
Temporal Extension of the Select Statement
– New Clauses

Michal Kvet
University of Zilina

Zilina, Slovakia
Michal.Kvet@fri.uniza.sk

Karol Matiaško
University of Zilina

Zilina, Slovakia
Karol.Matiasko@fri.uniza.sk

Abstract—Effective timed data processing belongs to one of
the most important tasks in the development of current
information and database systems. It is not, however, only the
changes in time management, but also the complex record of
changes during the whole life cycle of the object – historical
values, actual states, but also data valid in the future. Existing
temporal solutions are inadequate in terms of performance -
effectiveness of the whole system, which is manifested by the size
of the required data and processing time. There is no temporal
solution for Select statement defined and the user has to manage
it explicitly. This paper deals with the principles of temporal data
modeling on the object and attribute level. It also describes the
characteristics of Select statement used in the temporal system,
extends it with new characteristics and defines new layer for
transformation into existing syntax.

I. INTRODUCTION
Massive development of data processing requires access to

extensive data using procedures and functions to provide easy
and fast manipulation. The basis is the database technology
[11].

Database systems are the root of any information system
and are the most important parts of the information technology.
They can be found in standard applications, but also in critical
applications such as information systems for energetics,
industry, transport or medicine. The development of data
processing has brought the need for modeling and accessing
large structures based on simplicity, reliability, and speed of the
system. However, even today, when database technology is
widespread, most databases process and represent current valid
data. However, conventional relational database definition can
be extended for temporal data modeling, which allows changes,
evolution monitoring, process optimization, prognoses and
analyses creation [1], [12], [13], [14].

Complex data management can be found almost in any
field, many systems are based on temporal logic [5], [17], [21]
and extension management (paradigm) [18]. Temporal data
processing must deal with data quality [20], security [19] and
reliability aspect.

This paper deals with the temporal architecture and defines
problems of data selection, therefore new layer for temporal
data manipulation has been developed and the Select statement
has been extended. Extended parts are characterized by the
emphasis of the current relational database transformation. It is
divided into nine sections. Technical background and theory
are described in section 2, followed by new clauses options
(section 3), structurally and implementation-oriented definition

covered by the sections 4 up to 7 (section 4 -
TYPE_OF_GRANULARITY, section 5 –
EVENT_DEFINITION, section 6 – EPSILON_DEFINITION,
section 7 – MONITORED_COLUMN_LIST). Section 8 deals
with the computational study. The last section concludes the
developed solution and proposes expansion options.

II. THEORY
The temporal system has been developed soon after the

development of databases. In the first phase, historical data
were saved using log files and archives. Thus, historical data
could be obtained, but it is a complicated process, these data
are in the raw form and handling them was difficult, required
too much time. The main problem was data operation loss if the
backup frequency was not suitable. Thus, decisions based on
historical data could not be used, because large backup images
had to be loaded manually, which took a long time. Another
problem is the impossibility of future valid data modeling and
management [1], [6], [7], [8].

Later, the temporal systems have been developed defining a
new paradigm for selecting one or more rows based on the
specified criteria, for projecting one or more columns to the
output sets and for joining the tables by specifying relationship
criteria. It means that individual operations must contain also
time definition. This paradigm is still valid.

The first model (conventional approach) in Fig. 1 does not
use the time for definition at all, it cannot provide management
for non-current data in the main structure. The primary key is
defined by the attribute ID (can be composite). In the non-
timed table, each row represents a specific instance identified
by a primary key. The uniqueness of the primary key values
without defining additional conditions ensures that the number
of rows in the table is identical with the number of managed
objects. Any change has directly reflected the database and the
old value is deleted.

The second model is a uni-temporal system, ID is a unique
identifier; PK refers to a primary key. BD and ED is a pair of
columns defining the beginning and end value of the period –
validity. The uni-temporal system always uses the composite
primary key – object identifier and time interval defining the
validity state characterizing the row [2], [3], [4], [7], [8].

A special type of uni-temporal system consists of the only a
one-time attribute (begin date – BD) that is part of the primary
key (third model in Fig. 1). This means that any change of the
corresponding object determines the validity of the prior state.
The principles of transformation uni-temporal system defined

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

by the begin date of the validity to the standard approach and
time intervals are described in [8], [17]. The special approach
has been developed by us, which is based on the attribute
granularity, not the entire object. Thus, if the value of the single
attribute is changed, only that value is updated (not the whole
state, which consists of a various number of temporal columns)
[6], [9], [15].

