
Analysis of Influence Produced by Code Changing

Maxim Kuzmin
PROTEI

Saint-Petersburg, Russia

maxriderg@gmail.com

Vitaly Pelin, Ilya Isaev, Ivan Perl
ITMO University

Saint-Petersburg, Russia

pelinvo@gmail.com, ivisaev@corp.ifmo.ru, ivan.perl@corp.ifmo.ru

Abstract—This article addresses estimation of source code
changes influence on a high-scale software solutions. Described
existing approaches address this issue only partially while the
proposed solution is aiming to provide an ability of deep influence
tracing from changed source code piece through the rest of the
project. Such information can be used as a solid and reliable
baseline for the risk management and estimation in cases of
making code changes in the project or when changing version of
used third party library with available source codes.

I. INTRODUCTION

Modern software may consist of thousands lines of code
and be developed by large teams. It may depend on number of
side projects and libraries. Even if structure is simple, it may
be hard to figure out how and where particular changes made
in code or referenced library will affect the project.

Let’s take a look at a typical situation when project depends
or references another code written by colleagues or some third
party library. At some point, new version has been released and
this function was changed in such a manner:

p u b l i c i n t computeValue (i n t i n p u t)
{
− r e t u r n i n p u t / 5 ;
+ r e t u r n i n p u t / 10 ;
}

Suppose, developer didn’t read patch notes or there was
no note for this change. Build process passes with no new
warnings or errors, all tests are successful. But program works
incorrectly. What should a developer do in such situation?
Highly likely, algorithm will be so:

1) Search for a defect in code.
2) Check old or write new tests.
3) Check source code of the library.

The reason of troubles is rather simple, but time spent on
fixing may be enormously big, depending on a size of whole
project.

But it is not the only problem related to libraries. At some
moment, project receives new requirements which can’t be
met with the current configuration of imported libraries and
to address this situation it is necessary to migrate to a newer
version of used library, that will bring needed features. To
decide, what solution to apply, developers need to evaluate,
how complicated the migration will be. And this evaluation is
not that simple.

Depth of library’s influence can be viewed this way:

Fig. 1. Propagation of library influence

On a Fig. 1, left circle is a project, right one is a library
API. Arrows, marked with ”1”, represent direct calls to library
API - first level of influence, arrows with ”2” represent calls
of project methods, that call library API - second level of
influence. Arrows with ”3” are for methods, that are on third
level.

It is easy to see, that influence of library can be not only
wide, but deep too. To evaluate it without any special tools,
experienced developers, who added this library to the project
or hardworking and thoughtful developers, that will find all
library usages and track its consequences, are needed.

II. EXISTING SOLUTIONS

A. Code Review

Team members, chosen as reviewers, read code and leave
comments. In some cases, reviewers focus on bugs only, but
when team desire maximum quality, they also can seek for
architectural defects, inappropriate tool usage and bad coding
style. Code review helps to find some bugs on early stage and
kick off bad solutions. The whole team works on one piece of
code, making it better from points of view of many developers.

But code review has problem, mentioned in introduction
- it’s hard when it comes to merge branches with a large
number of changes. All change influence propagation should
be evaluated by developer himself basing on his experience in
the project.

B. Diff

Diff [1] - utility to compare two files. It seeks for different
strings and prints them with row and column numbers. Easy to

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

use and very helpful when it comes to preparing or reviewing
a commit.

It is a very universal utility, but this advantage means
that it is low informative for particular language. It gives
no information about change influence propagation because
it doesn’t use source code as semantic structure with special
syntax.

C. Specialized source code analysis tools

Source code analysis tools are designed to analyze source
code and/or compiled code versions to help in search of
security vulnerabilities. Some tools can be plugged in IDE.
These are powerful assistants in the development lifecycle,
especially for problems that can be detected at early stage
of software development, because they provide immediate
feedback to developer. That is very useful, especially compared
to finding vulnerabilities much later in the development cycle.

Graudit [2] is an open-source script and signature set, sup-
porting .NET languages, that allows to find potential security
flaws in source code using the GNU utility grep.

Puma Scan [3] is a software security analyzer that provides
real time, continuous source code analysis for C# applications.
Supporting different types of licenses, including Mozilla Public
License 2.0. Can be built into an IDE and also used via CLI.
With Puma Scan, vulnerabilities are displayed immediately
in the development environment and appear as spell check
and compiler warnings. Integrated Puma Scan security rules
silently search for security vulnerabilities and alert if any are
found. Security analyzers run on code files as the compiler
parses syntax nodes, trees, symbols, code blocks, or semantic
models. Identified vulnerabilities are tagged in the source code
location by Visual Studio. Over 55 documented vulnerabilities
to reference and common secure fixes for them. Rule categories
include: Configuration, Cross-Site Scripting, Cryptography,
Insecure Deserialization, Injection, Password Management and
Validation.

