-level programming
languages together with the database. Considering the nature
of multimodal data and what was said in Chapter III-A, we
concluded that column-based data model greatly fit to store
data in module of multimodal data.

Some NoSQL databases stores key-value pairs as tuples,
therefore, there may be several keys and values. Since we
are dealing with tuples and lots of keys, there can also be
many indices for making the necessary queries. As relational
databases NoSQL also provides different types of indexes for
a much quicker search in data, most of them implement hash,
tree, rtree, bitset indexes, to work with data ranging from bit
data to MD5 hash to store user passwords[12]. Variety of
indexes gives us not only a diversity of data that we can keep,
also gives more speed in storing heterogeneous data.

Imagine for a while what will happen if we choose a
relational database or graph database instead of NoSQL in
this case. Regarding relational database, this type of database
stores data in a hard disk and uses RAM to store hot frequently
used data. This way of storing data may seem better, hard
disk is cheaper and necessary information in RAM, but what
will happen if we want to fetch rarely used data. At first
relational database will check a hot data in RAM, then go for
data to hard disk. This request can be characterized as a long
one, because database server checks two places including slow
hard disk, then updates hot data in RAM[11]. If we compare
NoSQL and Graph databases, on the one hand NoSQL stores
sets of disconnected aggregates, one the other hand Graph
database can not handle massive sizes like NoSQL, it just
retains minimum sizing at a greater depth of data[10]. In
this project case, to connect efficiently disconnected sets, we
implemented WORK ITEM storage. To sum up, nowadays
NoSQL databases bring together many interesting solutions
offering different data models and database systems, each
more suitable than traditional SQL solutions for certain use
cases and shapes of data. Honestly, relational database, NoSQL
and graph databases developed greatly, and can compete each
other on the same level, the choice between the three will
rectilinearly depend on data size, the speed you need, how
much you are willing to spend on hardware.

D. Selecting specific databases

To select specific implementations of the given database
types obtained in Section III-C, it is necessary to conduct a
study and determine which databases are most suitable for
the current architecture and tasks, based on the requirements
previously obtained. In total it is required to select 3 databases
for the following entities:

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 162 ----------------------------------------------------------------------------



Fig. 5. The general structure of designing architecture with type markers

Fig. 6. The compatibility of NoSQL in-memory data storage

Fig. 7. The compatibility of column-based data storage in set of 1 billion
dataset size

1) NoSQL database for essential representations;
2) NoSQL database for multimodal objects;
3) The column database for storing the metadata of the

multimodal data representation method.

When choosing the implementations of storages of the
specified types, we select the following priority characteristics:

1) Speed of access to data;
2) Scalability;
3) Data backup;
4) Compatibility with high-level languages (the presence

of connectors);
5) The possibility of expansion plug-ins;
6) The availability of transactions

Since all modern NoSQL and Column databases cor-
respond to 2-6 points, we tried to compare databases at
speed. Based on benchmarking and results available in various
articles[17][18], Tarantool NoSQL storage and ClickHouse
Column database show best results in all classes of opera-
tions under different workloads. In-memory and column-based
databases have high potential and are highly optimized to
reduce execution time for our case.

E. Proof of concept

To test the resulting architecture, the first prototypes of the
auxiliary modules were developed, and the necessary copies of
the databases were deployed. As a source of test data, projects
with an open license were selected, which provide access to
their bug trackers and repositories. For testing, the following
projects were selected in increasing size and popularity:

1) IoT-Log Merger (bitbucket, trello);
2) Taskodrom (github, github issues);
3) Mozilla Firefox (github, bugzilla).

Based on the functional requirements that were described
here and here, the following results were obtained:

1) The ability to predict the complexity of tasks is
implemented. For example, for the first project, the
task in the status ”In Progress” with the active commit
to the repository is an average of 4 hours, in the
second project - 10 hours, and in the third - 93
hours. Explain such terms can be the experience of
teams, the size of tasks and the complexity of their
implementation.