Fig. 1. Conventional and object level temporal model

III. TEMPORAL SELECT STATEMENT

The Select statement in the relational database approach is
considered as the most important and most frequently used
SQL statement based on performance. With this statement, the
desired data can be obtained from the database by using
relational tables. The basic syntax of the Select statement in the
conventional database consists of these six parts - Select, From,
Where, Group by, Having and Order by.

Although conditions can be defined in the Where clause,
this segment does not cover the complexity and structure of the
temporal system. Therefore, in the following section, we
describe our proposed new ways to enhance the whole concept
of the management of temporal data.

We designed and implemented syntax, which shows the
temporal extension of the Select statement using these parts:

 EVENT_DEFINITION,
 EPSILON_DEFINITION,
 MONITORED_COLUMN_LIST,
 TYPE_OF_GRANULARITY.

Our proposed extended clauses and the whole Select
statement opportunities are presented in the following code.
The importance of individual clauses is subsequently described
in the next sections.
[CREATE TABLE table_name AS]
 SELECT [ALL | DISTINCT | UNIQUE]
 { * | attribute_name | function_name [(parameters)]}
 [,...]
 FROM table_name [alias] [,...]
 [WHERE condition]
 [EVENT_DEFINITION]
 [EPSILON_DEFINITION]
 [MONITORED_COLUMN_LIST]
 [GROUP BY attribute_list]
 [HAVING condition]
 [TYPE_OF_GRANULARITY]
 [ORDER BY column_name [ASC | DESC] [,...]]

IV. TYPE_OF_GRANULARITY
Our first introduced clause is a TYPE_OF_GRANULARITY

expression, which is included after the Having clause. It is a
way of formatting the final set, defines the sensitivity and
details of the changes. There can be three types defined.

Object - defines the granularity on object level – list of object
states changes regardless of the type of change. Changed
attribute values themselves can be taken using Column
characteristics. The difference between the options shown in
the following figure. At time t1, object O1 state is changed
from S1 state to S2 state. If the Object definition is used, we get
information about the change of the object O1. However,
specific new values (new value of the attribute H = HA12) are
obtained through the clause Column.

The access rule COLUMN_CHANGES_MONITORING
displays also comprehensive information – new (HA12) and
also the previous value of the attribute (HA11) – Fig. 2.

Fig. 2. Update of the state of the object O1

Next code shows the output of the Select statements with
respect to the granularity access rules.

OBJECT: t1 – state of the object O1 has been changed.
COLUMN: t1 – state of the object O1 has been changed.
 Attribute A1 now has value HA12.
COLUMN_CHANGES_MONITORING: t1 - Attribute A1 of the object O1
 has been changed.
 Old value = HA11 ; new value = HA12.

Following code describes the principle of transformation to
the existing syntax.

OBJECT:
 -- the only identifier of the object (object_id) and time
point of the change (ch_timepoint) is selected.

select object_id, ch_timepoint ...

COLUMN:
 -- identifier of the object (object_id), timepoind of the
change (ch_timepoint) and new value (new_val) is selected.

select object_id, ch_timepoint, new_val
 from ...
 where new_val != old_val ...

COLUMN_CHANGES_MONITORING:
 -- identifier of the object (object_id), timepoind of the
change (ch_timepoint), old (old_val) and new value (new_val)
is selected.

select object_id, ch_timepoint, new_val, old_val
 from ...
 where new_val !=old_val ...

Default selection criterion is Column. If this clause was not

used, we would get all temporal attribute values regardless the
change of them at defined timepoint (interval).

An essential part of the state monitoring is to get direct
predecessor (state) for changes monitoring. Following code
shows the algorithm for obtaining previous change if exists.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 212 --

The solution is based on using With clause, which eliminates
multiple same table definition.

With tab_with (
 Select t2.*
 from TAB1 t1. TAB2 t2
 where t1.ID = p_state.ID
 AND t1.BD = p_state.BD
 AND t2.ED <= t1.BD)
Select *
 from tab with
 where ED = (select max(ED)
 from tab);

V. EVENT_DEFINITION
Our proposed syntax definition covers also

EVENT_DEFINITION part, which extends the Where clause
of a Select statement. It specifies a range of time and
processed data obtained by way of a point in time
(defined_timepoint) - just a reference to the point in time - or
time interval (defined_interval), the definition of which
includes two-time values - the begin and end time point of the
validity.