Security Code Scan [4] - open-source project, that is a set
of Roslyn analyzers that aim to help security audits on .NET
applications.

Project features:

• the tool allows to detect 29 vulnerability patterns with
69 different signatures;

• taint analysis is the capability to track variables in the
code flow and trace variable coming from user input,
helps reducing false positives;

• code fixes are automated refactoring to fix vulnerabil-
ities at the source;

• it can be integrated to any continuous integration that
supports MSBuild.

SonarQube [5] - scans source code for more than 20 lan-
guages for issues, vulnerabilities, and code smells. SonarQube
has plugins for Eclipse, Visual Studio and IntelliJ. Continuous
Inspection, that can be found on project home page, shows
where developer stands in terms of quality. This main page
also shows an immediate sense of the good results achieved
over time.

Tools analysis shows that none of the tools presented above
directly solve stated problems. But they are addressing number
of important issues applicable for various projects. These tools
can in general be characterized in a following way:

Strengths:

• scales well - can be run on lots of software, and can
be run repeatedly (as with nightly builds or continuous
integration);

• useful for things that such tools can automatically find
with high confidence, such as buffer overflows, SQL
Injection Flaws, etc;

• output is good for developers - highlights the precise
source files, line numbers, and even subsections of
lines that are affected.

Weaknesses:

• many types of security vulnerabilities are very difficult
to find automatically, such as authentication problems,
access control issues, insecure use of cryptography,
etc. The current state of the art only allows such tools
to automatically find a relatively small percentage of
application security flaws;

• high numbers of false positives;

• frequently can’t find configuration issues, since they
are not represented in the code;

• many of these tools have difficulties analyzing code
that can’t be compiled. Analysts frequently can’t com-
pile code because they don’t have the right libraries,
all the compilation instructions, all the code, etc.

III. TECHNOLOGY

Problems to be solved:

• inability to predict a complete list of consequences of
merge of two feature-rich code branches;

• lack of reliable measurement of complexity and scale
of influence of migration from one version of used
third-party component to another;

• inability to define influence of particular change under
code review for the whole project.

Described solutions do not address stated issues because
they are not processing a code structure and take source code
for analysis as is. To solve stated issues it is required to dive
into source code structure with understanding of referencing
between methods to extract changes and influences propaga-
tion graphs. On the basis of this it is clear, that some other
methods of analysis are needed. It is known, that compilers
build source code structure during compilation, so it looks
reasonable to use same approaches. These approaches are:

1) Abstract Syntax Tree (AST)
2) Abstract Semantic Graph (ASG)

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 205 --

A. AST

AST is based on parse tree. Parse tree or parsing tree [6],
also known as CST - Concrete Syntax Tree, is an ordered,
rooted tree that represents the syntactic structure of a string
according to some context-free grammar.

Fig. 2 is an example of parse tree for expression ”5 * 1 +
9 - 8 / 4”:

Fig. 2. Parse tree

In case of some operation written in programming lan-
guage, parse tree for it will be full of syntactic details which
are not very useful. These details are redundant because higher
level of abstraction is needed.

AST [7], [8] is a tree representation of the hierarchical
syntactic structure of source code written in a programming
language. Each node of the tree denotes a construct occurring
in the source code. The syntax is ”abstract” in not representing
every detail appearing in the real syntax. Applied to example,
shown earlier, AST will look like:

Fig. 3. AST

It is easy to notice, that AST is capturing the essence of
the operation without useless syntactic details.

But let’s look on the AST of C# code:

namespace Hel loWor ld
{
c l a s s Program
{
s t a t i c vo id Main (s t r i n g [] a r g s)
{
L i b r a r y i n s t = new L i b r a r y () ;
i n s t . Work (a r g s) ;

}
}

}

AST for this code:

Fig. 4. AST for C#

Example is rather simplified, comparing to real AST, built
by compilers or other special tools. But it is enough to
notice, that any change applied to source code will change
AST structure or particular node in it. AST structure reflects
hierarchical structure of sources, when its nodes represent
specific operators. So it’s obvious, that comparing two AST -
one constructed from old version of code and another one from
new version, can be much more informative, than comparing
source by diff utility.

Initial version of code analysis tool that was implemented
was based on AST of source code which were generated for the
code. Soon, it was figured out, that application of AST analysis
for the addressed issues was insufficient. It can be illustrated
with example, shown in Fig. 4. There is ”MethodCall” node,
that has parameter ”Expression” with ”inst” value, which is
just a simple string - no reference, just a string. It is a serious
disadvantage of AST, so few attempts were made to improve
AST generation and processing, but this didn’t lead to the
required capabilities. Finally, ASG was a solution, that covered
processing gaps, that had place with AST.