2) The tasks in the status of new were analyzed and the
priorities for 20%, 5% and 60%, respectively, were
corrected. Let us explain the numbers obtained. In the
first case, the team is still young and badly worked,
and therefore frequent mistakes are made in setting
priorities. The percentage is rather low, since the
tasks themselves have relatively small project size,
small team size and low connectivity. The second,
more experienced team can more precisely prioritize
tasks and is already well-versed in the project’s links.
The complexity of the third project is very high, and
tasks, as can be seen from the previous paragraph,
are done for a long time. In this regard, priorities are
not always placed in an optimal way.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 163 ----------------------------------------------------------------------------



3) The results of the system work are graphical graphs
that are graphical and easy to analyze in the construc-
tion of related tasks. Relying on research in the field
of multimodal interfaces and visibility of the analysis
of visual data by a man, this method allows increasing
the speed of a person’s work with data at times.

4) To verify the implementation of practices, the doc-
umentation was examined. For the first project, as
practice, the practice of adding a reference to a task
to commit-message was chosen, and for the second
and third project - the practice of adding screenshots
to bugs in the UI. The percentage of implementation
of practices in the 1st project - 66% is explained by an
inexperienced team with a not followed process. The
percentage of compliance with practices in the second
(82%) and the third (98%) is due to the increased
level of team competence and clearly established
practice in the process of teams.

5) To test the possibility of analyzing complex structures
it was possible only on the data from the third project.
In this case, the data from different components were
analyzed. The results of the analysis were used to
obtain samples from the 1st and 2nd points.

IV. CONCLUSION

As a result, a system was obtained that satisfies all the
claimed functional and qualitative requirements that were for-
mulated on the basis of problems of the software development
industry.

1) Qualitative requirements were implemented as fol-
lows:

a) In the multimodal data presentation method,
the second approach for storing tables of
heights of common parents was chosen,
which allowed to work with projects where
the number of tasks is more than 10,000 (the
3rd test project, the number of tasks in the
”New” status).

b) The selected databases have the highest scal-
ability and still retain the highest data access
speed.

c) Special approaches to the implementation of
the logic module for multimodal data.

2) The implemented logic can be re-used by replacing
the minimum number of elements:

a) Settings of the pumping unit (pumps);
b) Setting up and finalizing the required classi-

fiers.

3) Access to external resources is realized as follows:

a) Implemented a module for pumping data
(pumps);

b) Implemented the possibility of remote data
storage of various modalities with storage of
the path to them in the developed data store.

4) To implement the connection to remote instruments,
specific parts of the pump’s module were imple-
mented.

5) The configuration parameters are configured indepen-
dently by the system based on the internal logic but
can be changed by the user if necessary.

6) To work with incomplete and mixed data, the mul-
timodal data approach was used. In addition, when
implementing and configuring the multimodal logic
module, the settings were used to consider the possi-
bility of missing data.

Functional requirements have been fully implemented and
tested on three projects of different size and popularity, the
results of which are described in Section III-E.

Based on the results of the design, we can conclude that
the developed system for storage and analysis of heterogeneous
multimodal data of software development projects:

1) Reduces the difficulties in project management due to
the visibility of the current status of both tasks and
the project as a whole.

2) Increases the accuracy of the forecast for estimating
the time of the task execution based on the analysis
of the timing of the implementation of similar tasks.

3) Reduces the outflow of team members by increasing
the visibility of their work.

4) Reduces the threshold of entry into the project, due
to the linking of different systems into one work item
that is easy to analyze. It helps newcomers to instill
project practices through automated control of their
implementation.

5) Reduces the overhead of software development teams
due to the visibility and uniqueness of the manipu-
lated object of the development process.

A. Practically meaningful benefits

What is the benefit? Multimodal data practices provide
methods for building multidimensional correlation graph of
multimodal objects. In our case – work-items are multimodal
objects and we can find links between almost any two work
items in the project. When you are working in a big and
distributed project – this will help to easily find required
related works to what are you doing, find all issues which
processing was making history of files you need to update and
will significantly improve project data integrity. Work flows
will become much clearer and this will enhance development
process in general.