In the database instance session, the user can set the type of
used interval (closed-closed, closed-open representation).
However, it can be redefined directly for the executed Select
statement. Thus, the second (optional) parameter is the interval
type to be used (CC - closed-closed, CO - closed-open type).

defined_timepoind(t)
defined_interval(t1, t2, [CC | CO])

Fig. 3 shows the input interval with the closed-closed

characteristics, Fig. 4 shows the closed-open representation
defined inside the method. Input time interval
(defined_interval (t1, t2)) is expressed in the top part of the
figure, then the states including output set based on real
representation in the database are highlighted.

Fig. 3. Closed-closed input representation

Fig. 4. Closed-open input representation

The following block shows the transformation to an
existing Select statement syntax. We assume that the object
state is bordered by the beginning of the period (BD) and end
date (ED). Terms t1 and t2 represent the boundary of the
monitored interval (defined_interval):

defined_timepoint(t):
--for closed-closed time validity representation <BD, ED>.

where BD <= t AND t <= ED ...

--for closed-open time validity representation <BD, ED>.
 where BD <= t AND t < ED ...

defined_interval (t1, t2, CC | CO):
 closed-closed input interval representation <t1, t2>:
 Validity modelled using closed-closed representation:
 where BD <= t2 AND ED >= t1 ...
 Validity modelled using closed-open representation:
 where BD <= t2 AND ED > t1
 closed-open input interval validity <t1, t2>:
 Validity modelled using closed-closed representation:
 where BD < t2 AND ED >= t1 ...
 Validity modeled using closed-open representation:
 where BD < t2 AND ED > t1

VI. EPSILON_DEFINITION
For the purposes of changes and progress monitoring over

the time, it is convenient to define rules that affect the size of
the output processed sets. We developed
EPSILON_DEFINITION as the determination of the method
by which it is possible to filter out irrelevant changes,
especially in sensor data. Each referenced temporal attribute
may have defined the precision – relevance – the minimal
value of the significant change - Epsilon () value. If the
difference between two consecutive values of the attribute is
less than the value of the Epsilon () parameter defined for the
corresponding temporal column, this change will not appear in
the result set returned by the Select statement. If this clause is
not used, then the default value of the minimum change (=
0) is used. Thus, any change will be processed regardless of
the relevance.

To use this functionality, it is necessary to define a
function that will map values of the non-numerical data types
to the types in order to quantify the change. For each data
type, we need to define a Map function (or use implicit
conversion function). The input parameter of this function is
the value of the primary data type, the result returned is a
numeric value (integer, float, long,):

Create or replace map function f_date_type(val data_type)
return longint
is
begin
 return transformed_value (val); -- into longint;
end;
/

In Fig. 5, we characterize the use of the Epsilon ()
principle for the definition expressed by the medically
processed data – brain tumor detection. The input values are
first filtered based on the position (only areas, where anomaly,
respectively tumor can be located, are monitored). Then the
marker values are compared during the time evolution (tumor
markers means a substance, usually a protein, the occurrence
of which indicates the presence of cancer in the patient´s body
[16]). If the new marker value (new) expresses significant
change:

oldnew mm

specific algorithms check incorrect positivity. If not detected,
the value is stored in the database. This process reduces the
amount of stored data.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 213 --

Fig. 5. Incorrect positivity (brain tumor detection)

Fig. 6 shows the marker values without using Epsilon ()
definition, whereas Fig. 7 uses this approach - (= 0.5%).
Note that if you do not use Epsilon () definition, a complete
image is stored. However, by using Epsilon () principle, not
processed values are replaced by evaluated areas from the
past. The thick lines border region of interest (which should be
monitored over the time).

Fig. 6. Solution without using Epsilon () approach

Fig. 7. Solution using Epsilon () principle

The following block illustrates the transformation to the
existing Select statement syntax:

--implicit conversion:
where ABS(new_val – old_val) >= Epsilon

--explicit conversion:
where ABS(f_data-type(new_val) – f_data-type(old_val)) >= Epsilon

In this approach, however, specific situation can occur –

attribute value change rate is high, but the difference between
actual and previous value is lower than the Epsilon ()
parameter. Thus, in the global view, the progress reflected by
the time t1 can be significant. The problem also expresses the
following figure.

Suppose attribute value A = 5 (represented at time t1) and
Epsilon temporal change parameter value = 1. Fig. 16 shows
the progress of changes - observed value is still growing, but
not so much, thus the neighboring changes difference is not
greater than defined parameter (Fig.6).