B. ASG

ASG [9] is a form of abstract syntax in which an expression
of a formal or programming language is represented by a
graph whose vertices are the expression’s subterms. It can be
described as AST with additional connections between nodes,
which represent semantic of connected nodes.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 206 --

ASG for previous example will look like this:

Fig. 5. ASG

New connections give knowledge, that Library in ”Library
inst = new Library()” is a reference to class Library and ”inst”
in ”inst.Work(args)” is an instance of Library class. With this,
it is possible to track propagation of influence of changes in
class Library and its method Work, if it will take place.

IV. DIFFINFLUENCEANALYZER

A. Idea

With AST and ASG it becomes possible to create an utility,
that will solve problems, stated in previous section:

• predict a complete list of consequences of merge of
two feature-rich code branches;

• provide reliable measurement of complexity and scale
of influence of migration from one version of used
third-party component to another;

• define influence of particular change under code re-
view for the whole project.

B. Design

DiffInfluenceAnalyzer is based on tool named the .NET
Compiler Platform (”Roslyn”) [10], because it is a powerful
tool, that can parse code, build AST, extract semantics (as
from ASG), etc. Since Roslyn is created and works with C#,
the utility is written in this programming language. C# is
modern, actively developing language and quite big number
of large industrial projects is created with use of it. This gives
DiffInfluenceAnalyzer a huge code base to test with and to
analyze.

Main workflow of the utility:

1) Get two versions of code.
2) Create AST for both versions.
3) Compare these AST.

4) Find changed entities in new version with ASG.

DiffInfluenceAnalyzer works with two separate copies of
project sources, representing two versions. These versions will
be represented by C# solutions, because it is most convenient
way to analyze sources using Roslyn. Both of them are
supposed to be correct, because DiffInfluenceAnalyzer has no
aim to replace the compiler.

C. AST example

AST, built by Roslyn from previously mentioned code
sample, is demonstrated below:

Fig. 6. Roslyn AST

For representation of any language entity declaration
Roslyn provides special class. In previous example such
classes can be found:

• NamespaceDeclarationSyntax - for namespace decla-
ration;

• ClassDeclarationSyntax - for class declaration;

• MethodDeclarationSyntax - for method declaration;

• LocalDeclarationStatementSyntax (LocalDeclStm-
ntSyntax) - for local variable declaration.

Also, there is class ExpressionStatementSyntax (ExprStm-
ntSyntax), that represents expressions.

The scheme represents basic structure of AST, that’s why
it lacks many details.

D. Solution comparison

Final goal of this step - find relevant pairs of entities from
both versions, whether they are totally same or have some
non-critical differences, that allow to consider them relevant.
In other words, for each entity in old version it is mandatory
to find its representation in new. To achieve this, AST will be
compared this way:

1) Compare namespaces.
2) Compare classes.
3) Compare methods.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 207 --

Entities from one version will be compared with entities of
another on the same level. Comparison on each level consists
from two parts - comparison of entity names and comparison
of entity contents. Depending on level, comparison can return
different results, but there are some common (for all levels)
values:

1) Same - name and contents are same.
2) Renamed - same contents, but different names.
3) Reimplemented - same names, but different contents.
4) Different - nor name, nor contents are same.

E. Comparison of namespaces

Each namespace from old version is compared with each
namespace from new version. Classes of namespace are as-
sumed as its contents, so these classes are compared, to make
conclusion about namespaces. After that, namespace names are
compared. Result derivation algorithm:

Fig. 7. Namespace comparison result derivation

If names are different and number of classes are equal and
each class from old version has its ”Same” pair from new one,
namespaces are considered ”Renamed”.

If names are same and number of classes are equal and each
class from old version has its ”Same” or ”Renamed” pair from
new one, namespaces are considered ”Same”. If not all classes
are ”Same” or ”Renamed”, or some classes were deleted or
added, then namespaces are considered ”Reimplemented”. In
other cases namespaces are considered ”Different”.

F. Comparison of classes

Comparison of classes looks similarly as comparison of
namespaces, exclude that content of class is its methods.

Each class from old version is compared with each class
from new version. Methods of class are assumed as its con-
tents, so these methods are compared, to make conclusion
about classes. After that, class names are compared. Result
derivation algorithm:

Fig. 8. Class comparison result derivation

If names are different and number of methods are equal
and each method from old version has its ”Same” pair from
new one, classes are considered ”Renamed”.