All these things may appear related to SEMAT and
Essence. Majority of projects which currently exist are using
millions of home-brew processes with unique configuration
of practices and practices implementation. All these projects
are using almost endless list of supporting tools and their
combinations and configurations. Main goal of our solution
is to provide a unified overview on top of this unique con-
figurations. These configurations are important because they
were designed for the very specific needs of each project.
Unified view on the top is required to provide easy navigation
in project data. Interesting point here is that these unified
entities are easy to manipulate. It is much easier than getting
into each tool or its configuration and extracting data from
there. We already solved this. And on the top level we may
define unified practices in the project based on unified entities.
So, for each already running project we can define its virtual
SEMAT/Essence project representation.

As a result, our solution can be used as a tool for per-
forming estimation and actual migration from existing process

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 164 ----------------------------------------------------------------------------



to SEMAT/Essence. Having monitored unified entities project
can define what practices they want to have and what they need
to implement. This is a kind of design mode. Than, they may
start performing actual process transformations in their project
applying selected practices in a tools level. In the same time,
they will see how all these changes are reflected on the level of
unified entities in our system. At the end of the transformation,
implementation on the tools level should match process defined
on the level of unified entities.

REFERENCES

[1] Importance of Data Storage and Backup, Web:
https://www.slideshare.net/JohnWard23/importance-of-data-storage-
and-backup-50883225

[2] Kalyonova O., Perl I. Introduction to Multimodal Data Analysis Ap-
proach for Creation of Library Catalogues of Heterogeneous Objects
// Proceedings of the 21st Conference of Open Innovations Association
FRUCT - 2018, pp. 327-331

[3] Kalyonova O., Perl I. Revealing of Entities Interconnections in System
Dynamics Modelling Process by Applying Multimodal Data Analysis
Paradigm // Proceedings of the 21st Conference of Open Innovations
Association FRUCT - 2017, pp. 156-161

[4] 5 reasons why you should use cloud storage every day, Web:
https://federalnewsradio.com/commentary/2017/03/5-reasons-use-cloud-
storage-every-day

[5] IBM Corporation The explosive growth of Information. Web:
https://www.ibm.com/ru/events/ox2010/pdf/3.pdf

[6] A. L. Thompson, D. Bohus., A Framework for Mul-
timodal Data Collection, Visualization, Annotation and
Learning. Web: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/annelo-de102-thompson.pdf

[7] A. Kashnikov, L. Lyadova, Integration of heterogeneous sources of data
based on recurrent decomposition, International Journal ”Information
Technologies Knowledge”, 2011

[8] W.H. Inmon, Building the Data Warehouse. Canada: John Wiley Sons,
Inc., 2002.

[9] G. M. Faruk Ahmed, Md Shoriful Islam, Molla Md Rezaul Karim,
Comparison Between Inmon and Kilball Methodology for the Purpose
of Designing, Constructing and Testing of a Commercial BIDW Project,
International Journal of Computer Graphics, 2017, pp. 11-20

[10] Neo4j, Concepts: NoSQL to Graph, Web:
https://neo4j.com/developer/graph-db-vs-nosql

[11] Neo4j, Concepts: Relational to Graph, Web:
https://neo4j.com/developer/graph-db-vs-rdbms/

[12] Tarantool: in-memory DBMS and application server, Web:
https://medium.com/@Vadim.Popov/tarantool-in-memory-dbms-and-
application-server-64d60ffa1d6e

[13] What are the advantages and disadvantages of SQL? Web:
https://www.quora.com/What-are-the-advantages-and-disadvantages-
of-SQL

[14] Advantages and Disadvantages of NoSQL databases, Web:
https://www.hadoop360.datasciencecentral.com/blog/advantages-and-
disadvantages-of-nosql-databases-what-you-should-k

[15] The Good, The Bad, and the Hype about Graph Databases
for MDM, Web: https://tdwi.org/articles/2017/03/14/good-bad-and-hype-
about-graph-databases-for-mdm.aspx

[16] What’s Unique About a Columnar Database? Web:
https://www.flydata.com//blog/whats-unique-about-a-columnar-database/

[17] V. Abramova, J. Bernardino, P. Furtado, Experimental evaluation of
NoSQL databases, International Journal of Database Management Sys-
tems

[18] Performance comparison of analytical DBMS,
Web:https://clickhouse.yandex/benchmark.html

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 165 ----------------------------------------------------------------------------