Fig. 6. Time changes evolution

Therefore, EPSILON_DEFINITION clause allows you to
define not only management for neighboring changes.
Another optional parameter is the size of a controlled time
frame (time_frame). Each column in the temporal clause
EPSILON_DEFINITION is characterized by the parameter
Epsilon () and also time frame. When defining the time
frame, you need to specify the method of processing - the
smallest granule – time point or attribute change:

EPSILON_DEFINITIONattribute A1 (1, [time_frame1],
 [frame_type1],
 [referential_value1]),
EPSILON_DEFINITIONattribute A2 (2, [time_frame2],
 [frame_type2],
 [referential_value2]),
...

The last option of this method is the fixed (global)
referential value, thus processed frame is still growing during
the time.

VII. MONITORED_COLUMN_LIST
Our proposed clause MONITORED_COLUMN_LIST as

the extension of the Select for temporal approach allows you
to define a list of columns definition, which is relevant for
processing and should be monitored. This list does not need to
be identical to the first part of the Select statement, however, it
can consist only of the temporal attributes (not conventional or
functions):

MONITORED_COLUMN_LIST(attribute1, attribute2,
 attribute3, ...)

If there is a change of at least one column defined in clause
MONITORED_COLUMN_LIST, resulting command will
reflect this change. If the clause is not specified, it will
automatically be replaced by monitoring all temporal
attributes:
MONITORED_COLUMN_LIST(*) –all temporal columns monitoring

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 214 --

VIII. EXPERIMENTS
Our experiments and evaluations were performed using a

medical information system – measured and processed
parameters were performed using volunteers – long-term
magnetic resonance imaging (MRI) results monitoring
[10], [16].

All experiments were provided using the Oracle 11g
database system. In this part, a total number of records in the
main structure was 10 000, each record contains 10 MRI
results.

In this computational study and performance limitation
section, we highlight time to get required data and size of the
structure. We compare our implemented temporal solution on
column level with the standard uni-temporal system followed
by the extension of the transaction management of the
developed system compared to bi-temporal structure (uni-
temporal approach on object level extended by the definition
of the transaction time validity).

Although in general, we are talking about transaction
management, processing, in this meaning, it is based on
measurement error reduction. If it is possible to reduce
measurement error, new transaction inserts the corrected
marker value into the database obtained by the approximation
and monitoring the progress and dependencies of marker
values over time.

The first model deals with the standard uni-temporal
approach (reference 100%) based on object level. In
comparison with the temporal structure on column level
(model 2 and 3), there is a significant acceleration of the
system:

without using Epsilon () principle (model 2):
 Size: 41,60%.
 Time to get the current image (T1): 73,88%.
 Time to get all life-cycle MRI data result: 59,98%.

using Epsilon () principle (model 3):
 Size: 51,55%.
 Time to get the current image (T1): 73,88%.
 Time to get all life-cycle MRI data result: 65,97%.

The last (4th) model represents transaction processing
modeled by the extension of the primary key using transaction
time definition, it provides the slowest performance.

Fig. 8 shows the implemented results dealing with the
size of the whole database structure, Fig. 9 deals with the
processing time monitoring the current data image and time to
get the whole evolution of the object, as well.

Epsilon () parameter has been used, which separates the
objects of interest (anomalies, tumors) from other brain
tissues. However, it is very important to set the appropriate
value of the parameter. Too high value can cause the reduction
of the potential anomalies from the output image [16]. Fig. 10
shows the size – standard approach and epsilon value
dependency. If the system for incorrect positivity detection is
used, the size requirement is lower.

Experiment results can be shown on the Table I. It is
expressed by the obtained values and monitored parameters
(time and size). First of all, when comparing granularity, pure

column level temporal architecture (model 2) reaches the
improvement of 41,61% for size, 73,88% for getting actual
data image and 59,98% for accessing data evolution (reference
– model 1 – 100%). Epsilon approach can reduce the data
amount, which is not relevant. Based on our experiment scene,
model 3 got the 17,03% improvement for size management
(reference – model 2) and 14,96% for obtaining object data
changes. The worst performance score made a bi-temporal
solution, which manages also data changes. In comparison
with validity aspect of model 1, the slowdown is 26,96% for
the process of getting current data image and 21,67% for
monitoring object evolution over the time. When dealing with
structure size, it requires an increase of 11,89% (reference –
model 1 – 100%).

Fig. 8. Size of the DB

Fig. 9. Results - time

Fig. 10. Epsilon value dependency

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 215 --

TABLE I. EXPERIMENT RESULTS

IX. CONCLUSION
A conventional database object is represented by one row –

current state of the object, whereas the temporal database
system offers processing object valid data and their changes
and progress in time. Data processing in the temporal
environment requires access to the whole information about the
evolution of the states during the life-cycle. Effective managing
temporal data is the core of the development and can be used
for decision making, analyses, process optimization, which is a
very significant factor in the industrial environment.