If names are same and number of methods are equal and
each method from old version has its ”Same” or ”Renamed”
pair from new one, classes are considered ”Same”. If not
all methods are ”Same” or ”Renamed”, or some methods
were deleted or added, then classes are considered ”Reimple-
mented”. In other cases classes are considered ”Different”.

G. Comparison of methods

Method content is formed of these parts:

• list of types of arguments;

• return type;

• body - number of operators and their values.

Methods have some specific comparison result, that is
derived from their nature - ”Overloaded”.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 208 --

Comparison result derivation algorithm:

Fig. 9. Method comparison result derivation

If names are different, but contents are same - ”Renamed”.
If at least one content part differ - ”Different”.

If names are same, but lists of types of arguments are
different - ”Overloaded”. If return types or bodies are different
- ”Reimplemented”. The essence of body comparison is string
arrays matching.

In all other cases - ”Same”.

H. Search for changed entities in new version

All possible entities pairs are compared. Now, pairs that
considered ”Different” are dropped, because they are probably
different originally and such cases aren’t interesting for the
utility. The interesting pairs are such that aren’t considered
”Same”, because they are exactly those changes, that utility
aims to find.

As far as signature of method is known, its definition
in AST can be found. But as mentioned earlier, AST lacks
of semantics, so calls of this method in the tree can’t be
found. For such a situation, Roslyn’s SemanticModel [11]
class, which provides functionality of ASG, is used. This class
is created for each source code file and is used to find calls of
chosen method. After search completion, its results are printed
to command prompt.

I. Sample output

For now, DiffInfluenceAnalyzer output looks like this:

Changed methods :
Hel loWor ld . Program . Main (s t r i n g [])
Hel loWor ld . L i b r a r y . FooBar ()

S e a r c h i ng f o r r e f e r e n c e s on methods . . .

R e f e r e n c e s on changed methods and i n f l u e n c e d
methods :

Hel loWor ld . L i b r a r y . FooBar ()
Re f e r e n c e s :
C:\ Hel loWor ld \Program . cs : (23 ,22) − (23 ,34)
C:\ Hel loWor ld \Program . cs : (58 ,12) − (58 ,24)
I n f l u e n c e d :
Hel loWor ld . Program . Main (s t r i n g [])
Hel loWor ld . Program . Compute (i n t)

From this output, user can make a conclusion,
that methods HelloWorld.Program.Main(string[])
and HelloWorld.Library.FooBar() were changed.
HelloWorld.Library.FooBar() was called in file Program.cs
from row 23 columns 22-34 and from row 58 columns
12-24. Methods, that are standing on a zero level of change
influence propagation are HelloWorld.Program.Main(string[])
and HelloWorld.Program.Compute(int).

V. CONCLUSION

In this article next problems were pointed out:

• inability to predict a complete list of consequences of
merge of two feature-rich code branches;

• lack of reliable measurement of complexity and scale
of influence of migration from one version of used
third-party component to another;

• inability to define influence of particular change under
code review for the whole project.

The study showed, that existing solutions solve these
problems only partially, so it is reasonable to create a special
utility. DiffInfluenceAnalyzer can find differences between
two versions of code and track usages of changed methods.
This functionality can help developer to define influence of
particular change under code review and predict consequences
of merge of two feature-rich code branches. Currently, im-
provements of the developed solution, that address issue with
measurement of complexity and scale of influence of migration
from one version of used third-party component to another, are
almost finished.

REFERENCES

[1] Linux documentation, Web: https://linux.die.net/man/1/diff.

[2] Github, Web: https://github.com/wireghoul/graudit.

[3] Puma Scan, Web: https://pumascan.com/.

[4] Github, Web: https://security-code-scan.github.io/.

[5] SonarQube, Web: https://www.sonarqube.org/.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 209 --

[6] I. Chiswell and W. Hodges, Mathematical Logic. Oxford University
Press, 2007, p. 38.

[7] A.V. Aho, M.S. Lam, R. Sethi and J.D. Ullman, Compilers: Principles,
Techniques, and Tools, Second edition. Pearson Education, 2007, p. 41.

[8] K. Cooper and L. Torczon, Engineering: A Compiler, Second Edition.
Elsevier, 2012, p. 227.

[9] E. Duffy, “The Design & Implementation of an Abstract Semantic

Graph for Statement-Level Dynamic Analysis of C++ Applications”,
Clemson University. TigerPrints. All Dissertations. 832., Dec. 2011, p.
5.

[10] Github, Web: https://github.com/dotnet/roslyn.

[11] Docs Microsoft, Web: https://docs.microsoft.com/dotnet/
api/microsoft.codeanalysis.semanticmodel.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 210 --