The problem of the current temporal paradigm is weak
support for data management. Simply, temporal systems
proposed in the recent past do not offer sufficient power to
manage large volumes of data with emphasis to reliability and
effectiveness of the statements. Most significant is the Select
statement, which can be considered as the main part of the
DML statements, also the critical performance factor of the
whole system. The new definition of the Select statement
extends the conventional principle by adding clauses for time
management. In sensor data processing, the problem is more
visible due to the precision of the measured data. Therefore,
layer with Epsilon () principle has been defined. Moreover, all
new clauses can be directly transformed into existing syntax.

Temporal data processed over the time are usually large.
The processing requires sophisticated access methods. In the
future, we will focus on various index structure creation, index
distribution, which can improve the performance of the system,
too. Select statements to be executed will be transformed based
on index structures to improve the performance of the system.

ACKNOWLEDGMENT
This publication is the result of the project implementation:
Centre of excellence for systems and services of intelligent

transport II., ITMS 26220120050 supported by the Research
& Development Operational Programme funded by the ERDF.

This paper is also supported by the following project:
"Creating a new diagnostic algorithm for selected cancers,"
ITMS project code: 26220220022 co-financed by the EU and
the European Regional Development Fund.

"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU

PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ

REFERENCES
[1] C. J. Date, Date on Database. Apress, 2006.
[2] C. J. Date, “Logic and Databases – The Roots of Relational Theory”,

Trafford Publishing, 2007.
[3] C. J. Date, H. Darwen, and N. A. Lorentzos, Temporal data and the

relational model, Morgan Kaufmann, 2003.
[4] P.N. Hubler and N. Edelweiss, “Implementing a Temporal Database on

Top of a Conventional Database”, 2000. Conference SCCC ’00, pp. 58 –
67

[5] N. Chumakova, V. Olenev and I. Lavrovskaya, “Conformance Testing
of the STP-ISS Protocol Implementation by Means of Temporal Logic”,
2017. Conference FRUCT 21.

[6] Ch. S. Jensen, “Introduction to Temporal Database Research”,
[7] Web: http://infolab.usc.edu/csci599/Fall2001/paper/chapter1.pdf -

Online January 2015.
[8] Ch. S. Jensen and R. T. Snodgrass, Temporally Enhanced Database

Design, MIT Press, 2000.
[9] T. Johnston and R. Weis, Managing Time in Relational Databases,

Morgan Kaufmann, 2010.
[10] R. Kimball, “The Data Warehouse Toolkit: Practical Techniques for

Building Dimensional Data Warehouses”. John Wiley & Sons, 1996
[11] M. Kvet and K. Matiaško, “Transaction Management”, 2014. CISTI,

Barcelona, pp.868-873.
[12] M. Kvet and M. Vajsová, “Transaction Management in Fully Temporal

System”, 2014. UkSim, Pisa, pp. 147-152.
[13] M. Kvet, K. Matiaško, M. Kvet, “Complex time management in

databases”, In Central European Journal of Computer Science, Volume
4, Issue 4, 2014, pp. 269-284.

[14] P. Lewis, A. Bernstein, and M. Kifer, Databases and Transaction
Processing (An Application Oriented Approach), Addison-Wesley,
2002.

[15] J. Maté, “Transformation of Relational Databases to Transaction-Time
Temporal Databases”, in ECBS-EERC, 2011, pp. 27-34.

[16] M. T. Oszu and P.Valduriez, “Principles of Distributed Database
Systems”, Inria, 1991.

[17] O. Pianykh, “Digital Imaging and Communications in Medicine”,
Springer, 2008.

[18] R. Snodgrass, Developing Time-Oriented Database Applications in SQL.
Morgan Kaufmann Publishers”, San Francisco, 2000.

[19] N. Teslya and I. Ryabchikov, “Blockchain-base Platform Architecture
for Industrial IoT”, 2017. Conference FRUCT 21

[20] X. Wei et all, “Data Quality Aware Task Allocation with Budget
Constraint in Mobile Crowdsensing”, 2018. In IEEE Accessm
Volume 6

[21] H. Zhang et all, “End-to-end temporal attention extraction and human
action recognition”, 2018. In Machine Vision and Applications, Volume
29, Issue 7.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 216 --

